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During ejaculation in the boar, sperm cohorts emitted in epididymal cauda 
fluid are sequentially exposed and resuspended in different mixtures of 
accessory sex gland secretion. This paper reviews the relevance of such 
unevenly composed fractions of seminal plasma (SP) in vivo on sperm 
transport and sperm function and how this knowledge could benefit boar 
semen processing for artificial insemination (Al). The firstly ejaculated 
spermatozoa (first 10 ml of the sperm-rich fraction, SRF [Pl]) remain 
mainly exposed to epididymal cauda fluid and its specific proteins 
i.e. various lipocalins, including the fertility-related prostaglandin D
synthase; than to prostatic and initial vesicular gland secretions. Pl­
spermatozoa are hence exposed to less bicarbonate, zinc or fructose
and mainly to PSP-I spermadhesin; than if they were in the rest of the
SRF and the post-SRF (P2). Since the Pl-SP is less destabilizing for
sperm membrane and chromatin, Pl-spermatozoa sustain most in vitro

procedures, including cryopreservation, the best. Moreover, ejaculated
firstly, the Pl-spermatozoa seem also those deposited by the boar as a
vanguard cohort, thus becoming overrepresented in the oviductal sperm
reservoir (SR). This vanguard SR-entry occurs before the endometrial
signalling of SP components (as PSP-I/PSP-11 and cytokines) causes a
massive influx of the innate defensive PMNs to cleanse the uterus from
eventual pathogens, superfluous spermatozoa and the allogeneic SP. The
SP also conditions the mucosal immunity of the female genital tract, to
tolerate the SR-spermatozoa and the semi-allogeneic conceptus. These
in vivo gathered data can be extrapolated into procedures for handling
boar spermatozoa in vitro for Al and other biotechnologies, including
simplified cryopreservation.
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Introduction

Modern pig production is vertically integrated, with breeding done through Al. This first-
line, easy, practical and highly effective biotechnology serves two major purposes (i) avoid
spreading venereal (or otherwise semen-shed) diseases and, (ii) maximise dissemination of
genetic material to large numbers of sows. With proper detection of oestrus (twice daily) and
Al correctly performed (80-100 ml, cervical, 2-3 times/oestrus) with high-quality semen ( > 2
x 109 motile spermatozoa), > 900/0of farrowing rates and mean litter sizes of 12-14 piglets are
reached, comparable with those achieved with natural mating (reviewed by Rodriguez-Martinez
2007a). With such results, it is not surprising that pig Al became an essential breeding tool,
increasing worldwide from —7% at the start of the 1980s (Reed 1985) to more than 80% 20
years later (Wagner & Thibier 2000). In the European Union (EU) —84% of all sows/gilts are
bred by AI (Feitsma, personal communication).

Improvements in the design of media, AI-catheters and moment of Al, have led to > 99,a of
all Als done around the world being made with liquid semen (Wagner & Thibier 2000). Frozen-
thawed (FT) semen is, however, rarely used ( —1%, Thibier, personal communication), since
cryopreservation is still considered "quasi experimental". However, breeding enterprises are
interested in further developing cryopreservation, since FT-semen could be used in situations in
which the widely used liquid semen can not, such as the international exchange of genetic lines
without transporting livestock, the long-term conservation of superior genetic individuals in genetic
resource banks, or the testing for presence of pathogens before use. Yet, boar spermatozoa show
low cryosurvival ( 40%) and a shortened lifespan among surviving spermatozoa. This obviously
leads to lower farrowing rates and smaller litter sizes compared to liquid semen (reviewed by
Rodriguez-Martinez 2007a). Moreover, cryopreservation procedures are cumbersome, time-
consuming and yield few doses/ejaculate, all of which deter from its wider use.

Ongoing research aims to widen AI-use, by decreasing sperm numbers per Al-dose (increasing
extension), designing novel media (chemically-defined) or quicker cryopreservation methods,
and implementing alternative procedures for semen deposition (intra-uterine). Despite gains
thus far (rev by Rodriguez-Martinez 2007a), innate characteristics of the boar ejaculate such
as the specifics of the sperm structure and of the seminal plasma (SP), yet hinder full success.
The SP is not just a sperm vehicle, but as relevant modulator for sperm function, for sperm
transport post-breeding and as inductor of both innate and adaptive immunological responses
by the female that would ensure reproductive success. Considering the current focus for novel
semen extension and sperm treatments for Al, the present paper attempts to review aspects of
the characteristics of the boar ejaculate in relation to sperm transport in the female genitalia in
vivo, and how this knowledge could benefit boar semen processing for Al.

Ejaculation in the pig

Ejaculation is a highly coordinated physiological process involving neurological and muscular events
that build two distinct phases; (i) emission (the formation and deposition of semen [spermatozoa and
seminal fluid] in the urethra and (ii) the forthcoming ejection of the semen through the penis urethra
(the so-called expulsion, or ejaculation proper). In boars, emission and ejaculation repeat aswaves for
5-10 min, during which the complete ejaculate (250-300 ml in a mature boar) is sequentially verted
into the female cervix lumen or it is manually collected ex- corpore into a recipient (Senger2005). In
the latter case, waves can be regarded by the operator as a sequence of three major fractions. These
fractions are classically called pre - sperm (PSF,with a clear seminal fluid, some gel and a heavy degree
of contamination of cell debris, urine and smegma from the preputium), sperm - rich (SRF,easily
recognised by its creamy-white colour) and post sperm- rich (PSRF,that goes from greyish to watery
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in aspect)and whose increasing amounts of "tapioca-like flocula, signals the end of the ejaculation
process,accompanied by a fading of the penile erection. Interestingly, a second ejaculation sequence
can be manually stimulated with brief, firm, pulsating hand pressureapplied to the penis, upon which
a new, but smaller, SRFis often collectable (Mann & Lutwak-Mann 1981).

The ejaculate of the boar

The ejaculate is a sperm suspension ( 50-90x109 in 9 month-old boars to – 70-110x109 when
they reach maturity, i.e. after 12 months of age; Flowers 2008, Wallgren, unpublished results)
in a SP composed of the mixture of the contents of the tails of the ductus epididymides and the
secretions of the accessory sexual glands. The latter vary in content, volume and occurrence of
excretion, building fractions of different composition. The PSF-SPcontains mainly secretion of the
urethral and bulbourethral glands, aswell asof prostate; the SRF-SPis a blend SPwhere the emitted
epididymal fluid in which spermatozoa (see Fig. 1) originally bathe, is diluted in vesicular gland
and prostate secretions. Lastly, the PSRF-SPsuspends few spermatozoa, being a fluid primarily
derived from the increasing secretion of the vesicular glands, the prostate and, by the end of the
ejaculation, the bulbourethral glands (Einarsson 1971, Mann & Lutwak-Mann 1981). The latter
delivers a tapioca-like flocular secretion that coagulates in contact with the vesicular fluid the SP,
as seen when the entire ejaculate is collected in an open recipient. The role of this process is, in
vivo, to retain the ejaculate in utero, minimizing the transcervical backflow commonly seen at
Al with liquid semen, where the gel component is consistently filtered away (Viring & Einarsson
1981). Spermatozoa are, therefore, ejaculated with a maximum peak concentration in the first
portion of the SRF (i.e. the first 10-15 ml, called Portion 1 or P1, an easily collectable portion;
Rodriguez-Martinez et al. 2005, Fig. 1), decreasing thereafter in numbers along this fraction to
virtually disappear by the PSRFalongside with increasing secretion of the vesicular glands.
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Fig. 1 Relative sperm concentrations (—) define ejaculate fractions in the boar ejaculate
(PSF:pre-sperm fraction, SRF: sperm-rich fraction, PSRF:post sperm-rich fraction (includes
gel component). Portions of the ejaculate can also be defined; P1: 1st 10 ml of the SRF,
P2: the rest of the SRF and the PSRF.
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The boar seminal plasma, a heterogenous fluid 

Most studies of the boar SP have been done as bulk fluid (since this is the way the ejaculate has 
been sampled), but there are excellent studies of fractionated samples (Einarsson 1971, Lavon & 
Boursnell 1975), which have shown that, owing to its sequential formation, the SP contains many 
components, all of which interact with spermatozoa and the surrounding female environment. 
The PSF has mostly electrolytes (mainly Na and Cl); the SRF mainly proteins but also steroid 
hormones (Claus et al. 1987, Claus 1990), glycerophosphorylcholine, fructose, glucose, inositol, 
citrate, bicarbonate and zinc, while the PSRF has increasing amounts of proteins, bicarbonate, 
zinc, Na, Cl and sialic acid (summarised by Mann & Lutwak-Mann 1981). 

The source of the steroid hormones found in the boar ejaculate varies. Most testosterone 
derives from the accessory sexual glands, while oestrogens are mainly (80-90%) introduced 
in semen by the epididymal contents (originally testicular; Claus 1990 and references therein). 
Oestrogens, which in the boar can reach > 10 µg/ejaculate, stimulate the myometrium directly 
or indirectly (through induction of endometrial PGF

2
.), as well as by influencing the release of 

LH (Claus 1990). Therefore, SP-oestrogens are considered important, along with the behavioural, 
neuronal release of oxytocin; for the coordinated, long-lasting uterine motility during oestrus 
which issues the rapid phase of sperm transport in the female (Langendijk et al. 2005) and, 
ultimately, fertility (Claus et al. 1989). 

Proteins are a major component of the boar ejaculate (39.4 ± 13.45 mg/ml, Rodriguez-Matinez 
et al. 2005), 80-90% of vesicular gland origin and 75-90% of them belonging to the spermadhesin 
lectin family. This family comprises three members; the Alanine-Glutamine-Asparagine proteins 
AQN (-1 and -3), the Alanine-Tryptophan-Asparagine proteins [AWNs] and the Porcine Seminal 
Plasma proteins I and II [PSP-I and PSP-11] (Topfer-Petersen et al. 1998). Spermadhesins are 
multifunctional 12-16 kDa glycoproteins whose biological activities depend on their sequence, 
grade of glycosylation or aggregation state, as well as their ability to bind heparin (the AQN-1, 
AQN-3 and AWN being grouped as heparin-binding proteins [HBPs]) or not (PSPs), as they attach 
to the sperm plasma membrane to various degrees from the testis to the ejaculate. Collectively, 
they have been related to multiple effects on spermatozoa including membrane stabilisation, 
capacitation, and sperm-oviduct or zona pellucida (ZP) interplay. HBPs seem to stabilise the supra­
acrosomal plasmalemma prior to capacitation in vivo (Calvete et al. 1997). AWN-epitopes have 
been detected on boar spermatozoa bound in vivo to the ZP, strongly suggesting AWN is a bona 

fide sperm surface-associated lectin, mediating sperm-ZP interactions at fertilisation (Rodriguez­
Martinez et al. 1998). In vitro, however, HBPs failed to promote sperm survival (Centuri6n et 
al. 2003), while PSPs, also binding to the sperm surface (Topfer-Petersen et a/. 1998), display 
protective action on highly-extended and processed spermatozoa (Caballero et al. 2004, 2006, 
2008 and references therein). The PSP-I and PSP-II account for > 50% of all SP-proteins, forming 
a non-heparin-binding heterodimer of glycosylated spermadhesins (Calvete et al. 2005) which 
depict immunostimulatory activities in vitro (Lesh in et a/. 1998) and in vivo (Rodriguez-Martinez 
et al. 2005). The various SP proteins originate from the testis, the epididymides and the sexual 
accessory glands (Carda et al. 2008), and their relative concentration vary among ejaculate 
fractions (see Fig. 2). Expectedly, the amounts of proteins increase 4-fold alongside the secretion 
of the vesicular glands, the relative concentrations thus being lowest Pl, to increase (HBPs and, 
particularly the PSPs) towards the bulk of the PSRF (Rodriguez-Martinez et al. 2005), implying 
that the major proportion of spermatozoa is not immediately suspended in high amounts of 
SP-proteins in vivo, particularly not those firstly ejaculated. 

Bicarbonate, an ion considered highly relevant for sperm motility, for induction of destabilisation 
changes in the plasma membrane and, ultimately, for in vitro and in vivo capacitation (reviewed 
by Rodriguez-Martinez 2007b), is present in the bulk boar ejaculate (20-23 mM/I). Concentration 
varies among fractions, from 14-17 mmol/I in the PSF and SRF, respectively, to the double i.e. 
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>30 mmol/l, in the PSRF(Rodriguez-Martinez et al. 1990b). Bicarbonate levels are lowest in
the PI (-13 mmol/l) (Saravia et al. unpublished, Fig. 3), e.g. the first cohort of ejaculated P1-
spermatozoa does not bathe in a SPwith high levels of bicarbonate.
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Fig. 2 Temporal relative amounts of seminal plasma proteins (• PSP-1, M: PSP-11, AQN-1,

A: AQN-3, •: AWN-1,0: AWN-2, 08 inhibitor of acrosin/trypsin) in consecutive samples of
the hoar ejaculate (PSF: prmsperm fraction, SRF: sperm-rich fraction, PSRF: post sperm-rich

fraction (includes gel componenI)(modified from Rodriguez-Martinez et al 2005).
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Fig. 3 Mean bicarbonate concentration (mM/L) and pH in different portions (PI and P2), the

sperm-rich traction (SRA of the ejaculate or the whole ejaculate (all fractions) ot the hoar in =

20 boars: P1: I 10 ml of He SRL P2: the rest of the SI* and the PSRE, WE: whole ejaculate,

including PSF, SRF and PSRE, ' P < 0.05 (modified tirom Saravia et aL, 2009b).
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The cation zinc, unusually abundant in boar SP (Massanyi et al. 2003) is also of utmost importance

for sperm function, and it is secreted in the SP alongside sperm and fructose emission, as shown

in Fig. 4. Zinc stabilises, among other functions, sperm chromatin in human (BjOrndahl &

Kvist 2003) and pigs (Kvist et al. 1987, BjOrndahl et al. 1990). In vivo, depletion of nuclear

zinc by secretions decreases stability, being followed by a non-zinc, but disulphide-bridge

dependent superestabi I isation, which counteracts normal descondensation during fertilisation

(Rodriguez-Martinez et al. 1990a). Such zinc-dependent stability can be challenged in vitro,

by exposure to the detergent sodiumdodecylsulphate (SDS) and the zinc-chelating agent

EDTA (a customary component of boar semen extenders, 6 mM) for 60 min at 60° C, which

decondenses the sperm nucleus (see Fig. 4). As depicted, boar spermatozoa ejaculated in the

later expulsed sperm-bearing portions (PSRF, where zinc levels are significantly higher) become

more superstabilised than those expelled in the first portions, particularly the P1, since they

clearly diminished their capacity to decondense in vitro alongside ejaculation. However, the

total SP-zinc concentration as such is not an indicator of the free zinc amount that equilibrates

with the sperm zinc content. A concomitant increase in citrate, having three binding sites for

zinc at slightly alkaline pH, or presence of zinc-binding proteins could result in a zinc-chelating

environment (Kvist al. 1990).

SDS-EDTA 24 h —A— Zinc (mM)

Cumulative volume ( mL)

Fig. 4: Chromatin decondensat ion in vitro (of boar spermatozoa collected in 5 naLsamples
(0 = 9) within the porcine sperm-rich fraction (SU) and the post-sperm-rich fraction (PSRF)
and an independently collected whole ejaculate (at 401 Zinc (mM), fructose (mM) and
sperm numbers (x1oyml) are also depicted as markers, Decondensation was quantified
as sperm nuclear swell-points* (i.e. the sum of % moderately decondensed sperm heads
x 1 and the % grossly decondensed sperm heads x 2, maximal swel [points are 2001 alter
exposure lo SDS-EDTA ai 24h. (Kvisi ei al. unpublished)
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The change from a zinc-dependent into a disulphide-dependent superstabilisation occurs

upon storage of both cauda and ejaculated boar spermatozoa (Kvist et al., unpublished results)

and enhanced by prior exposure to a zinc-chelating environment (BjEirndahl et al. 1990), as

depicted in Fig. 5 for immature (from testis, rete testis, caput or corpus epididymides) or mature

spermatozoa (from cauda epididymides, whole ejaculate and consecutive aliquots of the SRF

[as A1-A4] and the PSRF [A5-A8]). Sperm chromatin decondensation in SDS-EDTA at 0 or

24 h post-collection was more readily seen in immature than in mature spermatozoa. While

storage (up to 20 d) promotes the disulphide-bridge dependent chromatin superstabi I isation in

immature spermatozoa, mature spermatozoa can sustain short storage (24 h) without becoming

superstabilised, provided they are not pre-exposed to zinc-chelating treatment (Bjorndahl et al.

1990). Zinc also seems to play a major role in maintaining the stability of the spermadhesin

PSP-l/PSP-ll heterodimer, an effect that can be reversed by EDTA or at acidic pH, as found in

the sperm reservoir (SR), i.e. a 1-2 cm segment of the utero-tubal junction (UTJ) and the adjacent

isthmus of each oviduct (Rodriguez-Martinez et al. 2005), suggesting the female also regulates

the extent of its action (Campanero-Rhodes et al. 2005).

250

SDS-EDTA Oh

SDS-EDTA 24h

Testis Rete Caput Corpus Cauda Whole Aliquots Aliquots
testis Epid. Epid. Epid. ejaculate 1-4 5-8

Fig. 5 Ability of the chromatin of boar spermatozoa, collected front various sources (testes,

epididymides, whole ejaculate and consecutive a)iquots of the SRF [Aliquots 1-4] and the

PSRF [Aliquots 5-8]) to &condense in vitro (quantihed as sperm nuclear swell - points*, i.e.

the SLIM of % moderately decondensed sperm heads x 1 and the % grossly decondensed

sperm heads x 2, maximal swellpoints are 200) after exposure to SDS-EDTA at 0 or 24h

(Kvist et al. unpublished).

Distribution of the ejaculated spermatozoa in the female

During natural mating, the boar sequentially deposits the various fractions of the ejaculate in

the cervical canal and elicits, by distending the uterine cavity, a stretching response from the

myometrium. Both distention and SP-oestrogens, induce production/release of endometrial

PGF,, to, ultimately, provoke rhythmic, antiperistaltic (ad-ovarian) and peristaltic (ad-cervical)

myometrial contractions. Antiperistalsis dominates the rapid phase of sperm transport through the
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female internal genital tract and transports -within minutes- a small subpopulation of spermatozoa 

towards the SR (Rodrfguez-Martfnez et al. 2005). Ad-cervical peristaltis effectively mixes the 

uterine sperm suspension since the cervical canal is plugged by the ejaculated gel fraction. At Al 

with gel-free liquid semen, these contractions cause a large retrograde flow (up to 35-40% of the 
volume introduced, holding up to 20-25% of spermatozoa) within 30 min (Viring & Einarsson 

1981, Steverink et al. 1998). 

When semen is deposited (via mating or Al) pre-ovulation, enough spermatozoa (105 to 

108) reach and colonise the functional tubal SR, to ensure successful fertilisation of all ovulated 

oocytes. Although this so-called 2nd phase of sperm transport mainly occurs between 5 and 60 

min from insemination, the SR replenishment can take longer, depending more on sperm numbers 

inseminated than on the number of following matings or Als (see review by Rodrfguez-Martfnez 

2007b and references therein). The tubal SR is immunologically-privileged (Bergqvist et al.

2005), where sperm viability and fertilising capacity are preserved (Rodriguez-Martinez et al.

2001, Tienthai et al. 2004) for the entire preovulatory period. From the SR, restricted sperm 

numbers (102-103 ) are gradually, but apparently continuously released towards the presumed 
site of fertilisation at the ampullary-isthmic junction (AIJ), thus defining the 3rd phase of sperm 

transport, particularly when ovulation is approaching or has occurred (Rodrfguez-Martfnez 

2007b). Not all spermatozoa are trapped in the SR, and trans-oviductal passage occurs during 
the preovulatory period (Viring 1980) but it is most evident post-ovulation, when spermatozoa do 

not need a long SR-storage. In either case, sperm numbers are importantly reduced (to hundreds) 

at the AU, a fact that strongly contributes to the physiological ratio (1: 1) between spermatozoa 
and oocytes during ferti I isation in vivo (Hunter & Rodrfguez-Martfnez 2004). 

Which spermatozoa colonise the sperm reservoir? 

Theoretically, anyone; provided they are potentially capable of interacting with the SR (Viring 

1980). However, the sequentiality of the entry through the cervico-uterine lumen during 
mating has led to the hypothesis that the 1st ejaculated sperm sub-population (in Pl) is, by 

reaching first the SR, overrepresented there. Pl- and P2- (last portion of the SRF and the PSRF) 

spermatozoa were collected from fertile boars. The Pl-spermatozoa were loaded with the 

fluorophore Hoechst 33252, while P2 spermatozoa were kept unstained until conventional 

cervical Al of equal sperm numbers (- 10 x 109 spermatozoa) per portion was performed ad

modum 12 h after onset of oestrus in weaned sows; either mixing Pl and P2 aliquots (control, 

n=5) in a single Al flask (90-ml dose), or testing (a) a sequential order (Pl-P2, Treatment A, 
n = 5) with Pl (10 ml) inseminated first, immediately followed by deposition of 80 ml of P2-

semen or (b) an inverse order (P2-Pl, Treatment B, n = 5). The sows were euthanized - 3 h 

later and the SRs flushed to recover the spermatozoa, which were accounted for as stained 
and unstained. While the number of spermatozoa flushed from the SRs did not differ between 

groups nor between boars (NS, ranging 0.9 to 2xl 09), the proportion of stained Pl-spermatozoa 
significantly (P < 0.05) differed between groups, but not between boars. The highest proportion 

of Pl-spermatozoa in the SRs (59.8 ± 5.66 %, means ± SEM) was found when a sequential 
order (Pl-P2, Group TA) of insemination was issued (see Fig. 6). Reversing this order (Group 

TB, P2-Pl) dramatically decreased the proportion to 15.6 ± 2.1 %, much lower than when a 

mixed suspension (control) was inseminated at one time (36.9 ± 2.70%). The hypothesis tested 

proved valid; when spermatozoa were inseminated in the same order as ejaculated in vivo, 
they were overrepresented in the SR. It remains to be determined whether such proportionality 

is maintained at the site of fertilisation. 
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Fig. 6 Mean proportions of Pl-spermatozoa present in the uterotubal junction (UTJ) of 
oestrous sows (n = 15, equally allotted) 3 h past-Al with a sequential order (Pl-P2), an 
inverse order (P2-Pl) or a mixture (Pl + P2, control) of ejaculate portions (Pl: 1 '' 10 ml 
of the SRF, P2: the rest of the SRF and the PSRF); a-c: different letters denote significant 
differences, P < 0.05 (Rodriguez-Martinez et al. unpublished). 

What happens with the spermatozoa that do not enter the sperm reservoir? 

9 

While - 40% of the volume of the Al-dose is lost rather quickly (within 30 min) via vaginal 

reflux, this fluid only contains - 22-25% of the inseminated spermatozoa. The remaining ones 
have either entered the SR "sanctuary" or are still in the uterine lumen. The uterine cavity is, 

- 1 0 min after Al, invaded by inflammatory polymorphonuclear granulocytes (PMNs) which
migrate from the lamina propia (i.e., subjacent to the lining epithelium, where they accumulate
after extravasation, presumably a result of the high levels of oestrogens that dominate pro­
oestrus in pigs), through the lining epithelium (Lovell & Getty 1968, Rodrfguez-Martfnez et

al. 1990c), see Fig. 7a-c. Massive numbers luminal PMNs are first detected by 30 min (Lovell
& Getty 1968), to sustain entry for the following 2-3 h (Viring & Einarsson 1981 ), surpassing
the number of inseminated spermatozoa (Matthijs et al. 2003). This dramatic uterine PMN­
influx is accompanied by accumulation of macrophages, granulocytes and lymphocytes in the
endometrial stroma and, to a lesser extent, into the base of the lining epithelium (Rodrfguez­

Martfnez et al. 1990c, Bischof et al. 1994, Kaeoket et al. 2003, Robertson 2007); a picture not
seen in the oviduct, except for the mesothelial-covered infundibulum Uiwakanon et al. 2006)
and for the presence of lymphocyte-like cells in the base of the SR and the adjoining isthmus

(Rodrfguez-Martinez et al. 1990c). The resulting mass of leukocytes and sperm/SP-debris are,
during this hourly period, eliminated from the lumen by continuous vaginal discharge but also
by epithelial phagocytosis (Rodrfguez-Martfnez et al. 1990c) so that a new inseminate can
enter a cleansed uterine lumen, free from redundant spermatozoa or semen-associated micro­
organisms. The lumen must, moreover, be ready to host and nurture the semi-allogeneic early
embryos when they enter the uterus by 48 h after ovulation.
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Fig. 7a-c: Entry of polymorphonuclear leukocytes (PMNs) into the uterine lining epithelium 
(a) and lumen (b,c) of oestrous sows, following Al of neat semen. The TEM-micrographs
show the migration of PMNs from the lamina propria (a, thin arrows), through the basal
membrane (a, between thick arrows) to the lining epithelium (a, medium-arrows) and the
lumen (b,c) where they phagocytose individual spermatozoa (large arrows: sperm heads
in b and c, small arrows: sperm tails in c)(micrographs H Ekwall, SLU).

Does the seminal plasma modulate the genital immunology of the female? 

Or do the "per natura-antigenic" spermatozoa also play a role? While sows do not show 
changes in cellular immune reactivity after Al (Veselsky et al. 1981), gilts exposed to sperm 
and/or seminal antigens increased litter size in a following fertile mating (Murray & Grifo 
1983, Flowers & Esbenshade 1993). Al with washed boar spermatozoa caused a greater influx 
of PMNs into the uterine cavity of gilts compared to SP or whole semen (Rozeboom et al.

1998, 1999), suggesting their chemotactic character (Rozeboom et al. 2001 a). In contrast, Al 
of sperm-free SP increased by 5.4-fold the number of PMNs infiltrating the porcine uterine 
lumen (0 'Leary et al. 2004). 

Most data now suggest that the SP ensures reproductive success by promoting the survival 
of some spermatozoa, and conditioning the female immune response to tolerate paternal 

antigens. SP initiates -by interaction with the luminal epithelium- a cascade of downstream 
immunological effects, including the advancement of ovulation (Waberski et al. 2006), the 

production of progesterone (0 'Leary et al. 2006) and other defence/immune responses. SP 
upregulates MHC class II and interleukin-2 (IL-2) receptor expression (Bischof et al. 1994), 

induces the transitory expression of pro-inflammatory (PMN-attractants) soluble cytokines (as 
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IL-1) and cyclo-oxygenase-2 (0 'Leary et al. 2004) and the expression of interleukin-6 (IL-6),
granulocyte-macrophage colony-stimulating factor (GM-CSF), and the monocyte attractant

protein-1 (MCP-1) which, towards early pregnancy, leads to a transition of leukocyte phenotypes,
PMNs being replaced by macrophages and dendritic cells (Robertson 2007). Boar SP also
contains high levels of the immunosuppressive transforming growth factor-0 (TGF-11, Robertson
et al. 2002), a very potent, multifunctional cytokine group which, in the pig, regulates T-cell

differentiation to reach a state of functional, adaptative immune tolerance to male antigens by
the female (O'Leary et al. 2004, Robertson 2007). This would explain why priming to seminal

antigens improves fertility in pigs in later oestrous events (Murray & Grifo 1983, Flowers &
Esbenshade 1993, Rozeboom et al. 2000). Moreover, inter-boar differences in cytokine SP-
content might lead to different adaptation levels by the females (Robertson 2007), thus suggesting
the SP-induction of maternal tolerance might relate to the differences in embryo survival often

observed among sires (e.g. innate fertility).

SP-infusion studies have, however, lead to -at first sight- paradoxical results, probably owing
to differences in animal categories, methods and experimental design used. For instance, SP

either induced (Bischof et al. 1994, 0 'Leary et al. 2004, Rodriguez-Martinez et al. 2005) or
attenuated (Veselsky et al. 1991, Rozeboom et al. 1999, 2001b, Taylor et al. 2008, 2009) the
inflammatory response of the pig endometrium during mating or Al. It is possible that we are

simply facing several steps, firstly a transitory inflammatory response initiated by the SP and
a secondary recruitment of antigen-presenting cells (macrophages and dendritic cells), pre-
requisite for the generation of paternal antigen-specific T-cells (Schuberth et al. 2008).

SP-spermadhesins such as the PSP-I/PSP-II have shown capacity to bind to (Yang et al.
1998), and to enhance pig lymphocyte proliferation (Leshin et al. 1998). We tested, therefore,
whether pig HBPs and PSPs, isolated from the SP of SRF samples collected from mature, fertile
boars (Calvete et al. 1996, Rodriguez-Martinez et al. 2005) could recruit PMNs and different

lymphocyte subsets into the lining epithelium of the pig uterus in vivo. Consecutive biopsies
were taken (2-120 min) under narcosis and treated histologically and by immunohistochemistry
(IHC) using mAbs against CD2, CD4 or CD8 lymphocyte subsets. Compared to controls

(saline-infused uteri), exposure to the PSP-I/PSP-II heterodimer significantly (P < 0.05) induced
the migration of PMNs (Log,a) to the surface epithelium, within 10 min of infusion (Fig. 8), a
recruitment that was sustained over the experimental period, becoming 5-fold by 30 min and
7-fold higher from 60 min onwards (P <0.001). PMNs were detected in the uterine lumen by

30 min and thereafter. The infusion of a similar dose of HBPs had no significant effect (NS).
Regarding the INC (Fig. 9), saline infusion did not significantly increase the number of CD2,

CD4 nor CD8 positive (+) cells in the epithelium or the lamina propria over time (NS). CD2+
cell numbers were only significantly increased (4 to 7-fold from 10 min onwards) by infusion of
PSP while no significant effect of any treatment was seen on CD4 L- cells. CD8 + cell numbers
increased significantly (3-fold) only after 60 min of the infusion of PSP. A 1-2 fold higher amount
of CD8± cells was seen during the entire period following the infusion of HBPs (NS). In sum,

the heterodimer PSP-I/PSP-II induced an increase in the numbers of some uterine lymphocytes
(such as CD2 + [Tk, NK, cytokine-rearing cluster] and CD8 + [cytolytic] cells, Gerner et al.
2009) in vivo. Numbers increased earlier for CD2 + (from 10 min onwards) than for CD8+

(60 min), suggesting that this immunostimulatory effect could be of primary nature. However,
albeit being done in vivo, and registering changes over time (2-120 min), this experiment was
done under narcosis, on few animals and testing single CD-subsets rather than combinations,
which would have provided a more accurate quantification of the processes. On the other

hand, PSP-I/PSP-II was confirmed as leukocyte chemoattractant in pigs, confirming previous in
vitro (Leshin et al. 1993) and in vivo studies (Rodriguez-Martinez et al. 2005). Al ot SP-PSPs in
conscious oestrus sows, at doses 5-fold lower (3 mg/ml, 100-ml dose) than those present in the
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boar ejaculate, led to a substantial (6-fold higher than in controls) recruitment of PMNs to the

uterine cavity (35.4 ±12.56 vs 5.83 ±4.62 million PMN/rnl, mean ±SD, P <0.001). It remains

to study, however, whether any portion of the ejaculate can induce this PMN entry.
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Minutes after challenge

Fig. 8 Rate ot linear increase rate for PMN recruitment (compared to control i.e. sham, saline

infused uterine horn) to the uterine surface epithelium in oestrous sows In = 61 at various

times (2-120 min) after intrauterine imusion of porcine SP-HBP (HBP) or SP-PSPI/PSP-II WW)

spermadhesins (3 mg/ml, 100-mL dose). The identity and purity of the protein preparations

were assessed by N-terminal sequence analysis and Matrix-Assisted Laser Desorption/

Ionization Time-of-Flight (MALDI-TOF) mass spectrometry while amino acid analysis was

used to quantify the amount of either protein (which averaged 15 mg/ml). Sows were,

under narcosis, unilaterally infused with spermadhesins, respectively saline and endometria

removed for biopsy at various intervals. The tissues were fixed 12% paraformaldehyde) and

processed for histology and manual counting ot PMNs at x400 using an ocular reticulum

on coded slides. The relative number of cells (Logl 0) was quantified in treatment vs control

tissues at each time interval (Rodriguez-Martinez et al , unpublished).

Why are there sperm subpopulations in the boar ejaculate?

Many studies, including our own, have described the presence of sperm subpopulations in

the boar ejaculate either by chromatin stability, morphology, rnotility or membrane resistance

variables (Rodriguez-Martinez et al. 1987, Cremades et al. 2005, Pena et al. 2005, Saravia et al.

2007b and references therein, Druart et al. 2009) or even by fertilizing capacity in vitro (Xi] et

al. 1996, 1998; Zhu et-al. 2000). These sperm subpopulations are apparently distributed either

along the entire ejaculate, or within major fractions, such as the SRF. We therefore focused,

from 2001, on portions ot the SRF and PSRF, the so-named P1 and P2, seeking for differences in

resilience between spermatozoa fortuitously ejaculated in one of these portions. Spermatozoa

bathing in P1 cope better with different handling, such as storage at room temperature, cooling,

or freezing-thawing, than P2-spermatozoa (Selles et al. 2001, Pena et al. 2006, Saravia et al

2007a, 2009a and references therein). Obviously, these differences would not be specifically

allotted to differences among spermatozoa, since spermatozoa collected in the entire SRF (as

praxis) are able to sustain handling as well. We have now established that it is the SP from
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Minutes after challenge

Fig. 9 Rate of linear increase rate for lymphocyte subsets (CD2, CD4 and CD8) recruitment

(compared to control) to the uterine surface epithelium in oestrous sows (n = 6) (2-120 min)

after intrauterine infusion of porcine SP-HBP (HBP) or SP-PSPI/PSP-II (PSP) spermadhesins (3

mg/mL, 100-ml dose) For des( Option or the identity and purity of the protein preparations

and general procedures see Fig. 8. ImmunohisMchemistry (IHC) using microwave-effected

antigen retrieval was done with a standard avitin-biotin immunoperoxidase technique and

primary mouse mAbs (VRMD, Pullman, WA, USA). Counting of IHC-marked 4-cells in

the tissue for biopsy Was done al x 400 using an ocular reticle (tissue area: 0.0625 mm2),

on coded slides Particular attention was taken to the lining epithelium and the subjacent

lamina propia. The relative number of cells (Logi") was quantified in treatment tissues

against control tissues, at each time interval (Rodriguez-Martinez et A, unpublished).
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these ejaculate portions (P1-SP or P2-SP) that differently influences sperm kinematics of those
fortuitously P1- or P2-contained spermatozoa from individual boars, primarily or secondarily
exposed (i.e. following cleansing and re-exposure) to pooled P1-SP or P2-SP from the same
males during 60 min. Spermatozoa were subjected to controlled cooling and thawing in
MiniFlatPacksr" (MF135) and examined for motility (CASA) at selected stages of processing.
A higher proportion of P1 spermatozoa than of P2 spermatozoa incubated in their native SP
portion were motile from collection to post-thawing. When P1-spermatozoa were cleansed
from their original SP and re-exposed to pooled P2-SP, sperm kinematics deteriorated from
extension to thawing. By contrast, cleansed P2 spermatozoa increased motility to P1 levels,
especially after thawing (Fig. 10) when re-exposed to pooled P1-SP. This influence of SP on
sperm kinematics was not sire-dependent and presumably related to different concentrations
or either SP proteins or other factors in the different SP-portions (Rodriguez-Martinez et al.
2008, Saravia et al. 2009a).

Treatments

Fig.10Cryosurviyal (% inotility post-thawing) of boar spermatozoa either held in their
"native" seminal plasma (P1-SP or P2-SP) for 60 min at room temperature or cleansed by
centrifugation and incubated for 60 min t room temperature in the "other SP", as P10ENSP2

(spermatozoa from P1 cleansed and exposed to SP from P2) or P2CENSP1 (spermatozoa

from P2 cleansed by centrifugation and exposed to SP from P1) (n= 25; P1: r 10 ml
ot the SRF, P2: the rest of the SRF and the PSRF), a-c: different letters denote significant
differences, P< 0.05 (modified from Sarayia et a). 2009a).

What are the differences between the P1-SP and P2-SP? Several, many of these already
enumerated, such as they differ in zinc and bicarbonate amounts, the latter being 2-fold lower
in P1-SP than in P2-SP (Fig. 3). In relation to this, the pH of P1-SP was 3 pH units lower than that
in P2-SP. The ion bicarbonate plays important roles in sperm physiology, both by maintaining
intracellular pH (ipH) and the homeostasis of the cell, and by modulating sperm motility and
membrane stability through its effects on the sperm adenylyl cyclase (Henning et al. 2008).

It is responsible for the initiation of motility at ejaculation (Rodriguez-Martinez 1991), and it
is also considered the main effector of changes within the lipid bilayer of the sperm plasma
membrane that are associated with sperm capacitation in vivo in the pig (Tienthai et al., 2004).
A lower concentration of bicarbonate (and lower pH) in P1-SP would modulate the ipH of the
surrounding spermatozoa and thus its kinematics (Gatti et al. 1993, Saravia et al. 2009a).

P1
P2

P10ENP2

P2CENP1

a
a
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Pl-SP and P2-SP significantly differ also in their contents of total protein (the Pl-SP having 
only 17-18% of the total, Rodriguez-Martinez et al. 2005). In addition, the Pl-SP and P2-SP have 
clearly distinct protein profiles, the P2-SP having the highest concentration of spermadhesins, 
in particular glycoforms of PSP-I/PSP-II heterodimer of high mass (Rodriguez-Martinez et al. 
2005). Using one- and two-dimensional SOS-PAGE electrophoresis to separate proteins in Pl 
and P2, followed by in-gel enzymatic digestion, mass fingerprinting and collision-induced 
dissociation tandem mass spectrometry (CID- MS/MS) for peptide sequencing, we have recently 
confirmed that the P2-SP mostly contained spermadhesins, while the Pl-SP contained, besides 
PSP-I, actin and proteins of the Lipocalin family, namely the lipocalin-type Prostaglandin 
D-synthase (L-PGD-S), Epididymal Secretory Protein-1 (ESP-1) and Lipocalin (Table 1 )(Calvete
et al. unpublished). Lipocalins are multifunctional proteins, involved in retinol transport,
pheromone-binding and transport and prostaglandin synthesis (Flower 1996, Marchese et al.
1998). As major epididymal proteins secreted in the caput segment, both EPS-1 and L-PGD-S are
relevant for sperm maturation (Fouchecourt et al. 2002, Leone et al. 2002) and sperm quality
(Chen et al. 2007). L-PGD-S, primarily involved in transporting retinoids and other lipophilic
ligands, binds to the sperm apical ridge being strongly related to sire fertility, including pigs
(Gerena et al. 1998, Fouchecourt et al. 2002, Flowers 1995).

Table 1. Identification of protein spots in boar seminal plasma portions Pl (first 10 ml of the SRF) and P2 (the 
rest of the SRF and the PSRF), separated by one (1 D) and two (20) dimensional SOS-PAGE electrophoresis 
followed by in-gel enzymatic digestion, mass fingerprinting and collision-induced dissociation tandem mass 
spectrometry (CID- MS/MS) to sequence selected peptide ions (Calvete el al., unpublished). 

1D 2D Peptide ion MS/MS-derived sequence Protein 
SOS-PAGE SOS-Page 

Ejaculate portion mlz z 

Pl P2 Pl P2 

1 488.4 2 AGFAGOOAPR Actin [Q6QAQ1] 

2 675.3 2 GFTEDGIVFLPR Lipocalin-type Prostaglandin 
O synthase [Q765P8) 

3 569.3 2 (214.2)TVVATOYR Unknown 

4 744.7 2 (258. l)CTYFCOXPR Unknown 

2 584.6 2 GTPXANGOXAXK Lipocalin I - XP _001917526] 

3,4 508.4 2 SGINCPIQK Epididymal Secretory Protein-
1 (097763) 

5-8 1-7 524.3 2 LOYHACGGR PSP-I [P35495) 

8 528.3 2 GSOOCGGFLK AQN-3 [P24020] 

9 508.8 2 INGPOECGR PSP-II [P35496) 

10, 11 925.8 3 ASFH IYYY AOPEGPLPFPYFE R AWN [P26776] 

Is there any relation between ejaculate characteristics and fertility? 

The obvious answer would be yes. However, to determine which characteristic is most relevant 
and, particularly, if it could be measured in vitro remains elusive (Popwell & Flowers 2004) 
since we are unable to relate results of sperm function to the fertility of pigs, which is not 
binary as in bovine, but combines pregnancy/farrowing and prolificacy (litter size). Moreover, 
by inseminating excessive sperm numbers, we mask the relations between measurements of 
sperm attributes (measured singly [motility, membrane integrity etc] or collectively [ZP-binding, 
IVF etc], Rodriguez-Martinez 2007a, Foxcroft et al. 2008). 

As already enumerated, the SP plays major roles, at the level of the spermatozoa they cover 
and interact with, and for the signalling they excert towards the female genital tract, which has 
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consequences beyond our current understanding. Seminal antigens have proven beneficial for
fertility improvement in vivo, with substantial variation among boars (Murray & Grifo 1983,
Flowers & Esbenshade 1993, Rozeboom et al. 2000), suggesting that the SP of a boar differs
somehow from that of another boar. A logical immediate difference is a variation in the type
and the relative amounts of SP-proteins, of which some have been correlated to in vivo fertility
and thus collectively named "fertility-asociated", such as the L-PGD-S (Flowers 1995, 1997,
review by Foxcroft et al. 2008), clearly present in the P1-SP (Table 1). However, when these
proteins have been tested in vivo or in vitro, results have varied, once more probably caused
by the excessive sperm numbers used. Another major question remains; which is the mode of
action of these SP-proteins? One tempting hypothesis has been already launched (Robertson
2007), where established differences in SP cytokine contents would lead to different degrees
of maternal tolerance by the female and thus attain differences in embryo survival, leading to
variation in fertility and, particularly, prolificacy between boars. It is hoped that this line of
research will be followed.

Can we use this knowledge for boar semen processing or porcine Al?

Porcine SP from the SRF influences sperm physiology (reviewed by Rodriguez-Martinez et al.
2008). On the other hand, SPfrom solely the PSRF,with a higher amount of bulbourethral gland
fluid reduced semen fertility (Iwamoto et al. 1992), presumably by the relatively increasing
presence of AQN-3 in this portion (Iwamoto et al. 1995, see Table 1). Removal of SP (by
extension in a buffer and further centrifugation/re-extension) is, therefore, customary during
conventional cryopreservation of boar semen. However, SP-exposure is not solely negative.
Addition of bulk SP to boar semen was initially considered to ameliorate the effects of sperm
processing (from extension to sex-sorting) on sperm survival and the fertility after AI, mostly
using empirical approaches (review by Caballero et al. 2008 and references therein). Addition
of bulk SP (12.5% v/v) to semen for Al attenuated endometria I post-breeding reactions in vitro
(Rozeboom et al. 2001b, Taylor et al. 2009) and in vivo (Rozeboom et al. 1999, 2000), but
individuals still reacted when foreign proteins (such as BSA) were present (Taylor et al. 2009).
Bulk SP-addition ( 100/0)of bulk SP increased sperm longevity post-thaw (Einarsson & Viring
1973), apparently by preserving membrane stability (Vadnais et al. 2005), as it occurs after
flow cytometry for sex-sorting (review by de Graaf et al. 2008). AI-fertility could be improved
adding 25-30% v/v of SP (Crabo & Einarsson 1971, Larsson & Einarsson 1976) but not when
—100/0 SP was added (Abad et al. 2007, Kirkwood et al. 2008). Positive effects (motility,
viability and in vitro fertilising capacity) of adding exogenous SP (5% v/v) to semen during
cooling were only seen when the supplement SP was derived from boars judged to have good
semen freezability, irrespective of the total SP protein amount or profile (Hernandez et al.
2007). This evident variation in results when using SP-supplementation is not surprising, since
SP-addition was between 50/0and 100% v/v, the SP used was either from the whole ejaculate
(all fractions), different fractions, or solely from the SRF, from individual boars or from pooled
sources, disregarding the large variability in SP-composition seen among sires, owing to age,
breed and most likely having a genetic background (Roca et al. 2006). Exposure of highly-
extended spermatozoa to low doses (1.5 mg/ml) of well identified SP-proteins gave different
results. HBP-spermadhesins, which play major roles during sperm transport and fertilisation
(Calvete et al. 1997, Rodriguez-Martinez et al. 1998), were not beneficial for sperm viability
in vitro (Centuri6n et al. 2003). PSPs, on the other hand, provided substantial protection and
maintained fertilising capacity (Caballero et al. 2004, 2006, 2008 and references therein).
However, such benefits of PSPscould not be shown when handling high sperm concentrations
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(as praxis when handling boar semen for Al) nor during cryopreservation (Hernandez et al.

2007), probably because the spermatozoa had already been in contact with higher amounts

of the SRF-SPafter collection.
SRF-boar spermatozoa incubated at room temperature in their own SPbecame more resistant

to cold shock (Pursel et al. 1973) and had, when pre-incubated for 3-20 h, higher post-thaw

survival and fertilising capacity (Eriksson et al. 2001). Such incubation post-ejaculation with

their surrounding SPis, therefore, nowadays customary in our laboratory, during the temperature

decrease from 35-30°C to room temperature, before first extension with BTS for 30-60 min
(Saravia et al. 2007a, 2009a).

Removal of the vesicular glands did not affect either the freezability or the fertility of frozen-
thawed boar spermatozoa (Moore & Hibbitt 1977), possibly by abolishing the documented
induction of chromatin superstabilisation (Kvist et al. 1987), or the reduction of sperm binding

to the oviduct (Summers & Pena 2008) caused by the vesicular gland fluid. Considering
this would place the P1-spermatozoa in advantage, we recently attempted to simplify the
customary freezing protocol for boar semen. We used solely P1-spermatozoa, holding them
in their "native" SP for 30 min, extended with Lactose-EggYolk (LEY) before cooling to + 5°C

within 1.5 h, prior to being mixed with LEY+ glycerol and orvus-es-paste (LEYGO), packed
into MFP, and customarily frozen. The entire procedure, here named "simplified freezing (SF)"
lasted 3.5 h compared to the "conventional freezing (CF)" that was used as control procedure,

which lasted 8 h (Saravia 2008, Saravia et al. 2009b). As controls, spermatozoa from the SRF
were compared to P1-spermatozoa. The P1-SF-processed semen showed similar proportions
of sperm motility (and kinematics), plasma membrane and acrosome intactness post-thaw, to

the SRF-semen customarily frozen (SRF-CF).Mean post-thaw sperm motility ranged from 56%
to 69%, the highest percentages being among the P1-SF. Interestingly, there was barely any
variation between sires or within-sire for P1-derived variables, in contrast to SRF, independent
of the handling method (CF or SF). The reason behind a maintained P1-sperm survival after

this shorter freezing process is yet unknown, but the particular milieu of the P1-SP (protein
levels and types, lower bicarbonate, zinc and fructose levels etc), together with the use of the
cryobiologically well-suited MFP are highly relevant. We are now awaiting for intended fertility
trials to determine whether the fertilizing capacity of the processed semen was also preserved

by the P1-SP as most in vitro results indicate.
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