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Recent publication of the sequence of the pig genome allows for faster 
and more accurate selection for traits expressed late in life, sex limited or 
difficult to measure. Especially reproduction and adaptation traits fall in 
this category. Existing genetic variation in reproduction traits is substantial 
and polygenic selection has resulted in genetic trend of around half a 
piglet per sow per year. A very significant increase in genetic trend is 
anticipated through genomic selection. Genomic selection capitalizes 
mainly on Mendelian sampling, variation between full sibs is half of 
the total genetic variation; estimation of genetic merit based on markers 
yields, because of quantification of this Mendelian sampling, far higher 
accuracies then on the basis of parental average. For both polygenic and 
genomic selection, application appears to follow theory.  Current research 
focuses of application of full sequence per animal, on non-additive genetic 
effects, and on genomic testing of embryos in order to increase selection 
intensity. Gradually traits relating to genotype-environment interactions 
will be added to the selection index, using genomic based methods.

Introduction

Genetic variation helps a population to adapt to changing environments. A population adapts its 
reproductive performance to a level which can be sustained given available resources. Pork production 
systems lower cost price by increasing reproduction and minimizing resource constraints through 
more and better feed, improved climate control and reduction of disease challenges. Pig breeding 
organizations have exploited genetic variation in reproductive traits by applying selection programs 
and extensive data recording systems for several decades now (Dekkers et al., 2011). Pigs have been 
selected based on quantitative polygenic assumptions for the traits of interest. This selection has been 
quite successful, but has led to noticeable changes in the physiology of the sow (Foxcroft, 2012). The 
publication of the porcine genome (Groenen et al., 2012) creates the potential for a much higher 
genetic trend in existing and in new reproduction traits. 

Goals of this paper are (1) to quantify the basics of genetic selection for reproductive traits; (2) 
explore potential changes in reproduction traits through the application of genomic techniques; 
and (3) explore the role of  genetic variation under challenged environmental conditions.

Basics of genetic change

Genetic variation

Litter size, total number born piglets per litter, can vary between zero and thirty. The litter size 
at a farm  depends upon environment, parity, season, nutritional status etc.  After correction for 
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these effects the residual standard deviation is around 3.2. Phenotypic variance is then 10 and 
heritability, the ratio between genetic and phenotypic variance, is close to 0.10. Genetic variance 
is therefore (around) 1.0 and genetic standard deviation (σH) is, consequently, around 1.0 too.

Polygenic  selection

The basic formula to estimate genetic change per year reads:

∆𝐺𝐺
𝜎𝜎 ∗ 𝑟𝑟 ∗

Lyear
H IH

i

where i is selection intensity and L is generation interval (the average age at which the offspring 
is born). Let us assume, for the sake of simplicity that i=1 and L=1, a slightly optimistic view. 
Since, σH = 1, genetic trend equals accuracy. The accuracy of the estimate of the genetic 
quality of a candidate at the moment he or she is up for potential selection is denoted as rIH. 
Since the selection candidate does not have its own performance for reproduction at age of 
selection (around 6 months), this accuracy is half of the average accuracies of the sire and the 
dam at the moment of selection. The sire has a very low accuracy (around 0.1) at that time; 
no own performance for female reproduction and no daughters with a performance (yet). If 
the dam has multiple parities and daughters with own records, her accuracy is around 0.5 at 
that moment. Consequently genetic trend for litter size would then be (0.1 + 0.5)/2 = 0.30. 
Single trait genetic selection for litter size can therefore yield around 0.3 piglets total born per 
litter per year in a well-organized selection program. By chance this genetic change of 0.3 
pigs per year using the quantitative or polygenic approach also equals 0.3 genetic standard 
deviations in litter size.

Genomic  selection

The international swine genome sequencing consortium effort has led to the availability of 
large number of genetic markers (Single Nucleotide Polymorphisms). At this moment the 60k 
SNP chip is the most widely used marker set, with on an average, one genetic marker per 
50,000 base pairs. Comparison of the marker results with reproductive performance of a large 
number of well phenotyped sows yields information on regions of interest and on preferred 
SNP scores in those regions. Consequently, selection candidates can get a genetic evaluation 
without having an own performance and even without having known parents. The accuracy 
of this method should ideally go to 1 in the situation that the genetic markers explain all of the 
genetic variation. This accuracy of 1.0 is the holy grail for geneticists but currently lower since 
it is a function of the number of markers and the size and quality of the phenotypic training set, 
with a large number of assumptions. In the setting of pig improvement with a 60k SNP chip 
and 1,500 fifth parity sows in the training set, this accuracy tends to be around 0.5. 

If parental information is added to this 0.5, the total accuracy could be almost double the 
original accuracy of 0.3, and could therefore double the genetic trend. If training populations 
increase and/or chip densities increase or other improvements take place then there is even 
more space for further improvement (an accuracy of 0.9 could triple the current trend).

Applying selection to reproduction traits

Reproductive Traits

Pork production is about lowering the cost price of good quality meat. Cost price of a piglet is 
a relevant part of total cost price (around 25%). Increasing numbers of weaned piglets per sow 
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per year decreases the average cost price of a piglet. Selection for reproductive performance 
therefore starts with focus on litters per sow per year and piglets weaned per litter. Next in line 
are traits describing quality of piglets in terms of birth weight and uniformity in birth weight. 
Finally there is a group of traits describing longevity and adaptation to cope with challenges.

In the first two columns of Table 1 heritabilities (Bidanel, 2011) and genetic standard 
deviations (TOPIGS database) are given for a number of reproductive traits. According to the 
litter size example in the previous paragraph around 30% of a genetic standard deviation is 
feasible under single trait selection. Given the choice, litter size could increase by 0.3 pigs or 
litter mortality could decrease by 1.2% , or number of teats could increase by 0.20 teats or 
average birth weight by 30 g per year; or a combination of these traits, weighed by economic 
interest.

Polygenic selection

Column 3 of Table 1 presents estimates of realized genetic trends over the years 2007-2011 in 
reproduction traits based on breeding values from a multi trait analysis of TOPIGS dam lines. 
Genetic parameters were estimated according to analyses same or similar as in Hanenberg et al., 
2001. Results presented are the average trends of a Yorkshire and of a Landrace line, resulting in 
the best estimate for trends in the crossbred sow. Breeding values on litter size were estimated 
on 7.4 million farrowing records from 1.65 million sows. Birth weight and uniformity in birth 
weight were available on almost 597 thousand litters with individually weighed piglets, where 
uniformity was based on the within litter variation in birth weight,  including stillborn piglets. 
Nielsen B, Su G, Lund M & Madsen P 2013, unpublished, reported similar estimates for litter 
size, based on gilts only, over the past 7 years and based on piglets alive at day 5.

The last column in Table 1 gives the ratio of realized annual genetic trend to genetic standard 
deviation. In total, Table 1 shows the struggle for balanced breeding. The genetic trend in total 
number born with 0.07 standard deviations is quite far from the theoretical potential of 0.30. 

Table 1: Heritability estimates of reproduction traits with genetic standard deviations and genetic trends 
according to TOPIGS.

Description Heritability Genetic std σH
Genetic trend

Cumulative 2007-2011 Standardized/ year

Total number born, # 0.11 1.02 0.38 0.07

Stillborn piglets, # 0.07 0.34 -0.19 -0.11

Age first insemination, d 0.37 11 -11.86 -0.22

% prolonged interval1 0.22 16 -1.06 -0.01

Farrowing index, % 0.07 7.5 0.98 0.03

Litter mortality, % 0.05 2.83 -1.34 -0.09

Number of weaned piglets, # 0.08 1.93 0.67 0.07

Gestation length, d 0.31 0.75 -0.09 -0.02

Litter variation, g 0.08 30.3 -13.85 -0.09

Number of teats, # 0.45 0.68 0.92 0.27

Longevity, parities 0.09 0.48 0.15 0.06

Birth weight, kg 0.24 0.112 -0.06 -0.11

1 % prolonged interval from weaning to insemination
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However, the genetic trend in weaned piglets per litter (0.67 extra piglets weaned in 5 years 
time) is higher than the genetic trend in total born (0.38), indicating higher survival during the 
farrowing as well as lactation. Genetic trend in number of teats is higher than trend in piglets 
weaned per litter, giving more opportunity in terms of mothering ability of the sows. Number 
of teats appeals to society as society sees an extra teat for each piglet as very relevant. Genetic 
trends in farrowing rate and longevity were positive too.  If genetic trends for all traits are 
multiplied by their respective economic values the trend is a 2% reduction in cost price of a 
piglet, assuming the production and cost levels in 5 years time when the genes of these nucleus 
populations will be fully expressed at commercial level.

Selection pressure on birth weight was not high enough to prevent birth weight from 
decreasing during this time period. Litter variation (within litter standard deviation in birth 
weight), however, decreased almost 14 g in 5 years, creating more uniform piglets with better 
chances of survival.

Genomic selection

Two approaches for the use of genomic information are currently used. The first estimates the 
relationship between animals on the basis of SNP’s instead of using the average relationship 
between family members (that is 0.50 for full sibs, 0.25 for half sibs etc.), some half sibs are 
almost fullsibs, while others are more like first cousins. The second approach is to train a 
population, that is to genotype a well phenotyped population of animals and establish the 
relation between the genetic markers and the traits of interest. Young selection candidates 
can then be genotyped and their phenotype or their breeding value can be estimated from the 
genetic markers genotyped.

This training phase is referred to as Genome Wide Association Study. The goal is to find 
variation in traits linked to variation in genetic markers. An example of a GWAS plot is given 
in Figure 1, where the Y-axis has an indicator of significance (triangles indicating genome 
wide significance beyond any doubt) and the X-axis indicates the individual markers ordered 
by chromosome. Linkage equilibrium (LD), causes long stretches of base pairs to be inherited 
together without recombination; therefore, in single marker analyses more than one marker 
tends to give a significance signal in a specific interval. Schneider et al, 2012b used groups of 
5 consecutive SNP markers in a genome wide association study and identified a number of 

Figure 1. Genome Wide Association plot for mothering ability, the estimate of foster effect 
in a direct-foster model for piglet survival.
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chromosomal regions associated with reproduction traits. Fine mapping of these regions can 
even lead to identification of functional mutations to dramatically enhance the rate of genetic 
progress. 

Genetic variance explained by markers

Estimates of the marker effects can be used with their MAF (minor allele frequency) to estimate 
the variance explained by the specific marker. The sum of the variances of all relevant markers 
is indicative for the expected genetic trend using this set of markers.

In Table 2 variance components are given for some of the traits from Table 1. This table serves 
only as an example. The ratio between marker variance and phenotypic variance is typically 
lower than the polygenic heritability. Heritability estimated through polygenic variance is an 
unbiased estimate of the ratio between genetic variance present in the base population and 
phenotypic variance. Marker variance is estimated in the present population.

Loosely estimated the variance explained by the markers is around 55% of the variation 
found under polygenic analysis. Ideally this would be 100%, where all genetic variation is 
explained by individual markers. There are, at least, three reasons why this is not the case: (1) 
training populations are still limited in pig genomic work, 1,000-2,000 animals with relatively 
inaccurate phenotypes, (2) still low marker density, 60k relates to 1 marker per 50,000 base 
pairs, and (3) non additive effects such as dominance and epigenetic effects.

(1) limited populations. Genotyping is becoming cheaper at a faster rate than computer 
memory. (Pig) Breeding companies are finding efficient methods (imputation) to derive higher 
density genotyping for large numbers of animals, e.g. derive 60k from only 400 SNP’s (Huang 
et al., 2012). The sex of choice tends to be the female in pigs, with repeated records in terms 
of reproductive performance instead of offspring tested sires. In dairy cattle a number of 
countries  have formed a European consortium that aims to have 16,000 genotyped bulls with 
phenotyped daughters. 

(2) low marker density. With the pig genome being sequenced, millions of SNP’s are available 
for testing. 500-700k chips are becoming available. There is some reluctance in using them 
since full sequence of individual animals appears to be within reach at reasonable costs. First 
results in a number of countries did not yield promising results in increasing accuracy going 
from 50k to 700k in dairy cattle (general consensus at EAAP 2012).

Table 2: Estimates of explained variation by markers in relation to estimated polygenic variance.

Trait Source Phenotypic
Variance

Proportion explained 
by markers

Heritability

Total number born, # Schneider 1 9.05 0.04 0.09

Litter birth weight, kg 15.93 0.11 0.20

Total number born , # TOPIGS2 10.49 0.12 0.17

Average birth weight, kg 0.035 0.32 0.47

Litter variation, g 4670 0.05 0.19

Number of teats, # 0.8 0.19 0.39

Arbitrary Average 0.14 0.25

1Schneider et al., 2012a, estimated based on 1152 genotyped animals
2TOPIGS, estimated based on 1012 genotyped animals
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(3) non additive genetic framework. Nature is more complex than we would like. The 
number of proteins coded for is in the range of 20,000-25,000. Functional mutations in the 
regions coding for these proteins are rare, they are highly conserved. Genetic variation mainly 
operates on the regulation of these genes, creating opportunities to adaptation to changing 
environments, epigenetic effects. Dominance is mainly known from crosses between lines. 
Obviously, the same phenomenon applies within lines. Until now we did not have the tools 
to quantify the effects. 

In house testing of the use of 60k markers show validation results fully in line with the 
explained variance of Table 2, the original example stated an accuracy of 50% using genomic 
selection. The negative side is that family relations are still very important. Predictive ability 
depends on closeness in terms of pedigree. Application of markers in a different dam or sire line 
will yield very limited results. Within a line with close phenotyping/genotyping the accuracy 
of selection should go to 0.7-0.8 with increasing size of trainings population and increasing 
marker densities.

Adaptation to challenges

The pork industry is an environment, or possibly a set of environments, different than the 
original environment were pigs were raised for many centuries. The animals have the genetic 
flexibility to adapt to new environments. The easiest and most straightforward method is to 
test animals in the environment they have to produce in. The theoretical framework to get 
around genotype-environment interactions in still under development and can benefit from 
genomics work.

Theoretical framework 

Genotype-environment interactions can be investigated either using multiple trait models 
(Meyer, 2009) or using random regression reaction norm models (Kolmodin et al., 2002, 
Calus and Veerkamp, 2003; Cardoso and Tempelman, 2012, Silva FF, Mulder H, Knol EF, 
Lopes MS, Guimarães SEF, Lopes PS, Bastiaansen JWM 2013, unpublished). In the study of 
genomic reaction norms Silva FF, Mulder H, Knol EF, Lopes MS, Guimarães SEF, Lopes PS, 
Bastiaansen JWM 2013, unpublished, investigated litter size records from 295 farms distributed 
over 22 countries. At first the herd production levels were calculated as a measure of the 
environmental stress. Then heritabilities were estimated using random regression reaction 
norm approach using phenotypic as well as genomic information. The results given in Figure 
2 suggest higher heritabilities in more favorable environments as well as under extremely 
unfavorable environmental conditions. One option is to raise the management levels to get 
higher production and higher response to selection. At the same time the study also suggest that 
pigs selected under most favorable conditions will have poor correlated response under more 
stressful environmental conditions and vice versa, indicating the need for selection of specific 
lines for specific environmental conditions. The selection of robust animals for production in 
a verity of environmental conditions should then be conducted under moderate or average 
production levels.

Genomics and new traits 

The conclusion of the previous discussion is that traits can be environment dependent and 
therefore under different genetic control. This is a challenge and an opportunity at the same 
time. Our own work (Bloemhof et al, 2012) shows clear reactions of both farrowing rate and 
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litter size above the upper critical temperature (UCT) of 20C and shows genetic variation in 
the decline above this UCT. They suggest that farrowing rate might be an indicator trait for 
quality of environment and that farrowing rate shows more genetic variation under adverse 
environments. 

Late in life traits, like longevity/stayability are prime candidates for genomic selection (e.g. 
Onteru et al., 2011), as are resistance/tolerance to diseases, e.g. PRRS resistance (Boddicker 
et al., 2012).

Where will we go

Implementation in the breeding program

Breeding companies would like to have high health, high quality, moderate climate nucleus 
farms (say: on the isle of Man), the right side of Figure 2 shows that it is relatively easy to find 
the better families because of the higher heritabilities. Use of this type of genetics in a dense 
pig populated area of the Philippines might not yield the expected result, classic genotype-
environment interaction. However, if a closely linked subset of the population would perform 
in the challenged environment and would be genotyped then selection of the populations 
could be optimized based on the relative sizes of the markets for high performance and more 
challenged environments. Theory dictates that nucleus populations could be substantially 
smaller than the current numbers, because genomic selection allows for the exploitation of 
Mendelian sampling in contrast to the current/past situation. Investments could then be moved 
to ‘phenotyping stations’, where relatives of the nucleus animals could be subjected to disease, 
heat stress, no cross fostering, super ovulation or other stressors in order to find relevant, but 
normally hidden genetic variation for specific production environments.

Back to genetic selection; other factors than accuracy

Considering the formula for genetic change from the previous section,  

∆𝐺𝐺
𝜎𝜎 ∗ 𝑟𝑟 ∗

Lyear
H IH

i

so far, accuracy of selection was under discussion, this rIH could increase from around 0.30 to 
around 0.75 depending on the trait and the sex of the animal. i is selection intensity. A normal 

Figure 2. Heritability estimates for total 
number born in pigs at different herd-year-
season (HYS) levels considering conventional 
and  genomic relationship matrices. Source: 
Silva FF, Mulder H, Knol EF, Lopes MS, 
Guimarães SEF, Lopes PS, Bastiaansen JWM 
2013 Sire evaluation for total number born in 
pigs using genomic reaction norms approach, 
unpublished.
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litter of an elite boar and an elite sow will have, say, 8 males and 8 females for selection. Half 
of the genetic quality of these offspring is attributed to the quality of the sire and the dam and 
the other half to ‘chance’ , to the Mendelian sampling. If number of offspring can be increased 
through super ovulation and or through repeated matings and/or through other reproductive 
technologies, then selection intensity can increase quite dramatically, assuming that genotyping 
of embryos will become available at a cost effective level. Generation interval is the average age 
of the parents at which the offspring is born. Under polygenic selection a balance has to be found 
between phenotyping (waiting for more performance records) and number of selection cycles 
(short generation interval). Under genomic selection, accuracy depends mostly on the training 
population and generation interval can therefore be minimized, offering new possibilities. σH 
is considered fixed, it is existing genetic variation, albeit with new traits and with that new 
genetic variation can come under selection pressure. σH be changed with introgression of new 
genetic variation, coming from other lines or breeds within species or, theoretically, even from 
introgression across species. The latter form is not an option for TOPIGS, because of internal 
ethical considerations.

Biological limitations

All relevant reproductive traits show genetic variation and are therefore accessible to genetic 
variation. This allows the population to be flexible and allows animal breeders to adapt animals 
to the current and future pork production systems. There is no limit in sight to genetic increases 
in litter size or to genetic decreases in mortality. Efficiency, lowering the cost price of pork, 
is the driving factor. Main and possibly not small risks are in the unexpected, in the genetic 
correlations between traits.

Foxcroft (2012): “Overall, it is probably fair to conclude that the last two decades of genetic 
selection in swine have produced changes on the physiology of the sow and her offspring that 
might have been predicted, but were not expected to be as profound as they now appear to 
be. However, by adopting a closer interaction among biologists, geneticists and commercial 
production systems as we move into the ‘omic’ era of biology,… ”. The economic value of an 
extra piglet decreases with increasing level of production. Genetic parameters indicate that birth 
weight can be kept at least constant even with increasing litter sizes, uterine capacity has to 
increase in that case. Adult weight might go up and feeding has to be adapted. So we fully agree 
that closer interaction is needed where genetic trends will go faster and new traits will pop up.

Concluding remarks

Substantial genetic variation exists in reproduction traits. Polygenic theory is correct and quite 
accurately predicts genetic trend. First signs of genomic selection theory are promising and seem 
to be equally accurate in their predictions. The past two decades have witnessed increasing 
genetic trends based on polygenic selection that substantially changed reproductive ability of 
sows. The next decade will show an almost double trend in ‘total genetic standard deviation’. 
The content of that trend will be different than in the past two decades. Emphasis will be more 
on ‘ease of production’, ‘robustness’, ‘flexibility’, and ‘adaptability to different environments’. 
And proper care should be put on maintaining quality of finisher pigs, a further increase in 
reproduction should not lead to reduced lean growth performance, pork quality and overall 
efficiency of production under given environmental conditions.
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