Peripheral and intragonadal actions of inhibin-related peptides

J. K. Findlay, I. J. Clarke, M. R. Luck*, R. J. Rodgers, L. Shukovskii,
D. M. Robertson†, R. Klein†, J. F. Murray‡, R. J. Scaramuzzis§,
B. M. Bindon¶, T. O'Shea‖, C. G. Tsonis** and R. G. Forage**

Prince Henry's Institute of Medical Research, PO Box 118, South Melbourne, Victoria 3205, Australia; †Department of Anatomy, Monash University, Clayton, Victoria 3168, Australia; ‡Department of Animal Science, University of Sydney, Sydney, NSW 2006, Australia; §CSIRO- Division of Animal Production, Blacktown, NSW 2148, Australia; ¶CSIRO Division of Animal Production, Armidale, NSW 2350, Australia; ‖Department of Physiology, University of New England, Armidale, NSW 2351, Australia; and **Biotech Australia Pty Ltd, PO Box 20, East Roseville, NSW 2069, Australia

Keywords: inhibin; activin; follistatin; αN peptide; ovary; follicle; corpus luteum

Introduction

Inhibin is a glycoprotein hormone consisting of two dissimilar, disulphide-linked subunits, termed α and β, which inhibits the synthesis and/or secretion by the pituitary of gonadotrophins, preferentially FSH (Burger, 1988). When we reviewed the physiology of inhibin in ruminants at the previous meeting on reproductive physiology in domestic ruminants (Findlay & Clarke, 1987), inhibin had only recently been purified from bovine follicular fluid and its cDNA primary sequence deduced by cloning methods. This paper reviews recent progress during which time considerable advances have been made in our understanding of the physiology of inhibin as a peripheral hormone controlling FSH secretion and the use of inhibin as a fecundity vaccine. We also discuss a number of inhibin-related peptides which have been isolated only recently, some of which have intraovarian actions of potential importance. The fact that this review is limited to the physiology of inhibin in domestic ruminants should not detract from the important contribution made from investigating other species such as the rat, pig and human (see Ying, 1988; de Kretser & Robertson, 1989).

Isolation and characterization of inhibin-related peptides

Inhibin has been purified to homogeneity from follicular fluid of the cow (Robertson et al., 1985, 1986; Fukuda et al., 1986; Knight et al., 1987) and sheep (Leversha et al., 1987), and from ovine rete testis fluid (Bardin et al., 1987), and shown to be composed of two disulphide-linked subunits, termed α and β. Two molecular weight forms of bovine inhibin have been isolated (Mr 31 000 and Mr 58 000), consisting of either an Mr 20 000 α-subunit (αC) or an extended Mr 43 000 α-subunit (α-43) and an Mr 15 000 β-subunit (Robertson et al., 1985, 1986) (Fig. 1). Two molecular weight forms of inhibin in ovine follicular fluid have also been described (Mr 32 000 and Mr 67 000; Leversha et al., 1987), and larger molecular weight forms have been identified in bovine follicular fluid (Mr 65 000, 88 000, 108 000, 120 000; Miyamoto et al., 1986). Based on the cDNA structures of

*Present address: University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK.
J. K. Findlay et al.

the inhibin subunits (see Ying, 1988), these higher molecular weight inhibins are likely to be dimers of various sized fragments of the subunit precursors. Activin, consisting of two β-subunits, has been isolated from bovine follicular fluid and purified to homogeneity (McLachlan et al., 1987). In contrast to inhibin, activin stimulates FSH secretion by the pituitary, and it has local actions in the gonad (Findlay et al., 1990a).

![Diagram of inhibin and activin subunit structures]

Fig. 1. The subunit structures of inhibin, derivatives of the α-subunit and activin.

Three inhibin genes have been identified so far; namely, the α gene and two β genes, termed βA and βB, coding from two forms of inhibin (αβA, αβB) and activin (βAβB, βAβB) (see Ying, 1988). Unlike the human, rat and pig (see Ying, 1988), only the α and βA genes are expressed in detectable amounts in ruminants, since no βB subunit sequence (Robertson et al., 1985, 1986; Leversha et al., 1987; Knight et al., 1987; Bardin et al., 1987) or cDNA (Forage et al., 1986; Crawford et al., 1987) has been identified in sheep or cattle. The βB subunit gene has been identified in the ovine genome (Crawford et al., 1987; Rodgers, 1989) and shows high homology (> 90%) with the rat, human and pig βB genes (R. J. Rodgers, unpublished observations). Southern analysis of the sheep genome revealed one α and βA gene (Crawford et al., 1987) and evidence for 6 other βA-related genes, one of which is the ovine βB gene (Rodgers, 1989).

An excess of α over βA mRNAs has been detected in cow (Forage et al., 1986; Torney et al., 1989; Rodgers et al., 1989) and sheep (Crawford et al., 1987; Rodgers et al., 1989) ovaries and sheep testes (Crawford et al., 1987; Bardin et al., 1987). RNA from sheep adrenal and placenta, but not kidney, pituitary or liver, also hybridized with α-subunit cDNA, and there was also detectable βA mRNA in ovine placenta but not in the other tissues tested (Crawford et al., 1987). There have been no reports of expression in brain or bone marrow of ruminants, tissues which express the inhibin genes in rats (Meunier et al., 1988).

Additional proteins related to the α-subunit of inhibin have been identified in bovine follicular fluid (Sugino et al., 1989; Robertson et al., 1989; Knight et al., 1989) (Fig. 1). A Pro-αC subunit (M, 27,000) was shown to consist of two subunits (M, 20,000 and M, 6000), suggesting a disulphide linkage (Sugino et al., 1989; Robertson et al., 1989). The two subunits, based on their molecular masses and N-terminal amino acid sequences, are consistent with the pro-region of the α-subunit precursor sequence and the αC sequence, respectively. Pro-αC is immunologically but not biologically active in inhibin assays and is likely to be present in follicular fluid (Robertson et al., 1989; Sugino et al., 1989). A second protein (αN) (Fig. 1) was identified as an M, 24,000 non-reducible protein with an N-terminal amino acid sequence identical to the α43 subunit (Robertson et al., 1989). The α43 subunit (αN + αC) is cleaved to form the αC subunit (M, 20,000) and αN. The αN
Peripheral and intragonadal actions of inhibins

141

protein has no inhibin immuno- or bioactivity (Robertson et al., 1989) but has other actions in the ovary (Findlay et al., 1989a; see also below). A third protein, described by Knight et al. (1989), is an M, 25–26 000 form of the inhibin α-subunit isolated from bovine follicular fluid and is present in ovarian venous plasma of the cow but not the sheep. The relationship between this protein and Pro-αC (Robertson et al., 1989; Sugino et al., 1989) is not clear at present.

Another class of proteins, termed follistatin (Ueno et al., 1987) or FSH-suppressing protein (FSP; Robertson et al., 1987), has been isolated from pig and cow follicular fluids. Bovine FSP consists of 3 proteins (M, 31 000, 35 000 and 39 000) with identical N-terminal amino acid sequences all of which have inhibin-like activity but are structurally distinct from inhibin. The pig FSPs are products of a single gene and arise by gene splicing (Esch et al., 1987). The inhibin-like biological activities, based on in-vitro pituitary cell assays, range from 5–10% (bovine) to 30% (pig) that of inhibin. Bovine FSP can modulate FSH-induced differentiation of rat granulosa cells (Xiao et al., 1990), consistent with a local action in the ovarian follicle (Findlay et al., 1990a). FSP has recently been shown to act as a binding protein for activin (Nakamura et al., 1990). FSP is also a product of stellate cells derived from the bovine pituitary gland (Gospodarowicz & Lau, 1989), suggesting a possible paracrine role to control FSH release by gonadotrophs (Allaerts & Denef, 1989).

Development and application of radioimmunoassays for inhibin

Radioimmunoassays have been described for ovine (Schanbacher, 1988; McNeilly et al., 1989; Findlay et al., 1990b) and bovine (McLachlan et al., 1986; Hasegawa et al., 1987; Schanbacher, 1988) inhibin, using either antisera directed against N-terminal fragments of the α-subunit (Schanbacher, 1988; McNeilly et al., 1989) or against purified bovine M, 32 000 inhibin (McLachlan et al., 1987; Hasegawa et al., 1987; Findlay et al., 1990b).

Hasegawa et al. (1987) measured parallel increases in peripheral concentrations of inhibin and oestradiol after FSH treatment of cows; inhibin decreased after the peak of the preovulatory LH surge. Data across the oestrous cycle were presented for only 1 cow. Inhibin concentrations rose during the luteal phase, fell after luteolysis, reaching a nadir before the onset of the preovulatory surge of LH, and then rose again during ovulation and for the 2–3 days thereafter. Inhibin concentrations appeared to be inversely related to oestradiol values and were unrelated to the pattern of FSH in peripheral plasma.

We measured inhibin in peripheral and ovarian venous blood of ewes during the oestrous cycle (Findlay et al., 1990b). There was very little hour-to-hour variation in inhibin concentrations in peripheral blood. During the follicular phase, inhibin in the ovarian vein appears to be secreted in pulses coincident with the pulses of androstenedione that follow LH pulses (Murray et al., 1989a). Inhibin in follicular fluid was 10 4-fold higher than that in ovarian venous plasma, which was 3-fold higher than that in peripheral plasma. Cautery of visible follicles resulted in a 35% reduction in inhibin and an 81% reduction in oestrogen concentrations in the ovarian vein within 10 min, confirming that the ovarian follicle is the major, if not the only, source of inhibin in the sheep ovary. The continued secretion of inhibin after cautery is most probably coming from small follicles below the surface of the ovary which escaped cautery. During the luteal and follicular phases of the cycle, inhibin and FSH were inversely related (r = –0.69 and –0.45, respectively, P < 0.001). Inhibin and LH were not related in the luteal phase but were positively correlated in the follicular phase (r = 0.31, P < 0.01). Inhibin and oestrogen concentrations in the follicular phase were also correlated (r = 0.30, P < 0.01). Furthermore, inhibin concentration approximately doubled across the follicular phase and decreased within 3–6 h of the preovulatory surges of gonadotrophin, reaching a nadir around the time of the second rise in FSH 24–28 h later (Figs 2 & 3).

McNeilly et al. (1989) measured inhibin concentrations and secretion rates during the oestrous cycle of ewes with ovarian transplants, and Mann et al. (1989a) applied the same inhibin assay to
Fig. 2. Peripheral concentrations of FSH, LH and inhibin in a ewe after induction of luteolysis with cloprostenol at -62 h. (After Findlay et al., 1990b.)

Fig. 3. Mean ± s.e.m. concentrations of hormones in 6 ewes after induction of luteolysis with cloprostenol. (After Findlay et al., 1990b.)
Peripheral and intragonadal actions of inhibins

143

samples of ovarian vein and peripheral plasma of ewes under anaesthesia. The patterns of inhibin described by this group are different from our data. They observed no significant changes in inhibin concentrations in ovarian and peripheral plasma and/or in secretion rates after luteolysis; their observations using a bioassay showed that inhibin secretion either decreased (Tsonis et al., 1988a) or did not change (Mann et al., 1989a). They did not find a correlation between inhibin and oestradiol, and after the LH surge inhibin concentrations either remained constant or appeared to increase. On the other hand, neither assay detected inhibin immunoreactivity in ovariecotomized ewe plasma, and the 2-6-fold differences between ovarian and jugular venous concentrations are in good agreement. Both assays measured an increase in inhibin after treatment with FSH preparations (FSH: McNeilly et al., 1989; PMSG: Murray et al., 1989a, b).

The reasons for the differences in patterns of inhibin measured by the two assays are not clear. Using a value of 1 pg peptide standard equivalent to approximately 4 mU ovine rete testis fluid inhibin standard (McNeilly et al., 1989; Campbell et al., 1989), the concentrations measured by the peptide fragment assay are approximately 3-10-fold higher than our values. To what extent this represents differences in cross-reactivity with the various molecular weight forms of inhibin and its α-subunit is not known. The peptide fragment assay does generate values of immunoreactive inhibin which show a consistently good correlation with bioactivity (r = 0.71-0.80; McNeilly et al., 1989; Campbell et al., 1989; Mann et al., 1989a) and Mann et al. (1989a) found no significant differences in the B/I ratio between the luteal and follicular phases. Another reason for the different results between the two radioimmunoassays could relate to the breed of sheep studied. For example, we have recently shown that inhibin concentrations in peripheral blood of ewes carrying the F (fecundity) gene (Booroola) are significantly lower than in control ewes, whereas ewes selected for multiple births (T flock) have higher inhibin concentrations (B. M. Bindon, M. A. Hillard, L. R. Piper, J. K. Findlay, unpublished observations).

The metabolic clearance rate (MCR) of immunoreactive inhibin has been calculated to be 21 (McNeilly et al., 1989) and 43 (Mann et al., 1989a) ml/min in intact ewes. We have calculated the half-life (t1/2) values of the first component after injection of bovine follicular fluid (20 min), pure bovine inhibin (25 min) and human recombinant inhibin (16 min) into ovariecotomized ewes. The t1/2 values for these first components were similar, and in reasonable agreement with the MCR values. Immunoreactive inhibin remained detectable for up to 4 h after injecting the pure inhibins into ovariecotomized ewes and up to 10 h after injecting follicular fluid. This indicates that there was a second component of inhibin activity in follicular fluid, some effect of follicular fluid on inhibin metabolism, or the presence of a binding protein in follicular fluid (Findlay et al., 1986; Tsonis et al., 1986).

Sites of gene expression and production in the ovary

Northern blot analyses (Rodgers et al., 1989) and in-situ hybridization studies (Torney et al., 1989) showed that α and βα inhibin gene expression occurs in follicles but not in fully developed cyclic or pregnancy corpora lutea, or in ovarian stromal tissues of sheep and cattle. The levels of α inhibin mRNA are much greater than βα inhibin mRNA in ovine and bovine follicles (Rodgers et al., 1989). Therefore, the βα inhibin genes are either expressed at a much lower rate or the βα-inhibin mRNA has a much shorter half-life relative to that of α-inhibin mRNA, suggesting that inhibin production may be regulated largely by the availability of βα inhibin mRNA in follicles. The data also suggest that there is independent regulation of the subunits. This proposition is supported by an in-situ hybridization study (Torney et al., 1989) in which the α-subunit mRNA was detected in granulosa cells of bovine follicles ≥ 0.36 mm diameter (excluding the theca), whereas βα-subunit mRNA was only detectable in follicles ≥ 0.80 mm. The study also demonstrated that very small bovine antral and preantral follicles (< 1.4 mm) were capable of expressing mRNA for inhibin. Torney et al. (1989) also noted expression of α-subunit mRNA in theca cells of bovine follicles ≥ 0.80 and ≤ 3.00 mm in diameter, but not in large preovulatory follicles (15 and 20 mm). The
significance of this expression of α-inhibin mRNA in the theca is not understood. There was also evidence that expression of inhibin mRNA was more intense in periantral granulosa cells (Torney et al., 1989), confirming an immunohistochemical study of inhibin localization in pig and cattle ovaries (Rokukawa et al., 1986).

Studies on the effects of electrocautery on bioactive inhibin secretion in ovarian lymph (Findlay et al., 1986), and measurements of secretion rates of immuno- (Scaramuzzi et al., 1989; Mann et al., 1989a) and bio- (Mann et al., 1989a) active inhibin mRNA in the theca is not understood. There was also evidence that expression of inhibin mRNA was more intense in periantral granulosa cells (Torney et al., 1989), confirming an immunohistochemical study of inhibin localization in pig and cattle ovaries (Rokukawa et al., 1986).

Studies on the effects of electrocautery on bioactive inhibin secretion in ovarian lymph (Findlay et al., 1986), and measurements of secretion rates of immuno- (Scaramuzzi et al., 1989; Mann et al., 1989a) and bio- (Mann et al., 1989a) active inhibin mRNA in the theca is not understood. There was also evidence that expression of inhibin mRNA was more intense in periantral granulosa cells (Torney et al., 1989), confirming an immunohistochemical study of inhibin localization in pig and cattle ovaries (Rokukawa et al., 1986).

Studies on the effects of electrocautery on bioactive inhibin secretion in ovarian lymph (Findlay et al., 1986), and measurements of secretion rates of immuno- (Scaramuzzi et al., 1989; Mann et al., 1989a) and bio- (Mann et al., 1989a) active inhibin mRNA in the theca is not understood. There was also evidence that expression of inhibin mRNA was more intense in periantral granulosa cells (Torney et al., 1989), confirming an immunohistochemical study of inhibin localization in pig and cattle ovaries (Rokukawa et al., 1986).

Stress and the preovulatory rise in bioactive inhibin secretion in female sheep (Findlay et al., 1989b) suggest that the corpus luteum is responsible for the secretion of inhibin by the ovary at all stages of the oestrous cycle, and that the corpus luteum secretes little or no immunoreactive or bioactive inhibin. This agrees with earlier reports (Tsonis et al., 1988a, b) that the sheep corpus luteum secreted bioactive inhibin has therefore been refuted on the grounds mentioned above and also because of possible breed differences and confounding effects of previous treatments of the animals used in that study (Mann et al., 1989a). Likewise in cattle, the corpus luteum do not produce bioactive inhibin in vitro (Henderson & Franchimont, 1981, 1983), consistent with the lack of expression of the α and β₃₃-subunit genes in bovine corpora lutea (Rodgers et al., 1989; Torney et al., 1989). However, Rodgers et al. (1989) showed that, during the transition from follicle to early corpus luteum (Stage 1), there was differential regulation of expression of the inhibin genes in that α-subunit mRNA was detected in Stage 1 corpora lutea whereas β₃₃-subunit mRNA was not. This agrees with earlier observations on the secretion of bioactive inhibin (Henderson & Franchimont, 1981) by bovine granulosa cells in vitro which fell rapidly after the first day in culture, and was generally not detectable thereafter (but see Franchimont et al., 1986). Using bovine granulosa cells in serum-free cultures, Luck et al. (1990) observed the fall in inhibin, measured by immunoassay, but found that immunoreactive inhibin remained measurable for up to 4 days in culture. This correlated with continued expression of the α-subunit mRNA in the luteinized granulosa cells, albeit at a much lower level than in freshly harvested cells. The β₃₃-subunit mRNA fell to non-detectable levels over the same period. The antisera used cross-reacts with Pro-αC (Robertson et al., 1989) and continued expression of α-subunit mRNA would be consistent with production of Pro-αC or some other product (e.g. αC?) of the α gene which cross-reacts in the radioimmunoassay (except αN). Whether or not the products of expression of the α-subunit gene play a role during the follicular–luteal transition period is not known, except that αN may be involved in the process of ovulation (Findlay et al., 1989c).

The expression of the β₃₃ subunit gene by ruminant granulosa cells (Rodgers et al., 1989; Torney et al., 1989; Luck et al., 1990) implies that these cells are the only source of activin in the ovary. The definitive experiments showing production of biologically active activin by granulosa cells have not been reported, due largely to the difficulties in measuring activin.

Our knowledge about the site(s) of production of FSP in the ovary is fragmentary. FSP was isolated from follicular fluid (cattle: Robertson et al., 1987; pig: Ueno et al., 1987), and the gene has been characterized from cDNA libraries derived from pig (Esch et al., 1987) and rat (Shimasaki et al., 1989) ovarian mRNA indicative of mRNA production. PMSG treatment of immature rats increased ovarian FSP mRNA levels and in-situ hybridization studies showed that the FSP mRNA expression was low in primordial follicles, but dramatically increased in the granulosa cells of secondary and tertiary follicles and then decreased in mature preovulatory follicles (Shimasaki et al., 1989). The rat FSP mRNA was not detected in theca, stroma or interstitial cells, and some rat corpora lutea showed slight hybridization. Granulosa cells from preovulatory bovine follicles produce immunoreactive FSP in vitro (R. Klein, D. M. Robertson, L. Shukovski, J. K. Findlay & D. M. de Kretser, unpublished observations).

Control of ovarian production of inhibin-related peptides

FSH and PMSG increase the ovarian content (Cahill et al., 1985) and ovarian vein secretion rate of inhibin bioactivity (Tsonis et al., 1989) and immunoreactivity in sheep (McNeilly et al., 1989;
Murray et al., 1989a, b). There is indirect evidence that the increasing inhibin production by the dominant follicles in the follicular phase of sheep is driven by LH in the face of falling concentrations of FSH (Findlay et al., 1990b). Inhibin secretion is pulsatile in sheep (McNeilly & Baird, 1989; Campbell et al., 1989; Murray et al., 1989a) and may be related to the LH pulses in the follicular phase (Murray et al., 1989a), although Campbell et al. (1989) were unable to establish a direct relationship between LH pulses (exogenous or endogenous) and inhibitin secretion in anoestrous ewes. Evidence from rat granulosa cells shows that low doses of LH can stimulate inhibin production, provided that the cells have been exposed to FSH, whereas luteinizing doses of LH will inhibit inhibin production (Zhiwen et al., 1988). The fact that inhibin concentrations fall after the preovulatory surge of LH in ewes (Findlay et al., 1990b) is consistent with the latter observation and the loss of \(\beta \)-inhibin mRNA at this time (Rodgers et al., 1989; Torney et al., 1989; Luck et al., 1990), and would allow the second rise in FSH to occur.

Both systemic and arterial infusions of epidermal growth factor (EGF) at the time of progesterone sponge withdrawal resulted in a significant reduction in inhibin secretion rate in the early and late follicular phase in ewes (Murray et al., 1989b). Oestradiol (but not androstenedione) secretion rate was also reduced by EGF treatment, implying that the site of action of EGF on production of inhibin was the granulosa cells. This supports earlier work showing an inhibitory action of EGF on inhibin production by bovine granulosa cells in vitro (Franchimont et al., 1986).

Earlier studies on production of bioactive inhibin by bovine granulosa cells suggested that androgen may regulate its secretion (Henderson & Franchimont, 1981, 1983). Luck et al. (1990) showed that treatment of bovine granulosa cells with 5 nM-5 \(\mu \)M testosterone, in the presence or absence of serum, had no effect on production of immunoreactive inhibin. Treatment with amino-glutethimide inhibited steroidogenesis but had no effect on inhibin secretion. It remains possible that the effects of testosterone on inhibin bioactivity observed by Henderson & Franchimont (1981, 1983) reflect changes in activin and FSH rather than inhibin production.

Although inhibin production by bovine (Henderson & Franchimont 1981, 1983; Luck et al., 1990) and ovine (Campbell, 1989) granulosa cells can be demonstrated during the first 24 h in vitro, the quantities produced thereafter are severely reduced. Serum supplementation was recommended by Henderson & Franchimont (1981, 1983), but Campbell (1989) has shown that insulin will stimulate inhibin production by ovine granulosa cells. Insulin was included in the serum-free medium used by Luck et al. (1990). Nevertheless, a decline in inhibin production still occurred after the first 24 h, suggesting other factors were controlling the synthesis and secretion of inhibin. This may be related to the propensity of ruminant granulosa cells to luteinize spontaneously in culture and, concomitantly, turn off the expression of \(\beta \)-inhibin mRNA (Rodgers et al., 1989; Luck et al., 1990).

We investigated the role of activin during the transition from preovulatory to luteinized granulosa cells (Shukovski & Findlay, 1990). Using differentiated bovine granulosa cells in a serum-free medium that included insulin, we showed that bovine activin (\(\beta A\beta_4 \)) had a time and dose-dependent (1-100 ng/ml; 0.04-4 nmol/l) inhibitory effect on progesterone and oxytocin production, markers of luteinization (Fig. 4). This is consistent with a role for activin as a local regulator capable of preventing the onset of luteinization. However, activin was unable consistently to prevent the fall in inhibin (or oestrogen) production by these cells over 72 h (L. Shukovski & J. K. Findlay, unpublished observations), suggesting that other factors stimulate the expression of the inhibin genes and/or the post-translational control of assembly of the \(\alpha \)- and \(\beta \)-subunits in vitro. There are increasing numbers of local factors which have stimulatory or inhibitory actions on differentiation of rat granulosa cells (see Carson et al., 1989; Findlay et al., 1990c) which could be involved.

Mechanism of action of inhibin

In-vivo administration of material with inhibin activity decreased the production of mRNA for the \(\beta \)-subunit of FSH in the pituitary gland of sheep (Mercer et al., 1987) and cattle (Beard et al., 1989).
Fig. 4. The dose–response effects of bovine activin-A and control buffer (EE) on (a) oxytocin and (b) progesterone production by bovine granulosa cells on Day 4 in serum-free culture. (After Shukovski & Findlay, 1990.)

and also caused a decrease in circulating concentrations of FSH (sheep: see Findlay et al., 1987; cattle: Beard et al., 1989). That this action is due to \(M, 31–32 \ 000 \) inhibin has been demonstrated by the ability of purified bovine inhibin to suppress FSH secretion in sheep (Findlay et al., 1987). FSH concentrations in ovariectomized ewes are suppressed by human recombinant inhibin in a dose-dependent manner (J. K. Findlay, B. Doughton, D. Poole, D. M. Robertson & R. G. Forage, unpublished observations). None of these purified preparations appeared to influence LH secretion in sheep.

Martin et al. (1988) have described a significant synergistic interaction between oestradiol and inhibin, given to ovariectomized ewes in the form of charcoal-treated bovine follicular fluid, on plasma concentrations of FSH. Progesterone had little effect. We have confirmed this synergistic interaction of oestradiol and inhibin in ovariectomized ewes, using a similar treatment protocol (J. K. Findlay, B. Doughton & D. Poole, unpublished observations). It now needs to be demonstrated that this interaction occurs between oestradiol and preparations of purified inhibin. A more difficult question concerns the relative importance of inhibin and oestradiol in controlling FSH secretion. Mann et al. (1989a) consider that, during the follicular phase, oestradiol is the more important feedback regulator of FSH. This is supported to some extent by the effects of immunization against inhibin when it has been shown that FSH concentrations increase but mainly in the late luteal phase, rather than in the follicular phase (Al-Obaidi et al., 1987; Findlay et al., 1989b; O'Shea et al., 1989a; Mann et al., 1989b). Nevertheless, our data showing increased oestradiol and inhibin concentrations in the follicular phase of the ewe (Findlay et al., 1990b), together with the synergistic interaction of the two hormones on FSH (Martin et al., 1988), suggest that further experimentation will be required to resolve the issue.

The fact that FSH concentrations can rise in response to active immunization of sheep against various inhibin immunogens (see Forage et al., 1990) also accords with the physiological role of inhibin as a feedback regulator of FSH. The FSH response to active immunization has been variable, and is often small, and appears to depend on the type of immunogen. Passive immunization of ewes in the luteal phase against inhibin also led to increased concentrations of FSH (Mann et al., 1989b). The FSH response to immunization against inhibin may depend on the degree to which its secretion is being controlled by oestradiol and inhibin at the time of measurement of FSH.
Immunization against a synthetic peptide fragment of the α-subunit of inhibin decreased basal (O'Shea et al., 1989b) and GnRH-stimulated LH release (Wrathall et al., 1990), whereas basal LH was increased in ewes immunized against a monoclonal antibody purified fraction of pig follicular fluid (O'Shea et al., 1989b). These are the only inhibin immunization studies which have demonstrated any effects on LH secretion (see Forage et al., 1990). Whether or not they represent a direct action of inhibin on pituitary LH release or indirect effects via FSH stimulating ovarian steroid production is not known. In-vitro studies using sheep pituitary cells have shown that preparations of pig inhibin enhance GnRH-induced LH release (Huang & Miller, 1984), whereas with rat pituitary cells in vitro inhibin is equipotent in inhibiting GnRH-induced FSH and LH release (Farnworth et al., 1988). One is led to conclude, in the absence of other data, that there may be species differences with respect to the role of inhibin on LH release.

Local action and physiological role of alpha N peptide

We addressed the question of the role of αN by immunizing sheep against bovine αN. This resulted in impaired fertility, reflected in significantly fewer lambs born per ewe mated (Findlay et al., 1989a, c). This decrease in fertility could not be attributed to changes in circulating concentrations of inhibin (the antisera do not recognize inhibin of M, 32 000), progesterone, or basal or GnRH-stimulated LH or FSH (there was a significant increase in basal FSH concentrations in the luteal phase of immunized ewes which could not explain the results) during the ovarian cycle. Nor could it be attributed to a decrease in the number of corpora lutea per ewe, indeed, immunization with a different αN fusion protein resulted in an increase in the number of corpora lutea but a decrease in the number of lambs born was still observed (Findlay et al., 1989c). We then examined whether or not the ewes were ovulating. In control ewes, immunized against adjuvants alone, the egg recovery rate, based on the number of corpora lutea on the ovary, was 76% and the fertilization rate was 73%. The majority of eggs were at the 8-cell stage (range 4–16 cells). In ewes immunized against αN, the egg recovery rate was only 17%, and of those 7 eggs, 2 were fertilized (29%) and were at the 4-cell and 16-cell stage of development, similar to eggs from control ewes. In addition, the corpora lutea on ovaries of immunized ewes had the appearance of luteinized unruptured follicles. Overall, the data are consistent with a failure of ovulation in immunized ewes. We suggest that αN is acting locally to facilitate the process of ovulation.

Practical aspects

If the major action of inhibin is to act as a negative feedback regulator of FSH, it follows that attenuation of its biological activity through immunization should lead to an increase in circulating concentrations of FSH and a consequent increase in ovulation rate which in turn should lead to increased litter size. These effects have all been observed in sheep immunized against inhibin and increases in ovulation rate have also been observed in cattle (see Forage et al., 1990). Two groups have now demonstrated that a single immunization of ewes against either a synthetic peptide conjugate or monoclonal antibody-purified bovine inhibin (O'Shea et al., 1989b) or recombinant bovine α-inhibin fusion protein (Tsonis et al., 1989) was sufficient to produce a 1.8–2.2-fold increase in ovulation rate, and a 1.6-fold increase in litter size (Tsonis et al., 1989). Immunization against inhibin does not appear to change the length of the oestrous cycle, the expression of oestrus or seasonal anoestrous patterns, indicating that the method is unlikely to be useful for inducing out-of-season breeding of sheep. Another practical application now under investigation is the use of inhibin vaccines, either alone or in combination with other methods, in superovulation regimens. O'Shea et al. (1984) have shown that it is possible to advance puberty in Merino ewe lambs by immunization against inhibin. We have demonstrated a similar effect of immunizing Merino ewe lambs against the bovine α-inhibin fusion protein on onset of puberty (T. O'Shea, B. M. Bindon, C. G. Tsonis, R. G. Forage & J. K. Findlay, unpublished observations).
The application of this technology to cattle is not as advanced as in the sheep (see Forage et al., 1990). It has proved difficult to obtain a consistent immune response of cows to inhibin, with the most promising immunogen being an immunoaffinity purified preparation of sheep follicular fluid, which caused 7/7 cows to respond with a mean ovulation of 11-6 compared to a control rate of 1-0 (Bindon et al., 1988).

Nevertheless, the results demonstrated that immunization against inhibin has potential commercial applications to increase productivity. To achieve the potential benefits of this technology, modifications to existing management practices and good animal husbandry will be necessary.

We thank Sue Panckridge and Faye Coates for help with the manuscript; and the National Health & Medical Research Council of Australia, the Australian Meat & Livestock Research & Development Corporation, the Queen Elizabeth II Fellowship Scheme (R.J.R.), the Commonwealth Scholarships Scheme (L.S.) and Biotech Australia Pty, Ltd, for financial support.

References

