Regulation of conceptus development and attachment in pigs

R. D. Geisert and J. V. Yelich

1Animal Science Department, Oklahoma State University, Stillwater, OK 74078, USA; and 2Department of Animal Science, University of Florida, Gainesville, FL 3261, USA

Implantation/placentation in domestic pigs is preceded by synthesis of oestrogen by the conceptus to maintain functional corpora lutea throughout pregnancy and a rapid morphological transformation of conceptuses from spherical to long filamentous thread-like structures. Initial conceptus expansion, reaching a metre in length, not only delineates the surface area for placental attachment, but also provides the mechanism for delivery of oestrogen to signal events necessary for placentation throughout the uterine horn. Timing for conceptus gene expression to induce trophoblast expansion and attachment in pigs is temporally associated with downregulation of progesterone receptors and increase in oestrogen receptors within the uterine epithelium. Within the confines of the uterine lumen, pig conceptuses normally do not erode or invade through the uterine epithelial surface. However, the pig conceptus possesses extensive proteolytic activity as it is highly invasive outside the uterine lumen of the pig. Initial release of oestrogen by the elongating pig conceptus induces endometrial release of cytokines and a variety of protease inhibitors. Recently, endometrial expression for the inter-trypsin inhibitor (Id1) family of protease inhibitors has been detected in the pig endometrium during conceptus elongation and attachment. It is possible that Id1s may function to inhibit trophoblast invasion and also serve as targets for adhesion molecules, such as integrins and heparin, to aid in placental attachment to the uterine epithelium.

Introduction

There are few mammalian species in which early embryonic development can compare with the rapid alteration in conceptus morphology that occurs during establishment of pregnancy in pigs. During the period of maternal recognition of pregnancy, pig conceptuses undergo a phenomenal morphological change from 10 mm spherical to tubular (20–40 mm) and finally filamentous (100 mm in length) shapes in less than 3–4 h (Anderson, 1978; Geisert et al., 1982; Stroband and Van der Lende, 1990). Transformation from spherical to a filamentous thread-like morphology occurs through cytoskeletal reorganization which induces cellular modifications in shape and migration, rather than an increase in mitotic activity (Geisert et al., 1982; Mattson et al., 1990). Initial expansion of the pig trophoblast establishes boundaries for placental attachment and initial allotment of uterine space available to each conceptus to compete for nutrients necessary for growth and survival to term. It not only delineates the surface area for placental attachment, but it also provides the mechanism for delivery of conceptus oestrogen throughout the uterus to maintain functional corpora lutea during pregnancy (see reviews Bazer et al., 1984; Geisert et al., 1994a).

Inclusive of maternal recognition on days 10–12 of pregnancy, events critical for early pig embryonic survival include rapid trophoblast elongation, conceptus attachment to the uterine epithelial surface and inhibition of immune rejection by the maternal system. Uterine and conceptus factors involved with inducing rapid trophoblast elongation are of critical importance for embryonic survival. Trophoblast elongation involves many embryonic factors as well as presentation of uterine adhesion factors on the apical border of the endometrial surface epithelium. Initially, uterine
adhesion to the surface epithelium permits trophoblast elongation throughout the uterine lumen (Fig. 1) and then continuous adhesive attachment of the placenta throughout gestation (King et al., 1982). The alterations within the uterine surface glycocalyx that allow trophoblast elongation and then permanent placental attachment are as critical to conceptus survival as the conceptus factors stimulating the morphological changes in the conceptus. Resolving the conceptus and uterine factors involved with trophoblast elongation and attachment within the confines of the pig uterine lumen would clarify our understanding of embryonic survival in pigs. The present paper will review recent literature concerning conceptus and uterine factors involved with trophoblast development and initial attachment to the uterine surface epithelium.

Conceptus Elongation within the Uterus

A critical period of embryonic loss occurs when the peri-implantation conceptus undergoes rapid differentiation and expansion of its trophoblastic membrane between days 11 and 12 of gestation (Geisert et al., 1982; Barends et al., 1989; Pope, 1994). Thus, trophoblast elongation is sensitive to changes in the uterine luminal environment that can be influenced by littermate embryos (Pope, 1994). On day 7–8 of pregnancy, the pig blastocyst is composed of an outer layer of polarized trophectoderm, embryonic disc and an inner layer of endodermal cells (see Stroband and Van der Lende, 1990). By day 10, the pig conceptus expands to a 1–3 mm sphere before enlarging to a 3–8 mm ovoid shape at a rate of approximately 0.3 mm h⁻¹ over the next 30 h. Once conceptus diameter reaches 9–10 mm, the conceptus rapidly (30–45 mm h⁻¹) undergoes a transition to a tubular (12–30 mm) and finally thin filamentous form measuring more than 100 mm in length (Geisert et al., 1982). Perry (1981) compared elongation by the ovoid conceptus to rolling a ball of plasticene under your hand. He suggested that the rapidity of elongation would more likely be explained by deformation.
Conceptus development

than by cell division. As predicted by Perry, rapid morphological changes in the pig conceptus are not the result of cellular hyperplasia as proliferative activity, measured by DNA and mitotic index, significantly declines during transition from spherical to filamentous morphology (Geisert et al., 1982; Pusateri et al., 1990). Rather, trophoblastic elongation occurs through massive cellular remodelling of the trophectoderm and endoderm.

Conceptus elongation requires a mechanical force to generate the cellular restructuring necessary to transform its morphology rapidly as the trophectoderm expands. Mattson et al. (1990) proposed that actin filaments may be involved with rearrangement of the trophectoderm plasma membrane and initiate the force necessary for conceptus elongation. Modifications of filamentous-actin (f-actin) are consistent with alterations in trophectoderm morphology for axial elongation and narrowing of the conceptus diameter. Polygonal trophoblastic cells of tubular conceptuses vary in the distribution of f-actin in regions proximal to and distal to the embryonic disc. Numerous constricted regions have been observed along the length of the filamentous conceptus (Mattson et al., 1990). Morphology of trophoderm cells within the constricted region and the distinct arrangement of f-actin suggest that these cells may generate a contractile force to elongate. Although changes in endodermal ultrastructure have been documented (Geisert et al., 1982; Mattson et al., 1987), regulation of extraembryonic endoderm migration and function during trophoblast expansion have not been determined.

Currently, the factor(s) that initiates elongation and the cytoskeletal processing that dictates the morphological changes in the pig conceptus is coming under intensive study. It is clear that the force necessary for trophoblast elongation originates within the individual conceptus as a mixture of spherical, tubular and elongating conceptuses which can be found within the same litter (Heuser and Streeter, 1929; Anderson, 1978; Geisert et al., 1982). Moreover, when oestrogen is administered to advance the uterine secretory response before conceptus elongation, conceptuses do not elongate until they have reached the 9–10 mm ovoid morphology (Morgan et al., 1987). Conceptus elongation is, therefore, programmed through developmental cues rather than through direct stimulation by uterine secretions; however, uterine secretions do play a significant role in conceptus growth and survival. The importance of the 10 mm ovoid stage in conceptus development could be related to differentiation and expansion of the extraembryonic mesoderm (Patten, 1931; Geisert et al., 1982; Gupta et al., 1996). First detection of mesoderm is temporally associated with the initial capacity of the 5–6 mm conceptuses to synthesize oestrogens (Fischer et al., 1985; Pusateri et al., 1990; Wilson and Ford, 1997). Protein and gene expression for steroidogenic enzymes such as P450 17α-hydroxylase and aromatase are consistent with the increase in conceptus oestrogen synthesis (Conley et al., 1994; Ko et al., 1994; Green et al., 1995; Yelich et al., 1997a; Wilson and Ford 1997). Later, expansion of the extraembryonic mesoderm between the trophectoderm and endoderm at the 10 mm stage of development may direct cellular remodelling for trophoblast elongation. Certainly, there are many uterine and conceptus factors that contribute to the growth, differentiation and elongation of pig conceptuses.

Endometrial Contributions to Conceptus Development

Although rapid trophoblast elongation is programmed through developmental cues by the conceptus (Morgan et al., 1987), uterine secretions play a significant role in conceptus growth and survival. A number of the major components of progesterone-stimulated uterine secretions during the oestrous cycle and following conceptus oestrogen release have been reviewed by Davis and Blair (1993) and Roberts et al. (1993a,b), and will only be briefly addressed here. Notably, endometrial synthesis of uteroferrin and retinol-binding protein (RBP) have been studied extensively in pigs. Uteroferrin was one of the earliest uterine proteins identified within the pig uterus (see Roberts et al., 1993a). Although uteroferrin plays a role in iron transport to the fetus throughout pregnancy, evidence has indicated that uteroferrin may also serve as a haematopoietic stem cell growth factor during early conceptus development (Bazer et al., 1991; Michel et al., 1992).

Endometrial secretion of retinol-binding protein (RBP) may function in the transport and delivery of maternal plasma retinol to the developing conceptus (Trout et al., 1992; Harney et al.,
Uterine secretion of retinol bound to RBP permits the uptake and cellular delivery of retinol to the conceptus through cellular RBP (CRBP) (Napoli et al., 1991). Cytosolic retinol can then be metabolized to retinal and the most biologically active metabolite, retinoic acid (Ross, 1991). Retinoic acid binds directly to retinoic acid receptors (RAR) in the nucleus where it effects gene transcription (Chambon et al., 1991). Harney et al. (1994a) indicated that the components for retinol transport, metabolism and receptor activation are present in endometrial and conceptus tissues during early pregnancy. Pig endometrial and conceptus tissues synthesize RBP, CRBP, RARα and RARγ during early conceptus development (Trout et al., 1992; Harney et al., 1994a). In fact, RBP is one of the earliest secretory proteins detected in the spherical conceptus on days 10–11 of gestation (Harney et al., 1990). Both uterine and conceptus RBP deliver retinol to tissues, and buffer tissues from the teratogenic (Lammer et al., 1985) and embryotoxic (Thompson et al., 1993) effects of retinoids. Vallet et al. (1996) also proposed a role for RBP in protecting uterine and developing conceptus tissues from the lipid oxidizing activity of uteroferrin. Effects of retinoic acid on components of the extracellular matrix (see DeLuca, 1991), cell surface adhesive molecules (Agura et al., 1992), and expression of growth factors and their receptors (Roberts and Sporn, 1988) provide an attractive model for its possible involvement with rapid trophoblast elongation and conceptus development in pigs.

In addition to uteroferrin and RBP, the pig endometrium contains many enzymes such as lysozyme, leucine-aminopeptidase (Roberts et al., 1976; Hansen et al., 1985), β-hexosaminidase (Hansen et al., 1985), cathepsins B, D, E (Roberts et al., 1976) and L (Geisert et al., 1997). Secretion of enzymes such as lysozyme can serve a bactericidal function and for selective proteolysis of proteins for conceptus uptake (Roberts et al., 1993a). Cathepsins are lysosomal cysteine proteases that have been implicated as modulators of invasive implantation of rats (Elangovan and Moulton, 1980) and cats (Li et al., 1992). Cathepsin L activity in the pig uterus is induced by progesterone and increases at the time of trophoblast elongation with peak activity on day 15 of pregnancy (Geisert et al., 1997). Although the pig forms a diffuse, epitheliocorial type of placental attachment (King et al., 1983), the high affinity of cathepsin L for collagen (Kirschke et al., 1982) and elastin (Mason et al., 1982) suggests that it may play a role in placental attachment on day 13–18 of gestation through limited proteolysis of the uterine epithelial surface glycocalyx. Uterine growth and expansion during early pregnancy involves elastase activity and collagen remodelling (Renegar, 1982) in which cathepsin L could play a role in both uterine and placental development.

The pig conceptus is normally noninvasive within the confines of the uterine lumen. However, the pig conceptus possesses extensive invasive activity outside the uterine lumen (Samuel and Perry, 1972). Trophoblast secretion of plasminogen activator at the time of elongation can stimulate the release of plasmin through cleavage of plasminogen which is present in the uterine lumen at the time of implantation/placentation (Fazleabas et al., 1983). Generation of plasmin by the pig conceptuses can activate latent forms of other proteases involved with regulation of the cell basement membrane and extracellular matrix (Werb et al., 1980). Association of plasminogen activator with cellular migration and remodelling of various tissues (Bode and Dziadek, 1979) suggests a primary role for plasmin in the remodelling of the conceptus (Fazleabas et al., 1983). The release of plasmin into the uterine lumen would represent a by-product of conceptus development which must be controlled to avoid damage to the uterine luminal epithelium.

Endometrial secretion of a variety of protease inhibitors regulates the microenvironment during placental attachment in pigs (see Roberts et al., 1993a). The pig endometrium secretes a protease inhibitor specific for plasmin, chymotrypsin and trypsin during the period of trophoblast elongation and placentation (Fazleabas et al., 1983). This inhibitor contains a kunitz domain which provides inhibitory activity against serine proteases (Stallings-Mann et al., 1994). Expression of a uterine elastase/cathepsin G protease inhibitor, antileukoproteinase, during pregnancy in pigs may also support and maintain the noninvasive, epitheliocorial placenta throughout pregnancy (Simmen et al., 1992a). In addition, the pig uterus also secretes a group of low molecular mass, basic proteins that are related to the ‘serpin family’ of protease inhibitors (Murray et al., 1989; Malathy et al., 1990).

Recently, expression of the inter-trypsin inhibitor (Ial) family of protease inhibitors was detected in the pig endometrium during conceptus elongation and attachment (Geisert et al., 1996; Diederich et al., 1994a,b).
Inter-trypsin inhibitors are plasma serine protease inhibitors that have been described during the acute phase reaction to cardiogenic shock (see Salier et al., 1996). The family of inter-trypsin inhibitors are interesting in that they are synthesized as precursor polypeptides that give rise to mature chains with distinct functions and form inter-chain glycosaminoglycan bonds with various molecules. The inter-trypsin inhibitor family of serine protease inhibitors can consist of either a combination of two heavy chains IαH1, IαH2 and a single light chain known as bikunin, IαH-3 and bikunin or IαH2 and bikunin (see review Salier et al., 1996). Heavy chains of IαH1, IαH2 and IαH-3 form the various complexes with bikunin through binding to a chondroitin sulfate chain (Enghild et al., 1993). All the serine protease inhibitory activity is attributed to bikunin, as it contains two Kunitz-type serine protease inhibitor domains (Hochstrasser et al., 1981). Bikunin originates from a separate mRNA in which α-1-microglobulin and bikunin are synthesized as single proteins which undergo proteolytic cleavage (Kaumeyer et al., 1986). However, the IαL heavy chains are translated from separate mRNAs (Diarra-Mehrpour et al., 1989). Through its tandemly arranged kunitz domains, bikunin can target inhibition of trypsin, cathepsin G, elastase and plasmin. The biological role of the IαL family as protease inhibitors is under investigation (Salier et al., 1996).

Previously, it was proposed that synthesis of the inter-trypsin inhibitors was restricted to the liver (Saguchi et al., 1995). Uterine synthesis of inter-trypsin inhibitors could regulate conceptus attachment and limit proteolysis. Certainly, bikunin can assist with regulation of endometrial invasion by the pig trophoblast as endometrial bikunin gene and protein expression are detected from day 12 to day 18 of pregnancy (Diedrich et al., 1997). However, it is possible that the heavy chains of IαL may function in the initial attachment of the conceptus to the uterine epithelial surface as will be addressed later.

Continuous growth, development and differentiation of pig conceptuses are highly dependent upon the timing and quantitative amounts of growth factors secreted into the uterine lumen. Insulin-like growth factor I (IGF-I) is one of the earliest and most completely characterized of the growth factors identified in uterine secretions of pigs (Simmen et al., 1993). As endometrial IGF-I expression reaches peak values during conceptus elongation and oestrogen release on day 12 of gestation (Letcher et al., 1989; Simmen et al., 1992b), uterine secretion of IGF-I may enhance conceptus oestrogen synthesis (Hofig et al., 1991), possibly through the enhancement of P450 aromatase gene expression (Ko et al., 1994; Green et al., 1995). The IGF-I receptor mRNA is constitutively expressed during early conceptus development (Green et al., 1995); however, trophectoderm IGF-I receptor protein content is low (Chastant et al., 1994). Uterine secretion of IGF-I may play more of an autocrine role in uterine growth and development as the endometrium contains an abundance of IGF-I receptors (Simmen et al., 1992b; Chastant et al., 1994). Trophectoderm of developing conceptuses expresses IGF-II/mannose 6-phosphate receptor which may stimulate conceptus growth and differentiation (Chastant et al., 1994). However, expression of endometrial IGF-II mRNA increases on day 15 (Simmen et al., 1992b), which is several days after conceptus elongation. It is possible that uterine IGF-I effects early conceptus growth and development by binding to the IGF-II receptor (Czech, 1986). Targeted mutagenesis of the IGF-II/mannose 6-phosphate receptor gene in the mouse has demonstrated its importance in early embryonic survival (Barlow et al., 1991). Since mutation of either IGF-I, IGF-II or IGF-I receptor only reduce prenatal growth (DeChiara et al., 1990; Liu et al., 1993), it is possible that one receptor can substitute for loss of another. Newton et al. (1994) indicated that the oestrogen receptor can be transcriptionally activated through IGF-I intracellular signalling suggesting that the oestrogen receptor is one of the nuclear factors involved with growth stimulation. It is possible that conceptus oestrogen and uterine IGF-I coordinate uterine growth and development during trophoblast elongation.

Interest in the role of growth factors in pig conceptus and uterine development has led to identification of a host of growth factors within the uterus (Table 1). Epidermal growth factor (EGF), heparin-binding EGF (HB-EGF), transforming growth factor α (TGF-α) and amphiregulin, all of which bind and activate the EGF receptor (Prigent and Lemoine, 1992), are expressed by the pig endometrium during early pregnancy (Brigstock et al., 1990; Kennedy et al., 1994; Kim et al., 1995; Brigstock et al., 1996a,b). Both EGF and HB-EGF have been immunolocalized to the surface and glandular epithelium of the endometrium (Kennedy et al., 1994; Kim et al., 1995) and the luminal...
Table 1. Growth factor and receptor expression by the pig endometrium during early conceptus development and placentation

<table>
<thead>
<tr>
<th>Expression</th>
<th>Developmental process affected</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin-like growth factors (IGF)</td>
<td>Regulation of cellular proliferation and differentiation</td>
<td>Letcher et al., 1989</td>
</tr>
<tr>
<td>Insulin-like growth factor receptor</td>
<td>Receptor activation for cellular proliferation and differentiation</td>
<td>Green et al., 1995</td>
</tr>
<tr>
<td>Insulin-like growth factor binding protein 2</td>
<td>Regulation of IGF-I and IGF-II activity</td>
<td>Simmen et al., 1992</td>
</tr>
<tr>
<td>Epidermal growth factor (EGF)</td>
<td>Regulation of cellular proliferation and differentiation</td>
<td>Kennedy et al., 1994</td>
</tr>
<tr>
<td>Heparin binding-epidermal growth factor (HB-EGF)</td>
<td>Regulation of cellular proliferation and differentiation</td>
<td>Brigstock et al., 1990</td>
</tr>
<tr>
<td>Epidermal growth factor receptor</td>
<td>Receptor activation by EGF, HB-EGF, TGF and amphiregulin</td>
<td>Zhang et al., 1992</td>
</tr>
<tr>
<td>Transforming growth factor-α (TGFα)</td>
<td>Regulation of cellular proliferation and differentiation</td>
<td>Kennedy et al., 1994</td>
</tr>
<tr>
<td>Transforming growth factor-β3</td>
<td>Chemoattractant regulates cellular differentiation and morphogenesis</td>
<td>Sun et al., unpublished results</td>
</tr>
<tr>
<td>Keratinocyte growth factor</td>
<td>Heparin-binding growth factor mediates effects of progesterone and androgen on epithelium</td>
<td>Liu et al., 1995</td>
</tr>
<tr>
<td>Keratinocyte growth factor receptor</td>
<td>Receptor activation for stromal function</td>
<td>Tuo et al., 1996</td>
</tr>
<tr>
<td>Retinoic acid receptor-α, -β, -γ</td>
<td>Retinoic acid receptor for uterine development</td>
<td>Harney et al., 1994</td>
</tr>
<tr>
<td>Interleukin 6</td>
<td>Uterine immunological stimulation</td>
<td>Mathialagan et al., 1992</td>
</tr>
<tr>
<td></td>
<td>Uterine haemorrhage response</td>
<td>Anegon et al., 1994</td>
</tr>
<tr>
<td>Fibroblast growth factors</td>
<td>Regulation of cellular proliferation and differentiation</td>
<td>Brigstock et al., 1989</td>
</tr>
<tr>
<td>Leukaemia inhibitory factor</td>
<td>Regulation of embryo differentiation</td>
<td>Anegon et al., 1994</td>
</tr>
<tr>
<td>Colony stimulating factor 1</td>
<td>Haematopoietic growth factor</td>
<td>Tuo et al., 1995</td>
</tr>
<tr>
<td>Pleiotrophin</td>
<td>Neurotrophic factor</td>
<td>Brigstock et al., 1996</td>
</tr>
</tbody>
</table>

content of EGF in uterine secretions is increased on day 12 of pregnancy followed by a decline to day 16 (Diehl et al., 1994). Endometrial and conceptus tissues express EGF receptor (Zhang et al., 1992a,b; Kennedy et al., 1994) which indicates that uterine secretion of EGF and other ligands for EGF receptor could regulate uterine and conceptus development. Although expression of these growth factors, as well as basic fibroblast growth factor (Brigstock et al., 1989) and pleiotrophin (Brigstock et al., 1996a), has been demonstrated, their relationships to conceptus development have not been defined.

In addition to pleiotrophin, several haematopoietic cytokines have been detected within the pig endometrium and uterine secretions during early conceptus development. Given its role as a haematopoietic regulator involved in cellular differentiation and cellular growth, leukaemia inhibitory factor (LIF) is one of the most notable cytokines secreted by pig endometrium at the time
of conceptus elongation (Anegon et al., 1994). Endometrial gene expression and secretion of LIF into the uterine lumen are maximal on days 11–12 of pregnancy in pigs (Anegon et al., 1994). The essential role of LIF in blastocyst growth and implantation in mice (see Stewart, 1994) implies that LIF may serve a vital function in conceptus development and implantation in pigs. The importance of conceptus growth and differentiation, and possibly of expansion of the extraembryonic mesoderm, provides an attractive model for studies of endometrial LIF regulation of trophoblast elongation and implantation in pigs.

LIF is related to and binds to a receptor common to interleukin 6 (IL-6), and colony-stimulating factor 1 (CSF-1) (Bazan, 1991). Pig endometrium contains mRNA for IL-6 and IL-6 is present within the uterine secretions during the oestrous cycle and early pregnancy (Anegon et al., 1994). However, changes in mRNA and protein are not associated with changes in conceptus development on days 11–12 of pregnancy as observed for LIF. Gene expression and tissue production of CSF-1 have been detected in the pig endometrium and conceptus (Tuo et al., 1995). Immunoreactive CSF-1 is localized in the uterine surface and glandular epithelium on day 10 of pregnancy, but the greatest tissue content and mRNA expression occur after day 30 of gestation. Temporal changes in CSF-1 mRNA and protein in the endometrium and placenta of pigs suggest that CSF-1 may influence placental and fetal growth following implantation/placentation (Tuo et al., 1995).

The pig endometrium has recently been shown to be a source of relaxin (Knox et al., 1994) and oxytocin (Trout et al., 1995). Although the pig corpus luteum has long been known to be an endocrine source of relaxin (Sherwood, 1994), relaxin has now been localized in the uterine surface and glandular epithelium of gilts during the oestrous cycle and early pregnancy (Knox et al., 1994). Intensity of relaxin immunostaining is weak on day 12 but increases to day 16 and expression is maintained to day 20 in pregnant gilts. Detection of mRNA encoding relaxin demonstrated that the endometrium is the source of relaxin in the uterine epithelium (Knox et al., 1994). Relaxin has a definite uterotrophic effect (Galvin et al., 1991) which could stimulate growth of the uterus to accommodate expansion of the allantochorionic membranes from days 18–30 of pregnancy (see Bazer et al., 1981). Oestrogen stimulation of uterine secretions by the elongating conceptus at the time of maternal recognition of pregnancy initiates release of endometrial oxytocin into the uterine lumen (Trout et al., 1995). Endometrial oxytocin mRNA reaches peak values on day 12 of the oestrous cycle or pregnancy (S. Sun, T. Yelich and R. Geisert, unpublished results). Lack of oxytocin receptor mRNA in day 10–12 conceptus tissue (Yelich et al., 1997a) suggests that uterine oxytocin release may have an autocrine function in uterine contraction and closure of the uterine lumen surrounding the developing conceptus, rather than a direct effect on the developing conceptus. High luminal content of oxytocin may also play a role in regulating the movement of prostaglandin F₂₀ during maternal recognition of pregnancy (see Bazer et al., 1984).

As described previously, there is a great deal of information on the presence of uterine growth factors which may effect conceptus development, many of which are steroid regulated (IGF-I, IGF-II, LIF, RBP). Timing of uterine growth factor expression and subsequent protein release relative to conceptus development needs to be tightly regulated as the uterine environment is not tolerant of asynchrony in conceptus development (see Pope, 1994). The increase in concentrations of plasma progesterone from the corpora lutea is certainly the primary director of uterine development and secretion. However, the marked changes in uterine epithelial secretions and conceptus elongation in pigs are actually temporally related to downregulation of progesterone receptors in the surface and glandular epithelium from day 10 of the oestrous cycle or pregnancy (Geisert et al., 1994b) and the increase in epithelial oestrogen receptors (Geisert et al., 1993). Thus, the loss of progesterone receptors from the uterine epithelium may play an essential role in the timing of growth factor secretion for the developing conceptus and the responsiveness of uterine epithelium to conceptus oestrogens during trophoblastic elongation and implantation. Stromal cell progesterone receptors are maintained during this period and may stimulate the uterine epithelium by secretion of keratinocyte growth factor (KGF) in response to progesterone (Liu et al., 1995). KGF receptors are expressed constitutively by the uterine epithelium (Liu et al., 1996). Although there are now clues to the regulation of uterine growth factor secretion during early conceptus development, definitive roles for each growth factor in conceptus development need to be established.
Table 2. Growth factor and receptor expression by the pig conceptus before and during elongation

<table>
<thead>
<tr>
<th>Expression</th>
<th>Developmental process affected</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brachyury</td>
<td>Mesoderm formation</td>
<td>Yelich et al., 1997a</td>
</tr>
<tr>
<td>Cytochromes</td>
<td>Steroidogenesis</td>
<td>Conley et al., 1994</td>
</tr>
<tr>
<td>P45017<sub>a</sub></td>
<td></td>
<td>Green et al., 1995</td>
</tr>
<tr>
<td>P450<sub>perm</sub></td>
<td></td>
<td>Corbin et al., 1996</td>
</tr>
<tr>
<td>P450<sub>ac</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin-like growth factor I</td>
<td>Regulation of cellular proliferation and differentiation</td>
<td>Letcher et al., 1989</td>
</tr>
<tr>
<td>Insulin-like growth factor I receptor</td>
<td></td>
<td>Green et al., 1995</td>
</tr>
<tr>
<td>Insulin-like growth factor II</td>
<td>Regulation of cellular proliferation and differentiation</td>
<td>Simmen et al., 1992</td>
</tr>
<tr>
<td>Insulin-like growth factor II receptor</td>
<td></td>
<td>Chastant et al., 1994</td>
</tr>
<tr>
<td>Epidermal growth factor</td>
<td>Regulation of cellular proliferation and differentiation</td>
<td>Vaughan et al., 1992</td>
</tr>
<tr>
<td>EGF receptor</td>
<td>Regulation of cellular proliferation and differentiation</td>
<td>Vaughan et al., 1992</td>
</tr>
<tr>
<td>Transforming growth factor α</td>
<td>Regulation of cellular morphogenesis</td>
<td>Vaughan et al., 1992</td>
</tr>
<tr>
<td>Transforming growth factor β-1, β-2, β-3</td>
<td>Chemoattractant. Regulation of cellular differentiation and morphogenesis. Collagen and fibronectin expression</td>
<td>Yelich et al., 1997a</td>
</tr>
<tr>
<td>Retinol-binding protein</td>
<td>Retinol transport to conceptus</td>
<td>Gupta et al., 1996</td>
</tr>
<tr>
<td>Retinoic acid receptor-α, -β, -γ</td>
<td>Receptor for retinoic acid for embryo morphogenesis</td>
<td>Harney et al., 1990, 1994b, 1997b</td>
</tr>
<tr>
<td>Leukaemia inhibiting factor receptor</td>
<td>Regulation of cellular proliferation and differentiation</td>
<td>Trout et al., 1992, Yelich et al., 1994a, 1997b</td>
</tr>
<tr>
<td>Interleukin 1β</td>
<td>Uterine immunological stimulation</td>
<td>Yelich et al., 1994a, 1997b</td>
</tr>
<tr>
<td>Interleukin 6</td>
<td>Uterine immunological stimulation</td>
<td>Tuo et al., 1996</td>
</tr>
<tr>
<td>Colony stimulating factor 1</td>
<td>Cellular proliferation and differentiation</td>
<td>Mathialagan et al., 1992, Anegon et al., 1994, Tuo et al., 1995</td>
</tr>
<tr>
<td>Interferons</td>
<td>Immunological regulation</td>
<td>Lefevre and Boulay, 1993, Cross and Roberts, 1989</td>
</tr>
</tbody>
</table>

Conceptus Regulation of Trophoblastic Elongation

As previously discussed, rapid elongation of the conceptus on days 10–12 of gestation appears to be programmed by endogenous developmental cues. Since conceptuses elongate only after they have reached the 10 mm morphology (Morgan et al., 1987), the critical period of development may prepare the early spherical (1–3 mm) and late-spherical (9–10 mm) conceptuses for elongation. This
period is characterized by enhanced conceptus gene expression that orchestrates the sequence of cellular events necessary to initiate and allow trophoblast elongation to occur (Table 2).

Synthesis and secretion of oestrogen by the developing pig conceptus is the fundamental marker of trophoblast elongation (see Geisert et al., 1990). Two key enzymes involved in the steroidogenic pathway for oestrogen synthesis in the conceptus are the cytochromes P450 17α-hydroxylase (P450 17α) and aromatase (P450 arom). Although low, initial expression of P450 17α is detected in conceptuses of less than 6 mm diameter, and increases as conceptuses approach the large spherical stages (10 mm) just before elongation. Conceptus P450 arom gene expression follows a similar pattern that is greatly enhanced at the time of elongation (Conley et al., 1992, 1994; Ko et al., 1994; Green et al., 1995; Yelich et al., 1997a). Immediately after elongation of the trophoblast, gene expression for both enzymes decreases markedly (King and Ackerley, 1985; Conley et al., 1992; Ko et al., 1994; Green et al., 1995). Oestrogen production by the conceptus has a direct effect on uterine function as evidenced by an abundance of oestrogen receptors in the uterine epithelium at the time of trophoblast elongation (Geisert et al., 1993) which, when activated, result in the secretion of numerous uterine proteins as previously discussed in this review. Whether there is a direct effect of oestrogen produced by the conceptus on trophoblast elongation is unclear, although it appears unlikely since oestrogen receptors cannot be detected in the early conceptus by either immunocytochemistry or RT-PCR (R.D. Geisert, unpublished results; Yellich et al., 1997a).

Initial synthesis of oestrogen and elongation of the conceptus is closely associated with first detection of mesoderm differentiation in 5 mm spherical conceptuses that may be the key to the programming of trophoblast elongation (see reviews by Geisert et al., 1990; Stroband and Van der Lende, 1990). The appearance of mesoderm within the embryoblast corresponds to initial expression of the brachyury gene in conceptuses (Yelich et al., 1997a). Brachyury gene expression encodes a transcription factor necessary for mesodermal differentiation in mice (Herrmann et al., 1990), as homozygous mutants for the gene are lethal (Conlon et al., 1995). Brachyury gene expression coincides with and parallels P450 17α and P450 arom gene expression in early spherical conceptuses (Yelich et al., 1997a). Whether or not expression of brachyury, or the subsequent differentiation of mesoderm, initiates steroidogenesis is debatable. Absence of P450 17α and P450 arom gene expression in the mesoderm (Conley et al., 1994) suggests that effects of the mesoderm, if any, on oestrogen synthesis are indirect.

Expression of receptors for LIF, IGF-II and EGF have been described in early developing conceptuses (see Table 2). As previously discussed, the uterus secretes IGF-I, EGF, HB-EGF and CSF-1 during conceptus elongation, but these growth factors appear to play more of a supportive role in growth and differentiation rather than in cellular remodelling. Initial expression of LIF receptor is observed in 2 mm spherical conceptuses, with a marked increase to a peak at the 7 mm spherical conceptus stage, which is maintained throughout trophoblast elongation (Yelich et al., 1997a). Uterine secretion of LIF at the time of conceptus elongation suggests that LIF may serve a vital function in conceptus development, possibly expansion of the extraembryonic mesoderm, which initiates signalling for remodelling of the trophectoderm. LIF could direct remodelling by enhancing production of conceptus proteases and this is supported by the observation that LIF regulates protease activity in the expanding mouse blastocyst (Harvey et al., 1995). Proteases serve as modifiers of the extracellular matrix (Brenner et al., 1989; Alexander and Werb, 1991).

Expression of mRNA for the EGF receptor has also been detected equally across all stages of pre-elongated conceptuses (Vaughan et al., 1992). Specific binding of EGF to its receptor was also detected (Zhang et al., 1992b), although binding increased temporally from day 10 to day 13 and increased sixfold by day 15 after elongation. The EGF receptor also binds transforming growth factor α (TGF-α). This may be significant because expression of conceptus TGF-α mRNA is maximal before and during elongation, and declines during the post-elongation period (Vaughan et al., 1992). Vaughan et al. (1992) speculated that TGF-α plays a role in fluid transport during elongation, and this is supported by the observation that exogenous TGF-α enhances fluid uptake and subsequent blastocoel expansion in the peri-implantation mouse conceptus (Dardick and Schultz, 1991). Whatever role TGF-α may have in conceptus elongation, increased expression of TGF-α could initiate events necessary for rapid trophoblastic elongation, while conceptus EGF gene expression may regulate
Fig. 2. Proposed simplified model of events associated with rapid trophoblastic elongation in pigs. Oestrogen (E), synthesized by the conceptus, stimulates endometrial oestrogen receptors (ER) which initiate the release of uterine retinol-binding protein (uRBP). As uRBP accumulates in the uterine lumen it transfers retinol (R) to the conceptus either directly or indirectly by exchange with embryonic retinol-binding protein (eRBP). Free R in the conceptus cytoplasm is converted to retinoic acid (RA) which activates retinoic acid receptors (RAR). The RAR may serve as initiators of the extracellular matrix (ECM) remodelling necessary for cell migration and trophoblast elongation either directly or indirectly through activation of the transforming growth factor β (TGFβ) and other morphogens. Uterine secretion of leukaemia inhibitory factor (LIF) would stimulate conceptus LIF receptors (LIFr) which may initiate the production of proteases that assist in ECM remodelling. Conceptus expression of transforming growth factor α (TGFα) is maximal before and during elongation and it may play an active role in fluid transport during elongation. Other cytokines like the insulin-like growth factors (IGFs) and epidermal growth factor (EGF) may regulate cell proliferation through receptors associated with the trophoblast before, during and following the period of elongation.

development of the embryo during early placentation. Recently, several members of the transforming growth factor β (TGF-β) superfamily and their receptors have been detected in peri-implantation pig conceptuses. Yelich et al. (1997b) observed increased expression of mRNA encoding TGFβ-3 during the period of conceptus elongation, but did not detect expression of TGFβ-2. In a comprehensive study Gupta et al. (1996) found that TGFβ-1, TGFβ-2 and TGFβ-3 were immunohistochemically localized in peri-implantation pig conceptuses as were type I and type II TGFβ receptors. Gupta et al. (1996) concluded that the TGFβs may be involved in induction or advancement of mesoderm migration in developing conceptuses, possibly through regulation of expression of extracellular matrix proteins (Ignatzi and Massague, 1986). Laminin and fibronectin are both produced in the early developing pig conceptus (Richoux et al., 1989; Tuo and Bazer, 1996; Bowen et al., 1997).

Several conceptus cytokines may regulate immunofunction within the pig uterus. Interleukin 1β (IL-1β) expression by the early pig conceptus is temporally associated with maternal recognition of pregnancy (Tuo et al., 1996). Conceptus synthesis of IL-1β may play a role in the interplay of the trophoblast and uterus for the establishment of pregnancy through its influence on conceptus remodelling and stimulation of prostaglandin E release. There may be an interaction between oestrogen, PGE, IL-1β and interferon-γ (INF-γ), as conceptus INF-γ increases on day 13 (see La Bonnardiere, 1993) when IL-1β expression has declined (Tuo et al., 1996).
One of the most promising candidates for activation of trophectoderm remodelling is the cellular morphogen, retinoic acid (Harney et al., 1990). Transport of retinol by RBP into the uterine lumen, as described previously, provides the substrate for retinoic acid to the developing conceptus. Transcripts for RBP have been detected in day 11 pig conceptuses (Trout et al., 1991; Harney et al., 1994b; Yelich et al., 1997b) consistent with the presence of immunoreactive RBP in early conceptuses (Harney et al., 1990). Gene expression for RBP is initially observed in 2 mm conceptuses and increases temporally with peak expression just before the initiation of trophoblast elongation (Yelich et al., 1997b). In contrast, uterine expression of mRNA encoding RBP is very low on days 10 and 11 of pregnancy (Harney et al., 1994b), which is consistent with low uterine content of retinol during this period (Trout et al., 1992). The initial rise in conceptus RBP gene expression could serve to protect the developing conceptus from excessive concentrations of retinol released into the uterine lumen in response to conceptus oestrogen secretion (Harney et al., 1990), and to assist in the distribution of retinol to target tissues in the conceptus (Trout et al., 1991) to stimulate cellular remodelling and elongation. Retinoic acid alters embryonic development in mammals (Tickle et al., 1985), affects gene transcription (Chiocca et al., 1989), influences production of extracellular matrix components (see De Luca, 1991) and cell surface adhesive molecules (Agura et al., 1992), and can induce the expression of several peptide growth factors (Roberts and Sporn, 1988) and their receptors (Jetten, 1980). Retinoids exert their biological effects through RAR within the cell. Hamey et al. (1994a) first described the presence of RARα and RARγ mRNA and protein in day 15 conceptuses. Yelich et al. (1997b) demonstrated the presence of RARα, β and γ mRNA during both the pre- and post-elongation periods of conceptus development. Gene expression for RARα was activated before and during conceptus elongation, in a similar way to TGFB-3 gene expression (Yelich et al., 1997b), whereas RARy expression was more pronounced at the time of trophoblast elongation. It would be expected that RAR would be localized in the trophoblast where RBP is concentrated (Hamey et al., 1990; Trout et al., 1992). It is evident that both RBP and RAR may have a role in the initiation or eventual remodelling of the trophoblast during elongation (see model, Fig. 2). Retinoic acid activates expression of laminin β1 (Ross et al., 1994), and integrin β1 expression (Ross et al., 1994) while it also stimulates gene expression of TGF-βs (Roberts and Sporn, 1988). The TGF-βs are major modifiers of the ECM, particularly in the case of integrins which bind to numerous ECM proteins (Ignotz and Massague, 1986). The ECM may also be modulated through retinoic acid induced activation of conceptus proteases. Retinoic acid influences the production of the protease urokinase-type plasminogen activator and its respective inhibitor (Tienari et al., 1991), both of which are involved in ECM breakdown. In addition, Adler et al. (1990) suggested that the expression of ECM-degrading metalloproteinases and their inhibitors are developmentally regulated during the differentiation and spreading of the endoderm in embryonal carcinoma cells stimulated to differentiate with retinoic acid.

Kallikrein — a Key to Conceptus–Endometrial Interaction

Since the time that conceptus oestrogen synthesis was first shown to be involved in establishment of pregnancy in pigs, many alterations in protein secretion, prostaglandin movement, blood flow and changes in uterine morphology have been described (see Geisert et al., 1990). However, the factor(s) induced by conceptus oestrogen to orchestrate these biological changes has not been elucidated. The discovery of the Iα family and a novel inter-trypsin inhibitor H4 produced by the pig endometrium has provided insights to the mechanism whereby conceptus oestrogens regulate uterine function during placentation. Geisert et al. (1995) described changes in an endometrial glycoprotein (GP30) which is associated with the time of conceptus attachment to the uterine surface and conceptus survival. GP30 is homologous to the C-terminal region of a large (120 kDa) pig plasma glycoprotein, IαH4 (Geisert et al., 1996; Hashimoto et al., 1996). Human and pig IαH4 are different from other inter-trypsin inhibitor heavy chains, as the consensus DPHFI sequence for binding to bikunin is absent (Saguchi et al., 1995; Hashimoto et al., 1996). Because IαH4 does not contain protease inhibitory activity or bind other Iα chains, IαH4 must have a biological
Fig. 3. Proposed model for initial attachment of the conceptus to the uterine epithelium. Release of conceptus oestrogen (E) may stimulate release of uterine kallikrein which acts to cleave inter-trypsin inhibitor heavy chain 4 (IαH4) present on the uterine epithelial surface. Cleavage of IαH4 releases a 30 kDa glycoprotein (GP30) the function of which is unknown and a smaller polypeptide fragment. The N-terminal region of IαH4, which contains binding sites for hyaluronate and integrins, remains on the uterine epithelial surface to bind to the conceptus. Presence of kallikrein may also activate cleavage of kininogen to kinin for stimulation of uterine blood flow, calcium release and prostaglandin synthesis. Detection of bikunin in the endometrium indicates that the Iαl family of acute phase proteins may regulate uterine inflammation and conceptus invasion through the uterine epithelial surface.

Heavy chains of inter-trypsin inhibitors contain calcium-binding sites, potential reactive sites as thiol-protease inhibitors (Salier et al., 1987, 1996) and most importantly, associate with hyaluronan (Zhao et al., 1995). Numerous studies have established the relevance of hyaluronic acid (HA) binding to Iαl heavy chains with cell types that display an HA-containing coat (see Salier et al., 1996). All Iαl heavy chains possess a von Willebrand type A domain that functions as a target for adhesion molecules such as integrins, collagen, proteoglycans and heparin (see Salier et al., 1996). It has been proposed that inter-trypsin inhibitor heavy chains stabilize the extracellular matrix (Chen et al., 1994;
Jessen et al., 1994). In arthritis, binding of inter-trypsin inhibitor heavy chains to hyaluronate may protect the joint from inflammatory damage possibly caused by free oxygen radicals (Hutadilok et al., 1988). Hyaluronan, a ubiquitous structure within the tissue extracellular matrix serves many roles in tissue morphogenesis, cell proliferation and cell migration. Therefore, in addition to the possible role of pig endometrial IaIH4 in trophoblast attachment during pregnancy, the multipolypeptide chain of the pig IaIH4 could also serve to stabilize the epithelial glycocalyx and protect it from free radical damage. Alteration in IaIH4 may not be the only factor involved with trophoblast attachment; however, cleavage of IaIH4 could induce local alterations in receptivity to the conceptus that permits the conceptus to contact integrins for firm attachment to the uterine epithelium (Bowen et al., 1997). Kallikrein cleaves IaIH4 to allow interaction of the 55 kDa fragment of IaIH4 with integrins and HA for placental attachment.

Kallikrein protease activity increases during conceptus elongation and oestrogen secretion (Vonahme and Geisert, unpublished results), which is associated with alterations in IaIH4 during early pregnancy (Geisert et al., 1995). The presence of kallikrein in the pig uterus also suggests that the pig uterus may have a functional kallikrein–kininogen–kinin system. A number of physiological responses that occur during early pregnancy in pigs are consistent with functions of bioactive kinins (Margolius, 1996). The pig uterus is responsive to oestrogen during the period of placental attachment and oestrogen stimulates increases in uterine blood flow, vasodilatation of the capillaries surrounding the elongated conceptus, contraction of the myometrium, and endometrial release of calcium, protein and histamine (see Geisert et al., 1990). Kinins have a high affinity for specific membrane receptors on diverse cell types that regulate tissue blood flow, ion transport and smooth muscle contractions (see Bhoola et al., 1992; Rusiniak and Black, 1995; Margolius, 1996). Several studies have demonstrated that the presence of tissue kallikrein in the rat uterus is steroid regulated and correlated with the timing of implantation (Corthorn and Valdes, 1994; Brann et al., 1995; Valdes et al., 1996). These studies suggest that the kallikrein–kininogen–kinin system plays a major role in the induction of the prostaglandin and histamine cascade involved with endometrial permeability and decidual transformation in rats following oestrogen stimulation.

Studies demonstrating a biologically active kallikrein–kininogen–kinin system in the pig uterus during early pregnancy have not been completed; however, we propose that conceptus elongation and oestrogen release initiates a cascade of uterine changes through kallikrein that influence implantation/placentaion (see model, Fig. 3). Activation of kallikrein within the uterine lumen would cleave endometrial IaIH4 and permit conceptus trophoblast adhesion to the uterine surface epithelium during and following conceptus elongation. In addition, kallikrein cleaves kininogen into kinin which functions to increase calcium, protein and proteinase inhibitor release locally into the uterine lumen as well as to increase uterine blood flow and production of prostaglandins by the conceptus during trophoblast elongation. The localized stimulation of IaIH4 and the short half-life of kinins would permit regulation of the uterine environment by each developing conceptus within the uterine horn.

References

Anderson LL (1978) Growth, protein content and distribution of early pig embryos Anatomical Record 190 143–154
Barends PMG, Stroband 14WJ, Taveme N, te Kronnie G, Leen MPJM and Blommers PCJ (1989) Integrity of the preimplantation pig blastocyst during expansion and loss of polar trophoblast (Rauber cells) and the morphology of the embryoblast as an indicator for developmental stage Journal of Reproduction and Fertility 87 715–726

Gupta A, Bazer FW and Jaeger LA (1996) Differential expression of beta transforming growth factors (TGFβ1, TGFβ2, and TGFβ3) and their receptors (Type I and Type II) in peri-implantation porcine conceptuses. *Biology of Reproduction* 55:796–802

Heuser CH and Streeter GL (1929) Early stages in the development of pig embryos, from the period of initial cleavage to the time of the appearance of limb-buds. *Contributions to Embryology Carnegie Institute* 20:3–29

Ko Y, Choi I, Green ML, Simmen FA and Simmen RCM (1994) Transient expression of the cytochrome P450 aromatase gene in elongating porcine blastocysts is correlated with uterine insulin-like growth factor levels during preimplantation development Molecular Reproduction and Development 37 1-11

Liu J-P, Baker J, Perkins AS, Robertson EJ and Esfratiadis A (1993) Mice carrying null mutations of the genes encoding insulin-like growth factor I (IGF-I) and Type 1 IGF receptor (IGF1r) Cell 75 59-72

Liu SH, Tuo W and Bazer FW (1996) Expression of keratinocyte growth factor receptor mRNA in porcine endometrium Biology of Reproduction 54 (Supplement 1) 76

Malathy P-V, Imakawa K, Simmen RCM and Roberts RM (1990) Molecular cloning of the uteroferrin-associated protein, a major progesterone-induced serpin secreted by the porcine uterus, and the expression of its mRNA during pregnancy Molecular Endocrinology 4 428-440

Margolius HS (1996) Kallikreins and kinins: molecular characteristics and cellular and tissue responses Diabetes 46 S14-S19

Mattson BA, Overstrom EW and Albertini DF (1990) Transitions in trophoderm cellular shape and cytoskeletal organization in the elongating pig blastocyst Biology of Reproduction 42 195-205

Michel PJ, Fliss ME, Bazer FW and Simmen RC (1992) Characterization and developmental expression of binding sites for the transplacental iron transport protein, uteroferrin, in fetal hematopoietic tissues Biology of the Neonate 61 82-91

Patten BM (1931) The Embryology of the Pig pp 37-59 P. Blakiston's Son and Co., Philadelphia

Prigent SA and Lemoine NR (1992) The type I (EGF-related) family of growth factor receptors and their ligands Progress in Growth Factor Research 4 1-24

Pusateri AE, Rothschild ME, Warner CM and Ford SP (1990) Changes in morphology, cell number, cell size and cellular estrogen content or individual littermate pig conceptuses on days 9 to 13 of gestation Journal of Animal Science 68 3727-3735

Roberts RM, Bazer FW, Baldwin N and Pollard WE (1976) Progestrone induction of lysozyme and peptidase activities in the porcine uterus Archives of Biochemistry and Biophysics 177 499-507

Ross AC (1991) Vitamin A: current understanding of the mechanisms of action Nutrition Today 1 6-12

Samuel CA and Perry JS (1972) The ultrastructure of the pig trophoblast transplanted to an ectopic site in the uterine wall Journal of Anatomy 113 139–149

Simmen FA, Simmen RCM, Geisert RD, Martinal-Botte F, Bazer FW and Terqui M (1992b) Differential expression, during the estrous cycle and pre- and postimplantation conceptus development, of messenger ribonucleic acids encoding components of the pig uterine insulin-like growth factor system Endocrinology 130 1457–1546

Stallings-Mann ML, Burke MC, Trout WE and Roberts RM (1994) Purification, characterization, and cDNA cloning of a kunitz-type protease inhibitor secreted by the porcine uterus Journal of Biological Chemistry 269 24090–24094

Stewart CL (1994) Leukaemia inhibitory factor and its type 1 inhibitor are regulated by retinoic acid Journal of Biological Chemistry 269 24090–24094

Trout WE, McDonnell JJ, Kramer KK, Baumbach GA and Roberts RM (1991) The retinol binding protein of the expanding pig blastocyst: molecular cloning and expression in trophoderm and embryonic disc Molecular Endocrinology 5 1533–1540

Trout WE, McDonnell J, Kramer KK, Baumbach GA and Roberts RM (1992) Steroid regulation of the synthesis and secretion of retinol-binding protein by the uterus of the pig Endocrinology 130 2557–2564

Trout WE, Smith GW, Gentry PC, Calvin JM and Kessler DH (1995) Oxytocin secretion by the endometrium of the pig during maternal recognition of pregnancy Biology of Reproduction 52 (Supplement 1) 188

Vaughan TJ, James PS, Pascall JC and Brown KD (1992) Expression of the genes for TGFα, EGF and the EGF receptor during early pig development Development 116 663–669

Yelich JV, Pomp D and Geisert RD (1997a) Ontogeny of elongation and gene expression in the early developing porcine conceptuses Biology of Reproduction 57 1256–1264

