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This paper reviews the major approaches used to map quantitative trait loci 
(QTL) and current knowledge about QTL affecting reproductive trait loci in 
pigs. Three different approaches, i.e. functional candidate gene analyses, 
genome-wide linkage studies (GWLS) and genome-wide association studies 
(GWAS) have been used to map QTL in pigs. The interest and limits of 
each of the three approaches are discussed. Candidate genes and QTL 
have been reviewed based on PigQTLdb at http://www.animalgenome.
org. A total of 29 candidate genes affecting reproductive traits located on 
14 autosomes have been considered. Some of them are well established 
results, but most results originate from single studies of limited scale and 
need to be confirmed. Several thousands of QTL affecting 15 male and 
15 female reproductive traits have been identified on 17 and 19 different 
chromosomes, respectively, using GWLS. Yet, the majority of them are 
only putative QTL and few QTL regions overlap between studies. Epistatic 
interactions between QTL appear as rather important in the single study 
investigating the effects of epistasis on pig reproductive traits. A large 
number of QTL distributed over almost all pig chromosomes have been 
identified in the single GWAS study published so far for pig reproductive 
traits. Use of sequence data, of more complex genetic models and of 
integrative biology approaches should be considered for more thoroughly 
investigating the genetic architecture of pig reproductive traits in the future.

Introduction

The development of genomics in the last 25 years has revolutionized the research methods 
and tools in genetics and, more generally, in biology. This revolution has been largely driven 
by the human genetics area. Considerable resources have indeed been mobilized to decipher 
the human genome and its variations. The huge progress obtained in humans has largely 
contributed to the advancement of livestock genetics and genomics due to both technological 
leaps (genotyping, microarrays, sequencing, bioinformatics...) and to the input of comparative 
genomics on the knowledge of animal genomes.

Genomics has not only allowed the whole sequence of most livestock genomes to be 
deciphered, but has also allowed to get a much better understanding of the genetic architecture 
of complex traits. An increasing number of polymorphisms responsible for variations in simple 
Mendelian traits (e.g. Andersson and Plastow 2011), or having major effects on quantitative 
traits (Milan, et al. 2000, Van Laere, et al. 2003) have been or are about to be identified. 
Several thousands of Quantitative Trait Loci (QTL) associated with phenotypic variations have 
been mapped on livestock genomes (e.g. Bidanel and Rothschild 2002). In parallel, the other 
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“omics” technologies, i.e. transcriptomics, proteomics and metabolomics, are powerful tools 
to better understand the functioning of animal genomes, identify gene and metabolic networks 
involved in key biological functions, and contribute to the ambitious goal of bridging the gap 
between genotype and phenotype.

Reproduction is a major biological function in all animal species. Although pig is known to 
have a very high reproductive efficiency, with fertility rates close to 90% and average numerical 
productivities that approach or exceed 30 piglets / sow / year, reproduction traits, especially 
prolificacy, are essential components of the economic efficiency pig production systems. Litter 
size has been a major component of the breeding goal in major pig dam lines over the last 
20 years. Rather large genetic gains, in the order of 30 to 40% of the mean, have obtained on 
litter size at birth in several pig populations (Guéry, et al. 2009, Tribout, et al. 2003) despite 
the low heritability of this trait.

Nevertheless, these gains remain limited by the low heritability, the late and sex-limited 
expression of reproductive traits. These limitations can be circumvented by using marker-assisted 
(MAS) or genomic selection (GS) methods, which are thus likely to be of high interest to improve 
the efficiency of selection for these traits. Additionally, reproductive traits are strongly influenced 
by non-additive genetic effects, as shown by the large heterosis values obtained in crosses 
between pig breeds (Bidanel 2011). A better understanding of gene interactions underlying 
these non additive effects is also of high interest to improve the efficiency of livestock breeding 
and management. This paper reviews the results obtained over the last 20 years on the genetic 
architecture of reproductive traits in pigs and discusses challenges and opportunities offered 
in the coming years by recent high throughput genomic tools.  

Methods to investigate the genetic architecture of complex traits.

The methods used to investigate the influence of genes on phenotypic variability have been 
closely related to available genetic and genomic tools. The oldest methods, based on the 
polygenic infinitesimal model, use pedigree and phenotype information to estimate genetic 
parameters, i.e. the genetic part of phenotypic (co)variances. Even if they are outside the scope 
of this article, it should be noted that these methods are still very useful in animal breeding, 
and are a necessary first step of the analysis of a new trait so as to make sure it is at least 
partly genetically determined. several reviews of genetic parameters of reproductive traits are 
available in the literature (see Bidanel 2011 for the most recent one). We will consequently 
not present them, but just point out that most of the reproductive traits have low to moderate 
heritability values.

The next step, since DNA polymorphism has became accessible, has been to relate variations 
at the DNA level to phenotypic variation. Several methods have been used depending on the 
available technologies and resources. The first one is to identify a gene involved in a biological 
function, find one or several polymorphisms in this gene, and then test the effects of these 
polymorphisms on traits characterizing the biological function investigated. This approach 
is known as functional candidate gene (FCG) analysis. FCG analyses have the great merit of 
being rather inexpensive and simple to implement. This is probably the main reason why this 
approach has been widely used by a large number of research teams since the publication of 
the article of Rothschild, et al. (1996) on the effects of the estrogen receptor gene on litter size. 

FCG analyses conversely have several important limits. First, the functional importance of a 
gene does not imply that variations of its sequence result in variations at the phenotypic level. 
The vast majority of FCG analyses actually leads to non significant results. When significant 
results are obtained, the polymorphisms investigated have a “significant” probability of being the 



289Porcine reproductive trait loci

causative polymorphism, particularly if it has been selected on the basis of functional arguments 
(e.g. it changes the structure of the translated protein). In practice, causal polymorphisms have 
rarely been identified using FCG analyses. In most cases, the polymorphisms investigated are 
likely to be only markers in linkage disequilibrium (LD) with the causal mutation, which can 
have nothing to do with the gene under investigation. In such a situation, the estimated effect 
of the polymorphism is an “apparent” effect, which is a function of the effect of the causal 
polymorphism and of its linkage disequilibrium with the marker. 

In spite of its limitations, FCG analysis can be very interesting within population, as LD 
often extends over short distances. In this situation, a significant effect means that there is 
probably a causal polymorphism close to the marker. This is conversely not relevant when 
the LD extends over large distances, as in crosses between populations or in newly formed 
synthetic lines (Zhao, et al. 2003). In all cases, using single marker results from a FCG analysis 
in a marker or candidate gene assisted selection program appears as rather risky. If MAS is 
considered as a method of interest, it as much wiser to have two or more markers flanking the 
causal polymorphism to optimize the efficiency of MAS. Yet, direct selection for the causal 
polymorphism when it has been identified (i.e. gene assisted selection) or genomic selection, 
which appear as more powerful methods than MAS, should be preferred when possible.

The positional FCG analysis is a commonly used variant of the FCG approach. Its principle 
is to find functional candidate genes within the confidence interval of a QTL position. It is a 
potentially quite powerful approach if the confidence interval of the QTL is rather small. It is 
much more difficult when QTL have been detected in an F2 design between divergent breeds 
for the above-mentioned reasons of LD extent over large distances (Zhao, et al. 2003), unless 
strong functional arguments exist in favor of a gene / a polymorphism. 

The other approaches are not based on functional arguments, but on the associations between 
closely linked markers / genes. They allow whole-genome QTL mapping to be performed, 
provided that a network of markers covering the genome is available, and are often used in this 
way. Two major types of methods have been used depending on marker technologies available. 

In the 1990s, microsatellites were the first type of markers covering the entire genome that 
could be amplified using polymerase chain reaction and then genotyped on a large scale at a 
reasonable cost using automated sequencers.  They led to the establishment of the first genetic 
maps of the entire genome (Archibald, et al. 1995, Rohrer, et al. 1996) and the establishment 
of a large number of QTL mapping programs (Bidanel and Rothschild 2002, Hu, et al. 2013). 
As microsatellite density is insufficient to give access to within-population LD, microsatellite 
based QTL mapping programs are based on within-family linkage disequilibrium, which 
requires designs with large half-sib families, or on F2 or backcross populations issued from 
crosses between divergent populations which are assumed to be fixed for different QTL alleles. 

These microsatellite based programs have led to the detection of thousands of QTL, including 
a few hundred of QTL for reproductive traits. Their location often remains inaccurate, with 
confidence intervals of several centimorgans, and the generalization of the results to commercial 
populations is not straightforward. Yet, some studies have shown, for production traits, that 
QTL detected in crosses between divergent breeds can also be segregating in commercial 
populations (Evans, et al. 2003, Sanchez, et al. 2010). Fine-mapping programs have been 
developed by several teams (Berg, et al. 2006, Campbell, et al. 2003, Riquet, et al. 2011), 
but only one (Campbell, et al. 2003) dealt with reproductive traits. Moreover, apart from the 
identification of intron3 G3072A-IGF2 locus as a causative polymorphism for carcass fatness 
(Van Laere, et al. 2003), they have not yet led to the  identification of causal polymorphisms. 

Since the mid-2000s, the dramatic progress achieved in genome sequencing technologies has 
allowed to take advantage of a new type of markers, single nucleotide polymorphisms (SNP). 
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Several millions of SNP are available throughout the genome, so that very dense genetic maps 
can easily be built. At the same time, the development of DNA chips has made it possible to 
genotype animals for tens of thousands (Ramos, et al. 2009), or even hundreds of thousands of 
markers (a 800,000 SNP chip is currently available in cattle) at a very low cost. This DNA chip 
technology has allowed the development of selection based on genetic marker indexes, i.e. 
genomic selection (GS). It also gives the opportunity to have a much more accurate mapping of 
QTL and to go further in the knowledge of the genetic architecture of complex traits. A mean 
coverage of 20 markers / morgan can indeed be expected with a 60,000 SNP chip, which is 
dense enough to have access to within-population LD in most pig populations. These SNP 
chips thus make it possible to perform whole-genome association studies (GWAS) directly in 
commercial populations.  Optimal designs for GWAS are based on a large number of small 
nuclear families, which is favorable to ensure a good representation of the whole population. 
Genetic parameters can easily be estimated to ensure that there is enough genetic variation for 
association studies. Finally, they can easily be used as a first step towards the development of 
a reference population for genomic selection. In contrast, reference populations from genomic 
selection programs are highly valuable resources for the analysis of the genetic architecture of 
traits of interest, provided that the data are available to research teams.

Yet, in spite of their higher statistical power, QTL detected by GWAS are far from explaining 
the whole genetic variation of the traits investigated. This problem, known as the “missing 
heritability” problem in the human genetics literature, can be due to the insufficient size of 
experiments, which make it possible to identify only QTL with moderate to large effects, but 
also to the fact that the additive effects of individual genes cannot explain the whole genetic 
variation of a trait, which may also be due due  to genetic interactions or epigenetic effects 
(Slatkin, 2009; Zuk et al. 2012).  

Effects of candidate genes on reproductive traits

Candidate genes with significant effects on reproductive traits that were available in pig QTL 
database (http://www.animalgenome.org/cgi-bin/QTLdb/SS/index - accessed on January 2013) are 
given in Table 1. Most of the oldest references are pure FCG analyses, while some of the most 
recent references (Balcells, et al. 2011a, Balcells, et al. 2011b, Coster, et al. 2012) are positional 
FCG analyses based on previous QTL mapping designs. Pure FCG analyses first dealt with 
genes clearly involved in reproductive physiology, such as ESR, FSHB, FSHR, GNRHR, PRLR,… 
Genes that were less obviously involved in reproduction were then investigated, particularly 
for positional analyses. It has to be noted that a rather important fraction of the results are based 
on single study on a rather limited number of animals and should be interpreted with some 
caution. Results for some genes are based on larger samples of animals and / or involve several 
independent studies (e.g. ESR1, LEP, PRLR, …), so that there is a very high probability that 
there is a causal mutation inside or in the vicinity of the gene. The polymorphisms investigated 
have not been shown to be causative. In the case of ESR1, population dependent effects even 
strongly suggest that at least one of the polymorphisms investigated is not causal.  

The effects on reproductive traits of known major genes have also been investigated. The 
ryanodyne receptor (also called halothane sensitivity or Hal) locus (Fujii, et al. 1991) and the 
PRKAG3 (or RN) locus (Milan, et al. 2000) have been shown to have no or very limited effects 
on reproductive traits. Significant effects of the halothane gene region were reported in some 
studies, but they were probably due to a linked gene rather than Hal locus itself (Sellier, et al. 
1987). QTL affecting reproduction traits have indeed been detected in the vicinity of both the 
HAL and RN genes (Tables 2 and 3), so that apparent effects of Hal and RN on reproductive 
traits would occur in case of linkage disequilibrium with the QTL. An effect of the IGF2-Intron3-
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Table 2. QTL for male reproductive traits

Trait Pig chromosome Population1 Size % variance Reference

Ejaculation duration 6, 17 DU x ER 177 7.7 to 7.9 (Xing, et al. 2009)

Ejaculation times 6, 16, 17 DU x ER 177 5.9 to 11.8 (Xing, et al. 2009)

Epididymal weight at

  - 90 days of age 2 DU x ER 347 4.5 (Ren, et al. 2009)

  - 180 days of age 3, 4, 10, 13, 15 LW x MS 487 1.9 to 4.3 (Bidanel, et al. 2001)

  - 300 days of age 3, 7 DU x ER 347 4.5 to 27.3 (Ren, et al. 2009)

Length of bulbo-urethral 
glands

1, 3, 7, 13 LW x MS 485 3.3 to 5.1 (Bidanel, et al. 2001)

Plasma FSH level 3, 10, X
X

WC x MS
WC x MS

315
132

Np2

np
(Rohrer, et al. 2001)
(Ford, et al. 2001)

Plasma testosterone level 7, 13 DU x ER 347 7.3 to 14.3 (Ren, et al. 2009)

Semen volume 3, 15, 18 DU x ER 177 7.9 to 8.6 (Xing, et al. 2009)

Seminiferous tubular diameter

  - at 90 days 5, 13, 14, X DU x ER 347 8.4 to 14.8 (Ren, et al. 2009)

  - at 300 days 16 DU x ER 347 14.8 (Ren, et al. 2009)

Seminal vesicles Weight 1, 3, 4, 7, 11, 15, 
16, X

LW x MS 481 2.5 to 21.8 (Bidanel, et al. 2001)

Daily sperm production X WC x MS 132 np (Ford, et al. 2001)

Sperm abnormality rate 4, 9 DU x ER 177 8.8 to 11.8 (Xing, et al. 2009)

Sperm concentration 17 DU x ER 177 9.5 (Xing, et al. 2009)

Sperm motility 4 DU x ER 177 6.3 (Xing, et al. 2009)

Sperm pH value 2, 6, 9 DU x ER 177 5.7 to 9.8 (Xing, et al. 2009)

Testicular weight at :

  - 60 days 3, X DU x MS 449 5.0 to 9.0 (Sato, et al. 2003)

  - 90 days 1, X DU x ER 347 9.1 to 20.6 (Ren, et al. 2009)

  - 180 days 4, 7, 10, 13, 
17, X

LW x MS 487 3.5 to 19.6 (Bidanel, et al. 2001)

  - 220 days X WC x MS 315 np (Rohrer, et al. 2001)

X WC x MS 132 np (Ford, et al. 2001)

  - 300 days 1, 5, 7, X DU x ER 347 4.8 to 14.7 (Ren, et al. 2009)

1DU = Duroc; ER = Erhualian,  LW = Large White; MS = Meishan; WC = White European breed cross
2np = not provided

G3072A mutation (Van Laere, et al. 2003) on sow prolificacy has recently been reported 
(Stinckens, et al. 2010) but, to our knowledge, it is not yet known whether it is a direct or an 
apparent effect of G3072A mutation.

QTL affecting reproductive traits 

The main features of male and female reproductive trait QTL reported in in pig QTL database 
(http://www.animalgenome.org/cgi-bin/QTLdb/SS/index - accessed on January 2013) are 
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Table 3a. QTL for female reproductive traits (1/2)

Trait Pig chromosome Population1 Size % variance Reference

Age at puberty 1, 4, 6, 7, 13 LW x MS 476 3.0 to 10.0 (Bidanel, et al. 2008)

7, 8, 12 LW x LR 295 2.7 to 9.7 (Cassady, et al. 2001)

15 LW x LR 295 np2 (Holl, et al. 2004)

1, 10 WC x MS 344 np (Rohrer, et al. 1999)

1, 7, 8, 17 DU x ER 454 2.0 to 8.0 (Yang, et al. 2008)

Ovulation rate 4, 5, 7, 9, 13 LW x MS 502 3.9 to 5.9 (Bidanel, et al. 2008)

9 LW x LR 295 3.4 (Cassady, et al. 2001)

4, 8, 13, 15 LW x LR 114 5.1 to 10.9 (Rathje, et al. 1997)

3, 8, 9, 10, 15 WC x MS 344 np (Rohrer, et al. 1999)

3 DU x MS 234 np (Sato, et al. 2006)

7, 8, 15 YO x MS 104 np (Wilkie, et al. 1999)

8 YO x MS 108 17.4 (Braunschweig, et al. 
2001)

8 WC x MS 600 np (Campbell, et al. 2003)

Weight of ovaries 4, 6, 7, 9, 12, 13, 14, 
15, 18

LW x MS 502 2.3 to 7.0 (Rosendo, et al. 2012)

Number of embryos 9, 12, 18 LW x MS 468 2.8 to 7.2 (Bidanel, et al. 2008)

Uterine capacity 8 WC x MS 187 (Rohrer, et al. 1999)

Uterine horn length 1, 5, 6, 7, 9, 11,12, 13 LW x MS 465 2.7 to 9.2 (Rosendo, et al. 2012)

Uterine horn weight 1, 2, 4, 5, 7, 9, 12, 
13, X

LW x MS 465 2.3 to 4.5 (Rosendo, et al. 2012)

Reproductive tract weight 1, 5, 9, 12, 14, 18, X LW x MS 465 1.8 to 4.6 (Rosendo, et al. 2012)

Gestation length 1, 9, 15 YO x MS 104 9.4 to 23.6 (Wilkie, et al. 1999)

1, 2, 3, 4, 5, 6, 7, 9, 
10, 11, 13, 14, 15, 16, 
17, 18

LW, LW x LR 683 np (Onteru, et al. 2012)

Number mummified 2, 6, 12 LW x LR 279 np (Holl, et al. 2004)

1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 11, 13, 14, 15, 16, 
17, 18, X

LW, LW x LR 683 np (Onteru, et al. 2012)

1DU = Duroc; ER = Erhualian,  IB = Iberian pig; LR = Landrace; LW = Large White; MS = Meishan; WC = White European 
breed cross; YO = Yorkshire
2np = not provided

summarized in Tables 2 and 3, respectively.  The limited number of QTL mapping programs 
for male reproductive traits have been performed using crosses between early maturing Chinese 
and American / European breeds. Most QTL have a rather low to moderate effect (less than 
10% of trait variance), except on chromosome X, where QTL explaining up to 20% of the 
variance of several traits, i.e. testicular weight, seminal vesicles weight and seminiferous tubular 
diameter, have been detected. Alleles from Chinese breeds increase testes weight at young 
ages, but tend to reduce it at older ages. The SERPINA7 gene, which regulates the availability 
of thyroid hormones within tissues has been reported as an interesting positional candidate 
for this QTL by Ren, et al. (2009), but its potential implication remains to be investigated. No 
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fine mapping of autosomal QTL has been carried out as yet and the localization interval of the 
QTL remains very large (generally above 20 cM). 

QTL for female reproductive traits are shown in Table 3. They were all detected using GWLS 
except in the recent GWAS results of Onteru, et al. (2011; 2012) which will be discussed later. The 
most heritable traits, i.e. age at puberty ovulation rate and uterine dimensions have the largest 
number of QTL. QTL for age at puberty have been detected on 10 different chromosomes, with 
overlapping confidence intervals from independent studies on SSC1, on SSC7 in the SLA complex 
region and at the extremity of the short arm of SSC8. QTL for ovulation rate have been detected on 
9 different chromosomes, with QTL from independent studies located on two different regions of 
SSC8, the first one in the centromeric region (Wilkie, et al. 1999), the second one in the telomeric 
part of SSC8 short arm. 

Table 3b. QTL for female reproductive traits (2/2)

Trait Pig chromosome Population1 Size % variance Reference

Total number born 11 LW x LR 279 5.1 (Cassady, et al. 2001)

7, 12, 14, 17 LW/LR x MS 269 2.7 to 8.8 (De Koning, et al. 2001)

8 LW x MS 152 np2 (King, et al. 2003)

7, 15 DU x ER 299 2.8 to 4.3 (Li, et al. 2009)

13, 17 IB x MS 881 np (Noguera, et al. 2009)

6 YO x MS 104 np (Wilkie, et al. 1999)

1, 2, 3, 4, 6, 7, 8, 9, 
12, 13, 14, 15, 16, 
17, 18

LW, LW x LR 683 np (Onteru, et al. 2012)

Number of stillborn 5 ,13 LW x LR 279 7.9 (Cassady, et al. 2001)

12, 14 LW x LR 279 np (Holl, et al. 2004)

7, 8 DU x ER 299 3.7 to 5 (Li, et al. 2009)

6, 11, 14 LW, LR np (Tribout, et al. 2008)

4 YO x MS 104 np (Wilkie, et al. 1999)

1, 2, 3, 4, 5, 6, 8, 9, 
10, 12, 13, 14, 15, 16, 
17, 18

LW, LW x LR 683 np (Onteru, et al. 2012)

Number born alive 11 LW x LR 279 np (Cassady, et al. 2001)

6, 15 DU x ER 299 3.7 to 5 (Li, et al. 2009)

13, 17 IB x MS 881 np (Noguera, et al. 2009)

7, 16, 18 LW, LR np (Tribout, et al. 2008)

1, 2, 3, 4, 6, 10, 11, 
12, 13, 14, 15, 16

LW, LW x LR 683 np (Onteru, et al. 2012)

Removal parity 1, 5, 8, 9, 11, 12, 13, 
14, 16

LW, LW x LR 818 np (Onteru, et al. 2011)

Nonproductive days / 
herd life

9, 12, 14, 17, X LW, LW x LR 818 np (Onteru, et al. 2011)

1DU = Duroc; ER = Erhualian,  IB = Iberian pig; LR = Landrace; LW = Large White; MS = Meishan; WC = White European 
breed cross; YO = Yorkshire
2np = not provided
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The position of the 2 SSC8 QTL has been refined by, respectively, Braunschweig, et al. 
(2001) and Campbell, et al. (2003). Campbell, et al. (2008) proposed the mannosidase 2B2 
(MAN2B2) locus as a positional candidate, but the causal polymorphism does not seem to 
have been identified so far. A C/G substitution in the 3’ UTR of a functional candidate locus, 
i.e. GNRHRH, located in the centromeric part of SSC 8, was found to affect ovulation rate by 
Jiang, et al. (2001).

QTL affecting litter size traits have been detected on 13 different chromosomes with 
microsatellite markers, but most of them are only putative results and the overlap between 
studies is rather limited. Indeed, overlaps between confidence intervals concern the results of 
Bidanel, et al. (2001), Wilkie, et al. (1999) and Li, et al. (2009) on SSC 6, of De Koning, et al. 
(2001), Tribout, et al. (2008) and Li, et al. (2009) on SSC 7, of Bidanel, et al. (2001), Wilkie, et 
al. (1999) and Noguera, et al. (2009) on SSC 13 and, finally, of De Koning, et al. (2001) and 
Noguera, et al. (2009) on SSC 17.  Some overlaps with FCG results can also be found. The 
LEPR locus is located in the confidence interval of the above mentioned SSC 6 QTL. The SSC 7 
QTL are located in the vicinity of the properdin locus (BF). The prolactin receptor locus (PRLP) 
is located on SSC 16, close to the confidence interval bound of the QTL affecting number born 
alive mapped by Tribout, et al. (2008). 

The papers of Onteru, et al. (2011; 2012)  are, to our knowledge, the only ones who report 
QTL results based on the PorcineSNP60 BeadChip. They found a very large number of QTL 
that are located much more accurately than previous results. Most of them correspond to new 
QTL regions. Even if they have to be confirmed by other independent studies, these results are 
a clear illustration of the high detection power of dense sets of SNP markers. They also show 
that the genetic architecture of complex traits such as reproductive traits depends on larger 
numbers of loci than was expected 10 years ago. 

Finally, it should be emphasized that the simple additive models that have been used so 
far are unlikely to correctly describe the complex gene interaction pathways underlying the 
genetic architecture of traits that are known to have a high degree of complexity. Noguera, et 
al. (2009) used a more complex model involving two-QTL with interaction models and found 
not less than 18 epistatic QTL affecting number born alive. A lot of work remains to be done 
using more complex models on larger data sets. Additional major challenges for the future 
include: 1) the use of sequence data in QTL mapping studies; 2) the integration of transcriptome, 
proteome and  metabolome data for both improving QTL mapping power and more getting 
a much better understanding the complex pathways underlying complex biological functions 
such as reproduction; 3) to model gene functioning and enter the area of predictive biology.  
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