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Summary 

In 2002, we reported that small fragments of testis tissue from immature 
mouse, pig or goat donors grafted in recipient mice undergo development, 
maturation and complete spermatogenesis, including the generation of 
fertilisation-competent murine, porcine or caprine sperm. Testis tissue 
xenografting (TTX) was then successfully applied using a range of donor 
species including laboratory/domestic/non-domestic animals and primates. 
This system offers a novel in vivo model for the study of testis function, 
and a previously unavailable opportunity to produce sperm in the grafts 
from immature donors of diverse species. The TTX model also provides 
easier access for experimental manipulation of the grafted testis tissue or 
its environment in the recipient mouse; something that is not feasible in 
many donor species. This application will allow analysis of, for instance, 
the effects of new hormone regimens, drugs or toxicants on testis function, 
without experimentation in the target species. Grafting of fresh or preserved 
testis tissue also can be used as an invaluable tool for the conservation 
of fertility from immature individuals of valuable or endangered animals. 
Reviewed here are an overview of the contributions by the author and 
colleagues and a critical examination of the salient literature on TTX 
especially using ruminant donors, as well as examples of its variety of 
current and potential applications for research in male reproductive 
biology and technologies using ruminant models. The challenges facing 
optimisation of TTX model as well as its field/experimental uses, along 
with insights and suggested remedies, are also discussed.  

Introduction

Our knowledge of the testicular development and spermatogenesis in humans and large animals, 
including ruminant species, is relatively limited due to difficulty of conducting in situ studies. 
Both in vivo and in vitro approaches for the study and manipulation of testis function have, 
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therefore, largely relied on laboratory rodent models, the results of which may not necessarily 
represent the situation in other species. 

At various times in the past two centuries, classical experimentations as well as anecdotal 
reports of transplantation of testes have piqued the interest of scientists, and occasionally the 
public. Some of these early reports included claims of the presumed rejuvenating effects of 
testis extracts for aged men, which at best were uncontrolled trials and faded after the 1930s, 
when they were scientifically discredited and the risk of disease transmission was highlighted. 
Most reports, however, described well-documented examinations of testis tissue grafting 
as a tool to study steroidogenesis and spermatogenesis (e.g., Deanesly 1954, Kuopio et al. 
1989, Johnson et al. 1996). In fact, Arnold Berthold, perhaps unknowingly, initiated the field 
of modern endocrinology when in 1849 he showed that replacing the testes back into the 
abdominal cavity of castrated roosters could lead to restoration of normal male behavior and 
characteristics (Setchell 1990). 

Prior to the 21st century, transplantations of testis tissue were largely limited to reports 
of autografting and, to a lesser degree, allografting experiments (donor and recipient being 
genetically non-identical members of the same species). A main reason that limited the potential 
growth of allografted, and especially xenografted tissue (donor and recipient being from different 
species), was the lack of widespread availability of proper recipient animal models. 

Immunodeficient mice are unable to mount cellular immune reactions against xenografts. 
This is due to natural or induced mutations causing absence of the thymus (e.g., nude mice) or 
otherwise genetically rendering T-cells non-functional (e.g., severe combined immunodeficient - 
SCID mice) (Belizario 2009). The use of immunodeficient mice for cross-species transplantation 
of testicular tissue was reported to only allow early differentiation of germ cells (Skakkebaek 
et al. 1974, Hochereau-de-Reviers & Perreau 1997). In 2002, we reported the application of 
immunodeficient mice as recipients for testis tissue xenografting (TTX) resulting in complete 
cross-species spermatogenesis (Honaramooz et al. 2002a). In this study, we grafted small 
fragments of testis tissue (each ~1 mm3) from immature mouse, pig or goat donors (1-2 d, 
1-wk or 4-wk of age, respectively) into the back skin of castrated immunodeficient nude mice. 
The subcutaneous grafting site provided an easy access for grafting and observing the graft 
growth, and its temperature (~36.5°C) was approximately the same as that in the scrotum of 
most domestic mammals. Following grafting, not only did the testis fragments increase in size 
(some up to 100-fold), but mouse gonadotrophins also effectively supported the development, 
differentiation and complete spermatogenesis of the xenografts. As such, this was the first 
report of initiation of complete spermatogenesis and steroidogenesis in testis tissue from a 
different donor species grafted in mice. It was also the first time donor-derived sperm had 
been produced in testis tissue xenografts originating from neonates. The kinetics of testicular 
development, somatic and germ cell differentiation, and efficiency of sperm production in pig 
and goat xenografts were generally similar to the intact testis. Interestingly, elongated spermatids 
appeared slightly earlier in pig testis xenografts (by about a month) than in age-matched pig testes. 
The resultant sperm retrieved from the murine, porcine and caprine grafts showed the typical 
characteristics of testicular sperm of the donor species, and were fertile after intracytoplasmic 
sperm injection (ICSI) (Honaramooz et al. 2002a).

In the same year, spermatogenesis was also observed after TTX using immature hamsters, 
monkeys (Schlatt et al. 2002), and rabbits, followed by production of offspring using sperm 
retrieved from rabbit xenografts (Shinohara et al. 2002). Ever since, TTX has been applied using 
testis tissue from a range of donor species including rodents, companion animals, livestock, 
exotic/non-domestic/endangered animals, monkeys and humans; making TTX one of the 
most versatile and widely applicable models in reproductive science. This article is intended 
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to provide a focused review of the salient results of TTX in ruminants, along with its potential 
applications for the study and manipulation of testis function in various ruminant species. 

Rationale and potential applications

Testis tissue xenografting has the potential to be used in several experimental, applied or 
clinical applications. For instance, TTX can be used as a model to study testis function, for 
which few other in vitro or in vivo models exist. Recently, breakthrough in vitro models have 
been introduced for the production of normal/fertile mouse sperm using neonatal testis cells 
or tissue in a culture system (Sato et al. 2011, Abu Eljija et al. 2012). Though promising, these 
in vitro models do not replicate testis function, and are not yet applicable to other species. 

A previous in vivo model, referred to as germ cell transplantation, in which isolated testis cells 
from a fertile donor mouse are microinjected into the seminiferous tubules of infertile recipient 
mice also initiated and maintained donor-derived spermatogenesis (Brinster & Zimmermann, 
1994). This powerful model quickly became an indispensible functional assay for the study of 
spermatogonial stem cells (reviewed in Brinster 2007, Honaramooz & Yang 2011). Subsequently, 
homologous transplantation of testis cells was extended to other species including ruminant 
models (Honaramooz et al. 2002b, 2003a, 2003b, Izadyar et al. 2003, Herrid et al. 2006, 
Rodriguez-Sosa et al. 2006), and surprisingly even cross-species transplantation of isolated 
testis cells from donor rats and hamsters into recipient mice was also successful in induction 
of donor-derived spermatogenesis (Clouthier et al. 1996, Ogawa et al. 1999). However, cross-
species transplantation of isolated testis cells from non-rodent species into the seminiferous 
tubules of immunodeficient mice did not result in complete spermatogenesis, likely as a result 
of the incompatibility of donor germ cells and recipient’s supporting somatic cells (Dobrinski 
et al. 1999, 2000, Nagano et al. 2001, 2002). Testis tissue xenografting, on the other hand, 
can be used to study different aspects of testis function of a variety of donor species, including 
laboratory and domestic/non-domestic animals and even primates (Honaramooz et al. 2002a, 
2004, 2005, Schlatt et al. 2002, 2006, Shinohara et al. 2002, Oatley et al. 2004, Snedaker et 
al. 2004, Rathi et al. 2005, 2006, Arregui et al. 2008a, 2008b, 2013, Abrishami et al. 2010a, 
Abbasi & Honaramooz 2011a, 2012, Gourdon & Travis 2011, Campos-Junior et al. 2014). 
The key factor in the success of TTX is maintaining the structural integrity of the testis tissue, 
and allowing the somatic and germ cells to maintain normal interactions (Honaramooz et al. 
2002a).	 

An important advantage of using TTX as a study tool is the accessibility and ease of 
manipulation of the testis tissue and its environment in the host mouse, something that is not 
feasible in many donor species. In effect, TTX model uses the laboratory mouse as an in vivo 
incubator to support the development of xenografted testis tissues. This application will allow, 
for instance, analysis of the effects of potential toxicants and screening of new drugs or candidate 
hormonal regimens on testis function, without the use of the target species. For instance, in 
a hypothetical situation where a research team is testing different treatments to alter age at 
puberty (e.g., advancing it for dairy or delaying it for beef bull calves), using TTX from calves 
would allow screening of a large number of candidate treatments in the mouse model, before 
narrowing the choices to a few promising treatments to be tested on actual bull calves. In such 
an application, the savings in time and animal costs alone would make the TTX model highly 
advantageous, because the costs of using mice is considerably less than using herds of cattle. 

Furthermore, a unique advantage of using the TTX model is the possibility of subjecting the 
“same” testis tissue (e.g., literally from one single animal) to different treatments by grafting 
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its fragments into multiple recipient mouse groups, and analysing them at different time 
points. This represents a step forward in investigating the risk assessment of new treatments/
drugs/interventions and their mechanisms of action on testis function without using the target 
species. Using testes collected at routine castration of, for example, calves to study bovine testis 
function using TTX into mice, rather than whole animal use of calves, is also consistent with 
the 3-R principle (i.e., replace, reduce and refine) promoted by many institutional committees 
on ethical use of animals in research. The use of TTX as a means for testing the developmental 
potential of a given donor testis after manipulation or as a new diagnostic tool in andrology 
and related research is already underway (Geens et al. 2006, Schlatt et al. 2006, Gertow et al. 
2007, Goossens & Tournaye 2007, Hou et al. 2007, Jahnukainen et al. 2007a, 2007b, Keros 
et al. 2007, Wyns et al. 2007, 2008, Fujita et al. 2008, Mitchell et al. 2010, Sato et al. 2010).

To expand the application of TTX to field or clinical situations where grafting of freshly 
collected tissues may not be readily possible or desired, others and we have shown that 
testicular tissue from several species can be preserved by cooling, hypothermic-preservation, 
and cryopreservation (both slow-freezing and vitrification), and still maintain its potential 
for development (discussed in details below, reviewed in Honaramooz 2012). Moreover, 
others and we showed that the goat, pig and peccary sperm retrieved from the xenografts 
were fertilisation-competent after ICSI (Honaramooz et al. 2002a, Campos-Junior et al. 2014), 
capable of supporting development to the blastocyst stage in mice, pigs and rhesus monkeys 
(Honaramooz et al. 2002a, 2004, 2008), or to term after embryo transfer in mice, rabbits and 
pigs (Shinohara et al. 2002, Schlatt et al. 2003, Nakai et al. 2010). Combining testicular tissue 
preservation, TTX, and ICS and other reproductive technologies open the possibility of grafting 
fresh or preserved testis tissue from immature individuals for production and use of fertile 
sperm, with important applications. For instance, TTX can provide an alternative genetic rescue 
strategy for rare/valuable breeds, prized livestock or non-domestic/endangered animals that die 
before reaching puberty (Arregui et al. 2008a, Abbasi & Honaramooz 2011a, 2012, Reddy et 
al. 2012, Arregui et al. 2013, Campos-Junior et al. 2014), or for neonatally lethal phenotypes 
of experimental, transgenic or cloned animals (Honaramooz et al. 2005, Ohta & Wakayama 
2005, Naughton et al. 2006, Zeng et al. 2011). 

Spermatocytes appeared slightly earlier in pig testis xenografts and sperm were seen 
significantly earlier in rhesus monkey and water buffalo xenografts than in age-matched testes 
(Honaramooz et al. 2002a, 2004, Reddy et al. 2012). These observations motivate contemplating 
future application of TTX in farm animal production research aimed at decreasing age at 
sperm production to reduce generation interval and increase genetic improvement. However, 
as discussed below, such applications require further optimisation of the TTX model since 
currently the timing for onset of complete spermatogenesis (appearance of first sperm/elongated 
spermatids) in xenografts varies greatly depending on the donor species. Without exogenous 
treatments of the recipient mice, this timing for a given donor type may be advanced, remain 
the same, or even be delayed compared to testes in situ, and this would have to be determined 
empirically for each new species. Finally, preliminary results show that TTX may offer a novel 
method for ex situ production of genetically modified sperm of farm animals by inserting genes 
of interest into the tissue prior to grafting (Oatley et al. 2004).

Methodology

Fig. 1 represents the procedures involved in TTX. Donor tissue to be used in TTX is obtained 
through aseptic removal of the testes (at castration or even shortly after unexpected death of 
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a donor animal) and transferred to the laboratory in ice-cold saline. There are indications that 
the immediate cooling of the tissue is critical to maximize the developmental potential of the 
tissue (Abbasi & Honaramooz 2011a). If the recipient mice are not available for immediate 
TTX of donor tissue from a valuable individual, short-term preservation of the testes should 
be considered for shipment to a laboratory where immediate TTX or cryopreservation of the 
tissue is possible (reviewed in Honaramooz 2012). Once in the laboratory, the testes are rinsed 
multiple times in saline containing antibiotics, and the tunica albuginea, rete testis and overt 
connective tissue removed. The testis parenchyma is then divided into small sizes of choice 
(e.g., ~5 mg) and the fragments maintained in a basic culture media (e.g., Dulbecco’s modified 

Fig. 1. Schematic overview of different steps in the application of testis tissue xenografting from an 
immature donor animal into a recipient mouse. The testes are collected from a donor animal (A), which 
could include post-mortem testis recovery from a recently deceased newborn animal of a valuable/rare/
endangered species. The testis tissue (B) could be cryopreserved (C) until grafting at a later time. At the 
time of grafting, tissue fragments of ~5 mg are prepared (D) and the fragments are grafted subcutaneously 
under the back skin of immunodeficient recipient mice (E). When given enough time, the xenografts 
can grow in size (F) and undergo development, leading to the production of complete spermatogenesis, 
and fertilisation-competent sperm. The sperm can then be extracted (G) from the grafts and used in 
intracytoplasmic sperm injection (ICSI) (H), which after embryo transfer can potentially lead to birth 
of progeny (I). In the absence of technologies for ICSI or embryo transfer for a given species, the fully 
developed xenografts or their extracted sperm can also be cryopreserved (C) for future use when the 
required technologies are in place.
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Eagle’s medium, DMEM) on ice until grafting into the recipients, which should be within a 
few hours. The recipient immunodeficient mice are anesthetised, usually gonadectomised 
(although apparently not necessary, Abbasi & Honaramooz 2010, Reddy et al. 2012), and 
receive multiple transverse linear incisions into the back skin (5-10 mm in length, usually up 
to 4 incisions on each side of the spine). Using blunt dissection, small pockets are created in 
the subcutaneous fascia, and a fragment of the donor testis tissue is placed subcutaneously 
inside each pocket. Affixing the fragment by suturing it to the subcutaneous or muscle tissue, 
as originally performed (Honaramooz et al. 2002a), is not necessary since it may damage the 
fragments. The incisions are then closed with wound clips (Honaramooz et al. 2002a, Tang 
et al. 2012). Care should be exercised when cutting, handling or transferring the fragments 
using fine forceps so as to avoid damaging the tissue by compressing it. Alternatively, cancer 
implant needles can be used to insert the tissue fragments subcutaneously without a need to 
make skin incisions (Schlatt et al. 2010). 

Since the time taken from the immature state of the tissue to onset of complete spermatogenesis 
varies among donor species, the post-grafting time-points for graft analysis are planned depending 
on the donor species. After TTX using immature tissue from most examined species, including 
calves, certain aspects of testicular development in the grafts may start earlier as compared 
with age-matched testes. This includes a rapid increase in the number, maturational state and 
secretion activity of Sertoli cells, causing an accelerated transformation of immature seminiferous 
cords into seminiferous tubules, which may be followed by earlier appearance of pachytene 
spermatocytes. However, in most examined species, the onset of complete spermatogenesis 
(appearance of first sperm/elongated spermatids) tends to be the same time as that for testes 
in situ. A notable exception is the significant acceleration of sperm production (by several 
months) seen after TTX from immature rhesus monkeys or water buffalo calves (Honaramooz 
et al. 2004, Reddy et al. 2012). 

After retrieval of the xenografts, they are processed for (immuno)histology and assessed in 
terms of development, progression of spermatogenesis, general morphology and size of the 
seminiferous tubules, as compared with the donor tissue at grafting or with age-matched testes. 
Developmental progression is documented by quantitative evaluation of the tubular morphology 
and identification of the most advanced germ cell type present in the seminiferous tubules. 
Furthermore, since vesicular glands are androgen-dependent and regress significantly in the 
absence of androgens, their weight can be used as an indicator of bioactive testosterone released 
by the grafts in castrated recipient mice. Serum levels of gonadotropins and testosterone in the 
host mice can also be measured in the blood taken at the time of sacrifice (Honaramooz et al. 
2002a, 2004, Schlatt et al. 2003).

Domestic ruminant donors

Goats

As the first ruminant model to be used in TTX, we showed that TTX of testis fragments from 4-wk 
old goat donors into recipient mice could result in complete spermatogenesis in the grafts within 
10 wk (Honaramooz et al. 2002a). Goat testis tissue xenografts underwent testicular maturation, 
transforming seminiferous cords (with gonocytes as the only type of germ cells present) into 
seminiferous tubules containing complete spermatogenesis, with first sperm appearing at a 
time similar to that in testis in situ. Interestingly, the quantity of sperm production in goat testis 
tissue xenografts (67 × 106 sperm per gram tissue) was comparable to that of testes in situ, and 
the resultant sperm were fertile after ICSI in a mouse oocyte assay (Honaramooz et al. 2002a). 



263Testis tissue xenografting from ruminant species

Unlike the promising results from immature donor goats, when we used adult donor goats 
(1.5- or 4-year old), TTX was not successful and led to degeneration of the seminiferous 
tubules or the entire grafts (Arregui et al. 2008a); however this was not unique to mature donor 
goats and TTX from mature testis tissue of other species also showed significantly diminished 
developmental potential. During the grafting procedures and immediately afterward, all testis 
tissue fragments undergo some degree of damage due to hypoxia and ischemia; however, the 
immature tissue has better ability to recover from the damage (Schlatt et al. 2002, Rathi et al. 
2006, Abrishami et al. 2010b). The inability of the adult testis tissue to thrive after xenografting 
has been attributed to the high sensitivity of differentiated germ cells to ischemia, reduced ability 
of the tissue for neo-angiogenesis, and inability of mature Sertoli cells to regenerate (Schlatt et al. 
2002, Meachem et al. 2005, Arregui et al. 2008b, Schmidt et al. 2007, Abrishami et al. 2010a). 
Therefore, testis tissue xenografts from newborn and prepubertal donors overall have higher 
rates of survival, cell differentiation, and spermatogenic support than the donor tissues with 
pre-existing spermatogenesis at the time of grafting (Huang et al. 2008, Abrishami et al. 2010a). 

Sheep

Using neonatal and prepubertal lambs as testis tissue donors, others and we observed completion 
of ovine spermatogenesis after TTX into host mice (Zeng et al. 2006, Arregui et al. 2008a, 
Rodriguez-Sosa et al. 2010). We also reported that first elongated spermatids, as evidence of 
complete spermatogenesis, appeared at the same time in grafts and in age-matched sheep (i.e., 
~12 wk post-grafting) (Arregui et al. 2008a). High percentage of grafted fragments developed 
into visible grafts (78-95%, Zeng et al. 2006, Arregui et al. 2008a), and interestingly, an average 
of 64% of seminiferous tubules in grafts of neonatal lamb donors examined 6-7 months post-
grafting contained sperm (Zeng et al. 2006). This made ovine grafts one of the most efficient 
in terms of spermatogenic activity among testis grafts from both ruminant and non-ruminant 
species. The length of each spermatogenic cycle in ovine grafts was also shown to be similar 
to that in situ (Zeng et al. 2006). We also demonstrated that individual cells obtained after 
complete enzymatic dissociation of neonatal lamb testis tissue, once transferred under the skin 
of recipient nude mice, can undergo extensive rearrangement to form functional testicular tissues 
with complete spermatogenesis, at times indistinguishable from the intact testis tissue (Arregui 
et al. 2008a). Although not TTX per se, this latter experiment showed that transplantation of 
testis cell aggregates can provide an excellent model for the study of cellular migration and 
testis organogenesis using different animal models (Gassei et al. 2006, Honaramooz et al. 
2007, Arregui et al. 2008a). 

Cattle 

Most of the literature on TTX using ruminant donors has focused on cattle, partly because of 
its importance as a ruminant species, but also because of its unique challenges including the 
slow progression and low efficiency of spermatogenesis in grafts from bovine donors (Oatley 
et al. 2004, Rathi et al. 2005, Schmidt et al. 2006a, Huang et al. 2008), as compared with 
sheep and goats (Honaramooz et al. 2002a, Zeng et al. 2006, Arregui et al. 2008a, 2008b, 
Rodriguez-Sosa et al. 2010). Nevertheless, TTX of immature bovine donors into recipient mice 
resulted in moderate graft recovery rates and a slow (24-32 wk) and inefficient (in <15% of 
seminiferous tubules), yet eventual completion of spermatogenesis (reviewed in Rodriguez-
Sosa & Dobrinski 2009). 
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When prepubertal Holstein bulls of 6 different ages (12 to 32 wk) were used as donors 
in TTX, the presence of more advanced germ cells in the donor tissue at the time of grafting 
was correlated with poor post-grafting testicular development and differentiation. Conversely, 
the abundance of undifferentiated germ cells at the time of grafting resulted in better graft 
development (Huang et al. 2008). In this latter study, the spermatogenic efficiency of all 
examined prepubertal ages, especially for >20 wk old donors, was very low (<3%), while 
seminiferous tubular degeneration was very high (>70%). It was also concluded that regardless 
of the donor age, the timing for restoration of spermatogenesis in grafts seemed to remain 
constant, indicating that spermatogenesis after grafting needed to be (re)established from the 
spermatogonial stage (Huang et al. 2008). This lack of thriving by testis grafts of prepubertal 
bulls perhaps was not surprising, given that others and we have documented the adverse effects 
of advancing age on TTX outcomes in multiple species (Kim et al. 2007, Arregui et al. 2008b, 
Abrishami et al. 2010a). However, it was rather surprising that the potential for graft growth 
and development also significantly varied even among early postnatal calves (1, 2, 4 and 8 wk 
of age; Oatley et al. 2005, Schmidt et al. 2006a). Donor tissue from both 1- and 8-wk old bull 
calves had higher spermatogenic efficiency (% of tubules with sperm/elongated spermatids) 
than 2- or 4-wk olds, while testis tissue from 1- or 2-wk old calves had the greatest potential 
for growth (increase in graft size) (Oatley et al. 2005, Schmidt et al. 2006a). The authors then 
followed up their observations by analysing differential gene expression in the donor tissues 
of early postnatal ages (2-, 4- and 8-wk olds) as well as during the grafting period (Schmidt 
et al. 2007). It was concluded that lowered Sertoli cell-specific gene expression in 8-wk old 
donor tissue grafts might have contributed to prevention of over-proliferation of Sertoli cells, 
which otherwise would have resulted in increases in intratubular pressure deemed to be 
detrimental to germ cells. Additionally, lower expression of the germ cell-specific gene KIT 
was observed in all testis grafts, which may partly explain the compromised initiation of germ 
cell differentiation in the grafts. When testes of calves were compared at 2, 4, or 8 wk of age, 
several genes involved in angiogenesis or tissue growth were lower in testes of relatively older 
calves (Schmidt et al. 2007). This conclusion was consistent with an earlier observation where 
supplying bovine testis tissue fragments with vascular endothelial growth factor (VEGF) at the 
time of grafting led to both increased physical growth and spermatogenic efficiency of grafts 
collected 6 months later (Schmidt et al. 2006b). 

There are conflicting reports on the timing for onset of complete spermatogenesis in bovine 
testis tissue xenografts, with one study using 4-wk old donor calves (of unspecified breed) 
showing a similar rate to testes in situ (Oatley et al. 2004), while another report from the same 
group using Angus-cross calves of different ages showed slight acceleration of this timing only 
for 1-wk old donors (Schmidt et al. 2006a). However, in addition to differences in donor ages 
between the two latter studies, the results from beef calf grafts were compared with the available 
literature on timing of germ cell development in Holstein calf testes, which may have contributed 
to the reported discrepancies. We used 1-2-wk old Holstein bull calves as donors for TTX and 
compared the results to testes of control Holstein calves castrated at times corresponding to the 
cumulative age of the grafts (Rathi et al. 2005). We observed a rapid rate of post-grafting increase 
in the seminiferous tubule lumen formation, an initial reduction in germ cell numbers (by 2-mo 
post-grafting vs. an increase in controls), earlier appearance of first pachytene spermatocytes in 
grafts (before 4-mo post-grafting vs. 5-mo age in controls). There was a developmental pause at 
the pachytene spermatocyte stage in most grafts, but appearance of first elongated spermatids in 
grafts occurred at a time similar to controls (6- to 8-mo), although in much lower numbers (Rathi 
et al. 2005). In a study of TTX using testis tissue collected from mid-gestation bovine fetuses, it 
was demonstrated that fetal tissue had partial potential for development and underwent tubular 
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expansion, androgen production, and differentiation up to the spermatocyte stage in samples 
taken at 10 mo post-grafting (Rodriguez-Sosa et al. 2011). Given the expectations raised by 
the very high developmental potential of neonatal testis tissues after xenografting, the results 
of TTX using bovine fetal donors may be viewed as somewhat underwhelming. Nevertheless, 
these and similar results point to yet another application of TTX: i.e., as a model to study fetal 
testicular development from diverse species (Yu et al. 2006, Mitchell et al. 2010, Sato et al. 
2010, Rodriguez-Sosa et al. 2011).

Exotic, rare or endangered ruminant donors

Currently, at least 140 species of bovidae and 55 species of cervidae family are thought to 
be under some degree of threat (IUCN 2013, www.iucnredlist.org). Although preservation of 
the habitant remains the first priority for reducing the speed of decline of vulnerable species, 
assisted reproductive technologies (ART) such as breeding and spreading the species ex situ may 
be applicable for some species. Conservation of rare or endangered species through rescuing 
and archiving of the germline and genetic diversity is probably one of the most challenging 
responsibilities of conservation and reproductive biologists/technologists (reviewed in Andrabi 
& Maxwell 2007). Although procedures are in place for retrieval and cryopreservation of 
ejaculated, epididymal or testicular sperm, even shortly after death of an adult animal, they are 
not applicable to sexually immature males. The use of TTX provides a previously unavailable 
system for conservation purposes to produce sperm from valuable immature animals that die 
before reaching puberty. 

As a first attempt to salvage the genetic material and fertility potential of a rare, valuable 
animal, we used TTX from a newborn Javan banteng (Bos javonicus) calf into recipient mice. 
The calf that died shortly after birth was cloned from donor cells of a genetically valuable 
banteng frozen some 25 years earlier. Although pachytene spermatocytes appeared in the 
banteng xenografts as early as 3 mo after grafting, spermatogenesis did not proceed further 
through meiosis in grafts analysed 6, 9, 12 or 15 mo after grafting, although xenografts were 
capable of releasing bioactive testosterone. These results indicated that banteng spermatogenesis 
was initiated in the mouse host but became arrested at meiosis; therefore, haploid germ cells 
could not be recovered (Honaramooz et al. 2005). This observation also underscored that the 
efficiency of sperm production in testis xenografts for new species may be unpredictable and 
has to be determined empirically for different donor species.

We later expanded the application of TTX into specialised hoofstock by using testes collected 
post-mortem from two immature plains bison calves (Bison bison bison) and a white-tailed 
deer fawn (Odocoileus virginianus), as potential models for closely related rare or endangered 
bovidae and cervidae species (Abbasi & Honaramooz 2011a, 2012). In case of bison calf 
donors, 69% of the grafted testis fragments were visible as xenografts, growing in weight 
to ~4-fold by 2 mo and 10-fold by 16 mo post-grafting. In bison testis xenografts, gradual 
maturational changes included first seminiferous tubule expansion by 2 mo, spermatocytes by 
6 mo, round spermatids by 12 mo, and elongated spermatids by 16 mo post-grafting. In terms 
of spermatogenic efficiency, compared to grafts from dairy/beef calves, a smaller number of 
seminiferous tubules in bison grafts contained complete spermatogenesis (~1%) at the latest 
time points, and the process was further delayed by several months (Abbasi & Honaramooz 
2011a). For white-tailed deer donor, 63% of the grafted testis fragments were recovered as 
xenografts and showed a gradual testicular development, starting with tubular expansion by 2 
mo, presence of spermatocytes by 6 mo, round and elongated spermatids by 8 mo, followed by 
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fully-formed sperm by 12 mo post-grafting. The spermatogenic efficiency of deer testis xenografts 
was higher than that in bison grafts but still low; tubules containing sperm/elongated spermatids 
accounted for ~8% of all tubules at the latest time points (Abbasi & Honaramooz 2012). There 
were no previous data on the kinetics of germ cell development or testicular maturation for 
bison or white-tailed deer in situ; however, time at onset of complete spermatogenesis in bison 
and deer testis xenografts generally corresponded to the reported timing of sexual maturation 
in each species (Abbasi & Honaramooz 2011a, 2012). These latter studies demonstrated, 
for the first time, that TTX from immature bison and deer donors into recipient mice could 
successfully result in testicular maturation and development of spermatogenesis in the grafts 
up to the stage of sperm production.

Using TTX from 8-wk old Murrah water buffalo calves (Bubalus bubalis) resulted in a 
surprisingly early appearance of elongated spermatids 24 wk post-grafting, while they are 
normally observed in the buffalo testes in situ after 72-84 wk of age. It was also concluded 
that both spermatogenic efficiency and testosterone production of the xenografts from water 
buffalos were much lower than that reported for xenografts of bovine testis tissue. Interestingly, 
acceleration in onset of complete spermatogenesis was only seen if TTX recipient mice were 
intact, but not when they were castrated (Reddy et al. 2012). 

In fact, there may be a common mechanism for both the exceptional acceleration in onset 
of complete spermatogenesis in xenografts of water buffalo calves (~6 mo for grafts vs. >17 
mo for control testes), and the unusually long pause in meiotic development of xenografts from 
the banteng calf (even up to 15 mo post-grafting; Honaramooz et al. 2005). The key in success 
of TTX using water buffalo donors was attributed to the use of intact (non-castrated) nude 
recipient mice; supported by their observation that TTX from the same water buffalo donors 
into castrated nude mice failed to develop beyond the spermatocyte stage (Reddy et al. 2012). 
However, the degree to which the gonadal status of recipient mice affects the results of TTX is 
controversial, and in a study of dairy calf testis xenografts no differences were noticed between 
castrated and intact recipients (Huang et al. 2008). After a comprehensive comparison using 
8 different recipient models, we also did not see a difference in TTX results between castrated 
and non-castrated nude mice (Abbasi & Honaramooz 2010). Reddy et al. (2012) reported a very 
low androgen releasing activity by the xenografts from water buffalo calves (as compared to 
the previously reported levels released by the testis xenografts from cattle). This led the authors 
to speculate that testosterone released by the recipient testes has stimulated the development 
of the grafted immature buffalo testis tissue, citing the naturally much lower serum levels of 
testosterone seen in mature water buffalos compared to levels reported in mice (0.6 vs. 2-5 
ng/ml, respectively, Reddy et al. 2012). If the presence of mouse testes is indeed crucial for 
development of testis xenografts from water buffalo calves, it would be a rather unique effect for 
water buffalo and possibly certain other donor species. However, considering the similarities and 
differences between these two latter exceptional models (developmental pause after TTX from 
both banteng and water buffalos in castrated nude recipients vs. developmental acceleration 
after TTX from water buffalos in intact recipients), such a theory is plausible, and may lead to 
speculation that further work in banteng testis xenografts may benefit from grafting into intact 
recipients or testosterone supplementation of recipients.

Recently, TTX was also applied in two endangered ruminant species using testes collected 
post-mortem from two Cuvier’s gazelle fetuses (Gazella cuvieri) and one 8-mo old Mohor 
gazelle (G. dama mhorr). It was reported that progression of spermatogenesis was donor age 
dependent; testis tissue xenografts from Cuvier’s gazelle fetuses contained spermatocytes 40 wk 
post-grafting, and those of 8-mo old Mohor gazelle had round spermatids 28 wk after grafting 
(Arregui et al. 2013).
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Current challenges and sources of variation

Since the first successful reports of TTX in 2002, this system has been extensively applied in 
different settings and often with different perspectives, creating a wealth of new information on 
the developmental potential and function of testis tissue in a wide range of donors. In order to 
expand and maximize the benefits of TTX model, there is a continued need for further proof-of-
principle studies, such as those exploring TTX in new species or its value for new applications. 
There is also an equally important need for focused research on previously existing and newly 
discovered challenging aspects of TTX. 

As expected, time to maturity and rate of spermatogenic efficiency of TTX vary depending 
on the species, age or developmental status of tissue donors. However, some of the TTX 
outcomes also varied when using seemingly similar donor types/conditions (Rathi et al. 2005, 
2006, Zeng et al. 2006, Abrishami et al. 2010b). To optimise the TTX model for the study of 
testis function or production of sperm, different aspects of the model need to be thoroughly 
evaluated. Therefore, one of the current challenges of TTX, especially from bovine donors, is 
deciphering all sources of variation in results, which can generally be classified into factors 
related to the donor type or recipient mouse and are discussed below. There is also a need 
for further investigation into the underlying mechanisms of known sources of variation and, 
perhaps more importantly, identifying other causes of variation that cannot be explained by 
known factors. Other challenging aspects of TTX using ruminant donors include optimising 
preservation/banking of the tissue prior to TTX, and using the resultant xenogeneic sperm in 
ART for diverse ruminant species. 

Donor factors

A phylogenetically wide range of donor species has been used for TTX, albeit with species-
specific differences. In nearly all cases, when immature testis tissue xenografts were 
allowed sufficient time to develop in the host mice, testicular maturation and completion 
of spermatogenesis were eventually observed (reviewed in Paris & Schlatt 2007, Mota et al. 
2011, Rodriguez-Sosa & Dobrinski 2009). Time required for most testis tissue xenografts to 
develop from an immature state to a fully matured tissue generally correlated with the timing 
for testes of each species in situ. This timing, for instance, was as early as 3 mo for grafts from 
lambs, 6-8 mo for dairy/beef calves, 12 mo for white-tailed deer fawn, and >16 mo for bison 
calves; nevertheless, it was approximately similar to that in age-matched testes (Rodriguez-Sosa 
& Dobrinski 2009, Abrishami et al. 2010a, Abbasi & Honaramooz 2011a, 2012). Of course, 
the two prime exceptions to this general rule were the cases of xenografts from banteng and 
water buffalo calves (Honaramooz et al. 2005, Reddy et al. 2012), which as discussed above 
deserve further investigation to elucidate the underlying mechanisms. 

An important measure of TTX outcome that tends to be overlooked is the efficiency of 
spermatogenesis; expressed as the prevalence of seminiferous tubules containing sperm/
elongated spermatids in grafts collected at later time points corresponding to the expected 
maturation of control testes in situ. While the spermatogenic efficiency was high (>60%) in 
testis tissue xenografts from immature goat and sheep donors, allowing the retrieval of high 
numbers of sperm from the goat xenografts (Honaramooz et al. 2002a, Arregui et al. 2008a), 
it was low in xenografts from dairy/beef bull (<15%), water buffalo (<3%), and bison calves 
(~1%) and white-tailed deer (~8%) (Oatley et al. 2004, 2005, Rathi et al. 2005, Schmidt et 
al. 2006a, 2006b, Abbasi & Honaramooz 2011a, 2012, Reddy et al. 2012). Factors such as 
differential expression of certain genes involved in germ cell differentiation of bovine xenografts 
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have been identified as a likely reason (Schmidt et al. 2007), but there is potential for hormonal 
interventions of grafts or recipients to slightly alter this default timing of maturation and 
spermatogenic efficiency (reviewed in Rodriguez-Sosa & Dobrinski 2009). Therefore, while TTX 
is applicable for diverse species, the timing of testicular development and efficiency of sperm 
production in testis xenografts appear to be variable, and need to be empirically determined 
for new donor species. 

The age or developmental status of testis donors at the time of grafting is also a widely 
studied and important factor affecting the efficiency and outcomes of TTX. Using TTX of a 
wide range of donor ages in multiple species including sheep, goats, and dairy/beef calves 
it has been shown that overall immature animals possess a considerably higher potential for 
successful development than mature donors (Oatley et al. 2005, Arregui et al. 2008b, Huang 
et al. 2008, Abrishami et al. 2010a). Even among immature testis tissue donors, TTX results 
may differ depending on seemingly small differences in age or developmental status (Oatley 
et al. 2005, Schmidt et al. 2006a). Gene expression analysis of the grafts from beef calf donors 
confirmed that changes in several factors involved in tissue survival, somatic cell function, 
and germ cell differentiation play a role in determining the developmental potential of grafts 
from a given age (Schmidt et al. 2007). Further research using these and similar information 
is needed to elucidate other underlying mechanisms of variation in TTX results, which may 
also help in designing strategies to support the xenografts or their environment to maximize 
the efficiency of TTX. 

Recipient factors

Most recent studies using TTX have followed the procedures we described in 2002, in which 
castrated male nude mice were used as recipients of up to 8 testis fragments in each mouse 
(Honaramooz et al. 2002a). Castration was generally thought to be vital, or at least helpful, for the 
success of TTX, and a few indirect comparisons were made between nude and SCID recipients, 
but no conclusive differences were found in TTX results (Rathi et al. 2005, 2006, Geens et al. 
2006). However, no systematic study had investigated the virtue of recipient mouse type for 
TTX or the optimum number of the initial tissue fragments. We therefore examined the effects 
of factors related to the choice of recipient immunodeficient mice, including the strain (SCID vs. 
nude), gender (male vs. female), and gonadal status (intact vs. gonadectomised) using a 2X2X2 
factorial design (i.e., a combination of eight recipient models, Abbasi & Honaramooz 2010). 
Although the overall graft recovery was high (~94%), there were some interesting differences 
among these recipient models. For instance, the grafts recovered from male SCID mice were 
the heaviest (~4-fold vs. grafts from female recipients), and had the highest spermatogenic 
efficiency among all recipient groups. Equally important, gonadectomy of male or female 
recipients did not affect the results of TTX. Interestingly, female recipient mice, even those with 
intact ovaries, were fully capable of providing a supportive milieu for the developing testis 
tissue xenografts (Abbasi & Honaramooz 2010). 

We also investigated the effect of the initial number of testis tissue fragments on TTX results 
by grafting 2, 4, 8, or 16 fragments (each ~5 mg) per castrated recipient mouse (Abbasi & 
Honaramooz 2011b). Although the rate of graft recovery was high in all groups (86%–98%), 
not only were the total graft weights much higher (by ~12-fold) in mice receiving 16 vs. 2 
fragments, but more importantly the average graft weights were also greater (~2.5-fold). The 
spermatogenic efficiency and androgen release were also higher in grafts from mice with 16 
vs. 2 fragments. We therefore showed that the recipient mouse is fully capable of supporting 
the development of a much larger mass of grafted donor testis tissue than routinely used, 
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which can maximize the mass of harvested grafts (Abbasi & Honaramooz 2011b). It should be 
emphasised that we used porcine testis tissue in these latter studies, which may not necessarily 
reflect every donor species including ruminants. For example, no differences in TTX results 
were seen between castrated and intact recipients when using dairy calf testis grafts (Huang 
et al. 2008), but using intact recipients was reported to be critical for the success of TTX using 
water buffalo donors (Reddy et al. 2012). Nevertheless, these results add the recipient model 
and the number of fragments grafted to the list of potential sources of variation in TTX results.

Using TTX as a tool for endocrinology studies has allowed, for example, altering the levels 
of growth hormones, testosterone or thyroid hormones in recipient mice carrying testis tissue 
grafts from ruminant donors, and generating new insights on their potential effects on testis 
function for each species (Rathi et al. 2005, Huang et al. 2008, Rodriguez-Sosa et al. 2012, 
Reddy et al. 2012). While supplementing exogenous gonadotrophins to the recipient mice 
after TTX has produced mixed results using non-ruminant donors (Honaramooz et al. 2004, 
Rathi et al. 2006, 2008, Schlatt et al. 2010, Ehmcke et al. 2011, Van Saen et al. 2013), similar 
experiments are lacking for ruminant donors. 

Considerable incremental progress has been made in multiple areas related to the success 
rate of TTX resulting, for instance, in increasing the graft recovery rates from an earlier ~60% 
(Honaramooz et al. 2002a) to more recent ~95% using the same neonatal porcine model 
(Abbasi & Honaramooz 2010, 2011b). However, further improvement of TTX outcomes through 
systematic studies for proper selection and supportive hormonal supplementation of recipients 
are manageable challenges for future research.

Pre-grafting preservation of testis tissue 

Prior to 2002, preservation of testis tissue was largely limited to cooling or freezing of testis 
biopsies from adult men for later use in testicular sperm extraction and ICSI. However, 
cryopreservation of immature testis tissue was not widely considered, perhaps due to lack of its 
foreseen potential applications (reviewed in Orwig & Schlatt 2005). This view changed when 
others and we showed for the first time that cryopreservation of immature testis tissue prior to 
TTX can be done so as to maintain its potential for development (Honaramooz et al. 2002a, 
Schlatt et al. 2002, Shinohara et al. 2002). Although the efficiency of the cryopreservation 
protocols used in these earlier studies was low, this proof-of-principle step was crucial in 
extending the application of TTX model to clinical or field situations, where grafting of freshly 
collected tissue may not be readily possible or desired. In a relatively short period of time 
since then, advances in cryopreservation of testicular tissue have opened new possibilities for 
preservation of male fertility from immature individuals (Schlatt et al. 2006, Jahnukainen et al. 
2007a, Keros et al. 2007, Wyns et al. 2007, 2008, Zeng et al. 2009, Abrishami et al. 2010b). 

As reviewed elsewhere (Honaramooz 2012), most studies on cryopreservation of testis tissue 
have used a mouse, pig or primate model, and not ruminant donors. We now know that the 
testis tissue from each donor species/age may respond differently to a given cryopreservation 
protocol, and in order to maximize the tissue integrity, viability and subsequent post-grafting 
functional competence, several variables may need to be examined. These differences may be 
related to differing testicular architecture (% of fibrotic tissue), morphology, or lipid composition. 
In fact, optimal cryopreservation for a given tissue requires examination and refinement of 
freezing and thawing rates, osmotic conditions, choice and concentration of cryoprotectants, 
and equilibration times in cryoprotective solutions (Honaramooz 2012). Nevertheless, as we 
have shown after comparing several strategies using a neonatal porcine model, it is possible 
to properly preserve the donor testis tissue using cooling (for up to 3 days), hypothermic 
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preservation (for up to 6 days), slow/controlled freezing, or vitrification protocols (for extended 
period of times) prior to TTX, to achieve results that are nearly as high as using fresh tissues 
(Abrishami et al. 2010b, Yang et al. 2010). Our successful vitrification of immature testis tissue 
was a first and made it considerably easier to freeze testis tissue pieces in a farm or small clinic 
settings, because vitrification does not require the extensive laboratory equipment commonly 
used for programmed slow freezing (Abrishami et al. 2010b).

In addition to its experimental value, preservation of testis tissue has applications in both 
reproductive medicine and animal conservation. These include preserving the fertility potential 
of prepubertal boys undergoing gonadotoxic cancer therapies, and salvaging the genetic 
potential of immature endangered animals or valuable breeds of livestock through banking of 
gonadal tissue (reviewed in Honaramooz 2012). Efforts to improve post-preservation efficiency 
of testis tissue are needed in all these important areas, and especially are lacking for ruminant 
species. 

Subsequent use of graft-derived sperm

Morphologically normal and viable sperm have been observed in testis tissue xenografts from 
several species and, after mechanical dissociation, these xenogeneic sperm could be retrieved 
at high concentrations. Since the grafts develop from small fragments of testicular parenchyma, 
the resultant sperm do not undergo epididymal maturation, making them comparable to 
testicular sperm in their maturation status. Behaving as testicular sperm, graft-derived sperm are 
immotile and may only gain weak mobility after dilution in manipulation media, and therefore, 
would have to be used in ICSI. Following ICSI in multiple species, the capacity of graft-derived 
sperm for fertilising oocytes (Honaramooz et al. 2002a, Campos-Junior et al. 2014), driving 
early embryonic development (Honaramooz et al. 2002a, 2004, 2008) leading to the birth 
of healthy offspring have been shown (Shinohara et al. 2002, Schlatt et al. 2003, Nakai et al. 
2010). An option is available to infertile men with non-sperm differentiated germ in their testis 
biopsies, where elongated spermatids, or even round spermatids can be extracted and used for 
fertilisation of oocytes through ICSI (reviewed in Vloeberghs et al. 2013). It remains to be seen 
if similar microinjection techniques can be developed for situations where only non-sperm 
germ cells are developed in grafts.

It is important to note that using the xenogeneic sperm to produce offspring is currently limited 
to species in which the full complement of subsequent ART is already well established. These 
ART are species-specific and require sufficient knowledge of the reproductive biology of both 
males and females of the target species. For example, for the successful production of offspring 
from a given species several procedures are required including estrous cycle synchronisation, 
efficient collection of mature oocytes, performing ICSI, culturing early embryos, preparing 
surrogate females, and successful transfer of the embryos to the surrogate females. These 
procedures are routinely done in only a handful of species (reviewed in Andrabi & Maxwell 
2007). Therefore, a major challenge ahead for the practical use of xenogeneic sperm from 
many species is the development of the required ART for each species, which in turn requires 
a working knowledge of the reproductive physiology and management of the target species. 

However, it is also important to note that the lack of subsequent ART available for using 
xenogeneic sperm from a given species should not diminish the value of TTX as a unique method 
to produce sperm from even a recently dead neonatal individual from that same species. This 
is because one may cryopreserve the donor tissue prior to grafting, or proceed with TTX and 
freeze the matured grafts or extracted sperm until such time when the required subsequent ART 
do become available for the target species (Fig. 1). Furthermore, TTX has multiple immediate 



271Testis tissue xenografting from ruminant species

applications, which do not rely on other technologies, including its use as a tool for the study of 
testis function of the donor species. Lastly, aside from TTX, no feasible alternatives are currently 
available to preserve the genetics/fertility of immature valuable animals. In vitro production of 
sperm from neonates has so far been only achieved in mice (Sato et al. 2011, Abu Eljija et al. 
2012). Cloning has been used for a number of species and can be useful especially if the goal 
is to produce a genetically exact replica of an individual animal. Development of cloning for 
a new species is also costly, time consuming, and technically demanding; hence, successful 
production of healthy cloned offspring is limited to handful of economically important domestic 
animal species. Perhaps due to a lack of sufficient commercial or research interest, little progress 
has been made in cloning technology for non-domestic and endangered species (reviewed in 
Mastromonaco & King 2007). Furthermore, in animal conservation, it is important to preserve 
the potential contribution to the genetic variability of as many members of a rare or endangered 
species/breed as possible, while cloning does not immediately provide the genetic diversity 
that would otherwise be offered by gametes. 

Conclusions

Xenografting of testis tissue has great potential as a valuable in vivo culture system to mimic 
testis development and spermatogenesis of a variety of different species ex situ. It offers a unique 
approach for the study or manipulation of testis function of the target species, with the flexibility 
and convenience of working with a laboratory mouse in which the hormonal milieu can be 
more easily manipulated. Multiple studies have used TTX from donors of domestic and exotic/
non-domestic animals, and shown that once the grafts are allowed sufficient time to develop, 
complete donor-derived spermatogenesis can be expected. Nonetheless, testis tissue from 
each donor species/developmental status displayed some universal and some unique patterns, 
leading to conclusions about the superior potential of immature testis tissue as donors and the 
species-specific timing of testis development and spermatogenic efficiency. 

As a general rule, while for most donor species the initial expansion of seminiferous tubules 
in grafts may happen earlier, the appearance of first sperm/elongated spermatids is usually 
observed at the same time as in the age-matched testes; however, in certain species/breeds it 
may be slightly earlier or even delayed. For instance, after TTX using dairy/beef calf donors, the 
unexpected observations of a pause in meiosis progression led to testing of new hypotheses, 
resulting in novel discoveries about the genetic and hormonal regulation of bovine testis 
development. Sperm recovered from testis tissue xenografts when used in ICSI can fertilise 
oocytes and support development to term. Using TTX for every new species has also brought 
considerable new knowledge about the donors’ testis biology, including some reports, which 
were the first examinations of testes for a given species; hence, no comparable in situ data were 
available to compare with xenografts results. Post-mortem recovery of testes and use in TTX 
after unexpected demise of immature calves/fawns, exemplified its potential application for 
rare or endangered ruminant species. Owing to TTX, cryopreservation of immature testis tissue 
now is being considered for preserving the fertility potential of prepubertal boys undergoing 
gonadotoxic cancer therapies, and salvaging the genetic potential of immature endangered 
animals or valuable breeds of livestock.

Systemic evaluations of multiple factors related to the success rate of TTX, such as, the choice 
and hormonal status of recipients, sources of variation, and their underlying mechanisms, 
will further improve the outcomes of TTX. Additional research focusing on optimisation 
of cryopreservation protocols for testicular tissue to salvage fertility potential of immature 
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individuals will result in more widespread application of TTX technology. The use of graft-
originated sperm for fertilisation and production of progeny requires the availability of ICSI 
and complementary ART for the target species. In cases, for example, where a male offspring 
of an endangered species dies before producing sperm, it may be necessary to consider pre-
grafting cryopreservation of the donor testicular tissue or post-grafting freezing of the xenografts 
or graft-derived sperm until the required ART is developed. While overcoming some of these 
cited challenges is achievable in a foreseeable future, the development of ICSI and subsequent 
ART for new, especially non-domestic, species requires significant time, capital and a collective 
effort by conservation and reproductive scientists from different fields to overcome, and may 
remain challenging into the more distant future.
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