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Pigs have a long standing and very successful history as biomedical model 
for studying human diseases and developing novel therapies mainly 
attributed to the many genetic, anatomical and physiological similarities 
with humans. Non-transgenic pig models have long been used for a 
wide range of human organ systems and diseases, and even complex 
metabolic disorders and have served as model for developing novel surgical 
techniques and endoscopic approaches, such as NOTES (natural orifice 
transluminal endoscopic surgery). The availability of the porcine genome 
and novel tools to add or delete specific genes significantly expands the 
potential for transgenic pig production. Somatic cell nuclear transfer has 
emerged as the preferred method for transgenesis. Well characterized 
transgenic pig models have been reported for Cystic fibrosis, the eye 
disease Retinitis Pigmentosa, atherosclerosis and diabetes. Transgenic 
pigs have been produced for modeling neurological diseases, including 
Alzheimer and Huntington disease, specific forms of cancer, and skin 
diseases. Transgenic pigs play an important role in developing functional 
porcine xenografts to combat the growing shortage of appropriate human 
organs for transplantation. Other important transgenic pig models include 
immunodeficient pigs and Oct4/GFP transgenic pigs for studies of 
reprogramming. Pig models will not replace the already existing mouse 
models but can provide significant novel insight into a variety of diseases, 
as mouse models frequently do not mimic the human situation. Transgenic 
pigs will also soon play an increasing role in the development of novel 
therapies based on stem cell technology. The biomedical use of pigs will 
also facilitate transgenic pig production for agricultural production. 

Introduction 

Pigs have a long standing and very successful history as biomedical model for studying human 
diseases and developing novel therapies. Domestic pigs and minipigs are the main categories that 
have been used as biomedical models. Usually minipigs are in shorter supply than domestic pigs 
and thus more expensive compared with domestic pigs, which cost more due to housing, feed 
and medication (Litten-Brown et al., 2010). The preferred use of pigs as model in biomedical 
research is attributed to the many anatomical and physiological similarities with humans. As 
humans, the pig is a monogastric omnivore. As result of a long domestication process a great 
variety of pig phenotypes exists worldwide that could be relevant for current human health 
research priorities, including obesity, diabetes and cardiovascular diseases. Given the high 
degree of similarity, many diagnostic, surgical or other medical techniques can be directly 
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transferred from the pig into the clinic to help human patients. Another great advantage is the 
ability to maintain pigs under strict hygienic conditions, such as specific pathogen free (SPF) 
or gnotobiotic (completely sterile) conditions.

In addition, the high fertility of the pig makes it an attractive species for use in biomedical 
model application. Moreover, effective protocols are established for artificial insemination and 
embryo transfer for a long time. More recently, somatic cell nuclear transfer (SCNT) methodology 
has been improved and refined protocols for genetic modification of pigs have been established 
(Petersen et al., 2008; Hauschild et al., 2011; Garrels et al. 2012).

Worldwide, thousands of pigs are being used in biomedical research every year. In Germany, 
an average of 12 -13.000 pigs is being used per year in biomedical research. A Google search, 
using the three words “pig, model, research” yielded 140.000 hits in 2007, 6.7 million hits in 
2008 and 29.9 million hits in 2013. This clearly shows the rapidly growing interest in the use 
of the pig as a biomedical model for the benefit of humans. One can discriminate between 
non-transgenic and transgenic pig models. The following gives a brief overview on the wide 
range of non-transgenic pig models followed by an update of the recent development of 
transgenic pig models. 

Non-transgenic pig models

Pigs have been used as appropriate biomedical models due to genetic, anatomical and 
physiological similarities to humans (Litten-Brown et al., 2010). Tests have frequently been 
undertaken to investigate pharmacokinetics and pharmacodynamics of specific drugs. However, 
swine also have unique characteristics and husbandry requirements which must be taken into 
account when using the species as a biomedical model. Non-transgenic pig models have been 
employed for a wide range of human organ systems and diseases. 

Head and brain injuries

Pig models have been developed for traumatic brain injury, including brain death to define 
critical parameters of ischemia and to study systemic reperfusion as a model for human brain 
death (Purins et al., 2011, 2012). Even four weeks old piglets have been used as model 
for studying traumatic brain injury for pediatric purposes (Friess et al., 2011). The optimal 
resuscitation strategy was developed in a domestic pig model of traumatic brain injury 
and hemorrhagic shock (Jin et al., 2012). Two days old piglets were also used to study the 
effectiveness of anti-inflammatory drugs for treatment of head injury (Friess et al., 2012).

Eye diseases

The porcine eye is very similar to the human eye showing an area of increased cone density 
arranged in a central horizontal band considered analogous to the human macula. Porcine eyes 
have been used to study age-related macular degeneration and to develop ophthalmological 
surgical treatments for human patients (Pennesi et al., 2012). An inducible photoreceptor 
damage porcine model was developed using chemical toxins. Sodium iodate (NaIO3) was an 
effective toxin for the pig eye and could thus serve as model to develop treatments to replace 
damaged photoreceptors (Noel et al., 2012). 

Cardiovasculatory diseases

The pig has been widely used in preclinical studies to develop novel treatments for cardiovascular 
diseases that are a common reason for death of human patients. Most prominent are models for 
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myocardial infarction and reperfusion, the hibernating myocardium, and for vulnerable plaques 
(Suzuki et al., 2011). Specific aspects of the treatment of coronary injuries were also investigated 
in the pig model, with emphasis on endothelial denudation and stent placement (von Bary et al., 
2011). Novel treatments involving the application of stem cells and growth factors have been 
tested in the pig to study survival and regeneration of the infarcted pig heart. The combination 
of IGF-1 and HGF seems to be beneficial in this respect (Ellison et al., 2011). Multipotent 
stromal cells were successfully applied in a pig model to improve the situation after chronic 
myocardial infarction (Sato et al., 2011). Immediate implantation of bone marrow-derived 
cells into minipig myocardium after coronary artery ligation promoted neovascularization and 
improved myocardial viability (Ko et al., 2011). The intracoronary delivery of mesenchymal stem 
cells (MSCs) into the ischemic heart reduced malignant ventricular arrhythmias and improved 
cardiac performance (Wang et al., 2011). A novel coronary guidewire was successfully tested 
in a porcine model and emerged as an effective tool to improve transcoronary pacing (Heinroth 
et al., 2011). The pig has also served as model to study cardiac arrest and to develop strategies 
to overcome this pathology by applying therapeutic hypothermia and selective heart cooling 
(Wang et al., 2012; Li et al., 2012). 

Vasculatory diseases

The pig has successfully been used as model to study the effects of implantation of MSCs  into 
an aortic aneurysma injury. The orthologous implantation was successful, but long term effects 
remain to be investigated (Turnbull et al., 2011). Type B aortic dissection, which is the most 
common acute disease of the aorta and a life-threatening condition, has been studied in the 
pig model (Okuno et al., 2012). The pig was also successfully used as a model for ultrasound 
enhanced recombinant tissue plasminogen activator mediated thrombolysis in a carotid artery 
model (Hitchcock et al., 2011). 

Drug-coated balloons have been tested as therapeutic approach for treating vasculatory 
diseases in familial hypercholesterolemic swine. These balloons were effective in reducing 
proliferation of the neointima cells (Granada et al., 2011). Intramural injection of complex 
lipids into the coronary arteries of pigs induced symptoms similar to human atherosclerosis 
(Tellez et al., 2011). 

Pulmonary diseases

Transesophageal upper pulmonary lobectomy was successfully established in the domestic 
pig and is considered as a novel strategy towards scar free pulmonary lobectomy (Moreira-
Pinto et al., 2012). A specific extracorporeal cardiopulmonary support system was tested in 
its effectiveness to rescue patients after massive pulmonary embolism. However, the optimal 
treatment is still unknown (Kjærgaard et al., 2012). New lung ventilator strategies, including 
an “open lung” system, were developed in the pig and turned out to be superior to standard 
strategies treating lung injuries (Albert et al., 2011). The pig has also served as model for 
developing new treatments of intra-abdominal hypertension, which is an important factor 
leading to increased morbidity and mortality in human patients. Application of positive end-
expiratory pressure did not yield beneficial results (Regli et al., 2012). The pig also served as 
a model to test adenosine A2A receptor agonists for treating reperfusion injury in a preclinical 
lung transplantation model (LaPar et al., 2011). In a pig model for human pulmonary diseases, 
surfactant administration improved important parameters of pulmonary function and specific 
ventilators were needed for improving lung function (Bhatia et al., 2011; Dickson et al., 
2011). Pigs have also been used as model for studying etiology and to develop treatments for 
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various pulmonary diseases, including acute respiratory distress syndrome and specific forms 
of pneumonia (Ballard-Croft et al., 2012, Martinez-Olondris et al., 2012).

Kidney diseases

The pig is an excellent model for kidney transplantation studies, specifically using an ischemia 
reperfusion model. Porcine and human kidneys are anatomically very similar due to their multi-
lobular structure, which is in contrast to rodent and dog kidneys (Giraud et al., 2011). The pig 
has also extensively been tested in a kidney autotransplantation model with all its facets from 
medical anesthesia to surgical intervention and postoperative management and analgesia (Post 
et al., 2012). The technical feasibility and safety of trajectory image-guided percutaneous renal 
cryoablation were demonstrated in a porcine model (Rebuck et al., 2012). Specific aspects 
of renal artery stenosis and treatment via specific magnetic resonance technologies were 
investigated in a pig model (Morelli et al., 2012). By feeding hydroxyproline or a gelatin diet, 
a model was established for studying oxalate urolithiasis in human patients (Patel et al., 2012). 

Liver diseases

New hemostatic dressing has been successfully tested in a porcine model of liver injury (De 
Castro et al., 2010). The porcine model of short bowel disease syndrome revealed severe 
liver pathology, similar to symptoms in human patients (Hua et al., 2012). Small bowel grafts 
were used in a pig allotransplantation model and graft viability was shown (Yandza et al., 
2012). Steatotic porcine livers could be successfully preserved for prolonged period under 
normothermic conditions (Jamieson et al., 2011).

Pancreatic diseases 

High intensity ultrasound was successfully used to ablate the pancreas and emerged as a safe 
and effective approach for use in human patients with pancreatic disease (Xie et al., 2011). 
Hypertonic saline resuscitation was successfully used in a porcine model to improve symptoms 
of acute pancreatitis, but organ damage could not be prevented (Ni et al., 2012). The insulin 
injection site was shown to cause minor perturbation of local glycemia in a minipig model 
without diabetes (Rodriguez et al., 2011). 

Hemorrhagic shock

Hemorrhage accounts for ~40%of trauma death and is the most common cause of preventable 
death after injury. The optimal fluid strategy for early treatment of trauma patients was tested by 
applying hypertonic saline with dextran in a pig model of uncontrolled hemorrhagic shock (Riha 
et al., 2011). The porcine femoral artery injury is well suited for evaluation of new hemostatic 
agents (Kheirabadi et al., 2011). 

Wound repair

To avoid significant contracture formation after skin injuries, keratinocytes alone or in 
combination with fibroblasts were successfully applied in a vivo porcine model (Eldardiri et 
al., 2012). Negative pressure therapy improved characteristics of primarily closed porcine 
wounds (Meeker et al., 2011). 

Cartilage and bones repair

Cartilage repair was attempted by applying mesenchymal stem cells either in an undifferentiated 
stage or in a more differentiated stage. Undifferentiated MSCs were superior to other treatments 
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(Chang et al., 2011). The pig also served as a model for developing a novel flexor tendon repair 
treatment (Zetlitz et al., 2012). Tap water washouts turned out to be effective for treatment of 
contaminated open bone fractures in a porcine model (Gaines et al., 2011). Adipose-derived 
mesenchymal stem cells enhanced healing of defects in the mandibles in a pig model (Wilson 
et al., 2012). 

Endoscopy and NOTES-techniques

Endoscopical techniques have been successfully used in the pig for gastrojejunostomy and liver 
resection (von Renteln et al., 2011; Zijlmans et al., 2012). We have explored the possibilities 
and limitations of NOTES-techniques (Natural orifice transluminal endoscopic surgery) which 
would have major advantages over standard laparoscopic techniques, because of significantly 
less postsurgical pain, fewer wounds and abdominal wall infections, avoiding hernias, fewer 
adhesions, shorter recover periods and improved cosmetic results. This technology is intensively 
explored in the domestic pig in the own laboratory and has been used to improve esophagus 
repair treatments (Fritscher-Ravens et al., 2008, 2011).

Obesity

Hypothalamic deep brain stimulation was shown to reduce weight gain in a porcine obesity 
model. The low frequency ventromedial hypothalamus electrical stimulation could emerge as 
a potential strategy for modulation of body weight (Melega et al., 2012). Laser technology was 
successfully applied to induce subdermal lipolysis and collagen deposition in an in vivo pig 
model (Levi et al., 2011). The drug meloxicam was successfully tested in a kaolin inflammation 
model (Fosse et al., 2010).

Infectious diseases

The pig is considered a successful model for studying a variety of human infectious diseases. 
The pig has numerous advantages for studies of infectious diseases and vaccines for a wide 
range of organ systems (Meurens et al., 2011). The pig is also a useful model studying parasitic 
diseases such as human amebiasis, and could help to increase understanding the intestinal 
and extraintestinal symptoms of this specific disease (Girard-Misguich et al., 2011).The pig 
has served as a model to study the effects of specific plasma separation filtration techniques in 
a sepsis model (Sauer et al., 2012). The pig is even useful as a model for studying the effects 
of specific diet components in a post-operative infection situation (Langerhuus et al., 2012). 

This brief and non-exhaustive survey of the recent literature clearly demonstrates the 
extensive use of pigs in medical research. Pig models are obviously extremely useful for a 
better understanding of specific human diseases or morphology and to develop and validate 
novel therapies. This will further increase with the advent of novel cell-based therapies derived 
from stem cell technologies. 

Transgenic pig models

The assembly and annotation of the porcine genome has recently been published, including 
a comparison of genomes from wild and domestic pigs from Europe and Asia (Groenen et al. 
2012). As other large animals, pigs have approx. 22.000 protein coding genes. The porcine 
genome shows a high degree of homology with that of human, dogs, horses and other large 
mammals. Naturally occurring mutations further expand the potential to use pigs as biomedical 
models (see above). At least 112 positions in the porcine genome were identified in which 
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the porcine protein had the same amino acid as human diseases (Groenen et al. 2012). These 
genetic changes were associated with an increased risk of multifactorial traits, including 
obesity, diabetes or late-onset diseases such as Parkinson disease and Alzheimer disease in 
humans (Groenen et al. 2012). The availability of the porcine genome significantly expands 
the potential for transgenic pig production. This is facilitated by effective new tools to add or 
delete specific genes to the porcine genome, including specific nucleases such as zinc finger 
nucleases (Figure 1), TALEN and transposons (Hauschild et al. 2011; Flisikowska et al. 2011; 
Garrels et al. 2012; Pennisi 2012). 

Fig. 1 Mechanism of Zinc-finger-nucleases (ZFN) in the editing of DNA. Here the bi-allelic 
knock-out of a specific DNA sequence is shown.

The in-depth knowledge of the structure and organization of the porcine genome and further 
refinements of molecular tools will soon allow the production of a great variety of transgenic pig 
phenotypes similar to the laboratory mouse. Pigs are more expensive to keep than rodents and 
reproduce more slowly than rodents. However, similarities between human and pig genetics, 
anatomy and physiology much outweigh these limitations. Porcine eyes are similar in size with 
photoreceptors that are similarly distributed in the retina as in the human eye. Thus the pig 
became the first transgenic model for Retinitis Pigmentosa (RP) which is an important cause 
of human blindness. More than 4 years ago the first transgenic pig model of cystic fibrosis 
was reported which stimulated the interest of researchers in porcine disease models (Abbott 
2012). Additional stimulation of transgenic pig production will arise from the availability of 
pluripotent stem cells that are superior to the currently available somatic cells for any genetic 
modification procedure. Germ line contribution of pluripotent cells has not yet been reported 
for the pig. However, significant progress has been reported towards this goal (Nowak-Imialek 
et al. 2011; Nowak-Imialek and Niemann 2013). The following is an update of the available 
literature on the production of transgenic pigs for biomedical models. The topic has also been 
reviewed recently (Wolf 2012; Prather et al. 2013). 

Porcine models for the genetic diseases cystic fibrosis and hereditary tyrosinemia type 1

Transgenic pigs carrying a mutated CFTR (cystic fibrosis transmembrane conductance regulator) 
gene are present the best characterized model for a human genetic disease. Cystic fibrosis 
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is caused by a genetic defect in the CFTR which encodes the cyclic AMP activator chloride 
channel in epithelial cells. This defect results in reduced epithelial fluid transportation and 
thus creates abnormal fluid secretion of the airway mucous glands that are the major cause for 
CF (cystic fibrosis) pathology (Widdicombe 2010). Mouse airways contain only few mucous 
glands, consequently the mouse model of CF shows little airway pathology (Widdicome 2010). 
The production of viable pigs carrying a homozygous knockout of the CFTR gene led to the 
creation of a cystic fibrosis model in domestic pigs (Rogers et al. 2008). The pigs were produced 
via SCNT using somatic cells with a homozygous knockout of the CFTR gene locus. The CFTR 
gene was disrupted by inserting an antibiotic resistance cassette in exon 10 of the CFTR gene 
(Rogers et al. 2008). Pigs lacking the CFTR showed defective chloride transport, developed 
meconium ileus, displayed exocrine pancreatic destruction and focal biliary cirrhosis, thus 
showing the same abnormalities observed in human CF patients (Rogers et al. 2008). These pigs 
provide a new source to study CF pathology and to develop novel therapies for CF patients. 

The CFTR-/- pigs developed the full hallmark of the CF lung disease, including airway 
inflammation, remodeling mucus accumulation, and infection. Their lungs contained multiple 
bacterial species as consequence of the defect in the bacterial defense system (Stoltz et al., 
2010). It was further found that the ΔF508 mutation induced a CF-like disease in the CFTR-/- 
pigs. This is an important step towards unraveling the molecular pathogenesis of common CF 
disease (Ostedgaard et al., 2011). The lack of functional CFTR was shown to reduce bacterial 
killing on the airways and to change of the pH towards a more acidic situation. This reduced 
the antimicrobial activity of airways surface liquid (Pezzulo et al. 2012). Airways surface liquid 
was thus identified as critical factor in the lung defense system and is directly linked with the 
initial host defense defect (Pezzulo et al., 2012). In a further attempt to unravel the etiology 
of CF, it was shown that pigs and humans with CF have reduced insulin-like growth factor 1 
(IGF1) levels at birth (Rogan et al., 2010). IGF levels might thus serve as biomarker to predict 
disease severity or the response to specific therapeutics. These findings also raise the possibility 
that IGF1 supplementation early in development might be beneficial for CF patients (Rogan 
et al., 2010). 

Hereditary tyrosinemia type 1 (HT1) is a human disease that is caused by deficiency in 
the enzyme fumary lacetoacetate hydrolase (FAH), causing hepatic failure, cirrhosis and 
hepatocellular carcinoma already early in childhood. The FAH gene was knocked out in 
porcine fibroblasts that in turn were used in SCNT. Several viable FAH+/-  pigs were produced 
that showed a normal phenotype, but had decreased FAH transcriptional and enzymatic activity 
compared with wild-type pigs (Hickey et al., 2011). 

Transgenic pigs for human eye diseases

Patients with Retinitis Pigmentosa (RP) develop night blindness early in life due to the loss of rod 
photoreceptors. Transgenic pigs were created by injecting a mutated porcine rhodopsin gene into 
pronuclei of zygotes and transgenic pigs showed a similar pathology as RP patients (Petters et 
al. 1997). Subsequently lensectomy and vitrectomy were applied which delayed photoreceptor 
degeneration in rhodopsin transgenic pigs (Mahmoud et al. 2003). Further research revealed 
that oxidative damage is a potential cause of cone cell death in a RP situation (Shen et al. 
2005). These data are in line with the hypothesis that death of rods is associated with decreased 
oxidant consumption and hyperoxia in the outer retina followed by gradual cone cell death. 
In an attempt to develop a treatment for RP patients, fetal neuroretinal cells were transplanted 
into pig eyes with severe retina degeneration. However, graft and host retinal neurons did not 
form proper connections leading to reduced retinal function in the host (Ghosh et al. 2007). 
Ribozyme based gene therapy was tested to treat autosomal dominant RP in a transgenic pig 
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model. However, the allele specific ribozyme used for the human sequence was not successful, 
whereas the hammerhead ribozyme had beneficial effects (Shaw et al. 2001). Further study of 
the RP transgenic pigs revealed that the rhodopsis PSD-95 is nearly completely lost from most 
rod terminals in transgenic swine. But an early postnatal PSD-95 expression continues in cone 
terminals even in 10 months old transgenic swine when all the rods have disappeared. This 
indicates that the loss of PSD-95 is not the consequence of the deteriorating cells (Blackmon 
et al. 2000). In transgenic porcine retina, the ectopic synapses formed between cones and rod 
bipolar cells were altered with impaired processing of inner retinal neurons (Ng et al. 2008). 

SCNT was used to create a transgenic miniature pig model expressing a specific rhodopsin 
mutation. The founder animals showed abnormal full-field electroretinography and the offspring 
inherited the transgene with the autosomal dominant mutation. The miniature pig carrying the 
P23H RHO mutation is a new model to study morphology and treatment of RP (Ross et al 2012).

Obviously, these models display key features of human RP; however the time course of 
disease progression makes this model costly, time consuming and difficult to study. Treatment 
with iodoacetic acid emerged as an alternative rod dominant model of retinal damage which 
shared many features with the transgenic RP pig model (Wang et al. 2011).

Another model for human eye disease was recently reported. Transgenic pigs expressing the 
human disease causing ELOVL4 mutation revealed photoreceptor loss and disorganized inner 
and outer segments. These pigs are promising as new model to examine macular degeneration 
and STGD3 pathogenesis (Sommer et al. 2011).

Transgenic pigs in diabetes research 

Transgenic pigs expressing a dominant negative receptor for the incretin hormone glucose-
dependent insulinotropic polypeptide (GIP) revealed a crucial role of the GIP system for age 
related expansion of pancreatic β-cell mass. This model shared important characteristics with 
type 2 diabetes mellitus patients, including reduced glucose tolerance, insulin secretion and 
progressive reduction of β-cells (Renner et al. 2010). Metabolic signatures of specific amino 
acids and lipids were investigated in this model and several potential biomarkers of early phases 
of β-cell dysfunction and mass reduction were identified (Renner et al. 2012 a). Transgenic 
pigs with permanent diabetes were created by SCNT with a mutated insulin gene. These pigs 
show typical features of progressive diabetes, including cataract development and pathology 
of kidneys and the nervous system (Renner et al. 2012 b).

Transgenic pigs with β-cell specific expression of LEA29Y served as donors in a 
xenotransplantation model. Xenograft islet cell clusters from these pigs rescued diabetes and 
prevented rejection in a humanized mouse model (Klymiuk et al. 2012). Transgenic cloned 
pigs have also been produced carrying a dominant negative mutant for a hepatocyte nuclear 
factor 1a mutation showing obvious diabetic symptoms (Umeyama et al. 2009). The use of 
islets from pigs transgenic for a fluorogenic protein GFP (green fluorescent protein or Kusabira-
Orange) may facilitate development of islet cell xenotransplantation (Teratani et al. 2012). 

Pigs as models for neurological diseases

The survival motor neuron (SMN1) gene was mutated in fibroblasts to create a transgenic swine 
model for spinal muscular atrophy (SMA); but pigs have not yet been produced with this mutation 
(Lorson et al. 2008). In an effort to develop porcine models for Alzheimer disease, Göttingen 
miniature pigs were produced that carry a random integration of the Alzheimer disease causing 
dominant mutation APPsw. Pigs were produced by handmade cloning in cells that had a single 
copy of the transgene inserted in the GLIS locus. The transgene was consistently expressed and 
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the accumulation of Alzheimer proteins is expected to occur in the brain at the age of 1 – 2 years 
(Kragh et al. 2008). A construct harboring the Huntington cDNA was injected into pronuclei 
of zygotes and transgenic minipigs were produced. However, a phenotype was not reported 
(Uchida et al. 2001). More recently, pigs transgenic for Huntington’s disease were produced 
via SCNT. These pigs expressed a mutant Huntington gene with an expanded polyglutamine 
tract (Yang et al. 2010). Severe postnatal death, dyskinesia and chorea-like movement were 
observed in some transgenic pigs with expression of the mutant huntingtin. The typical apoptotic 
neurons with DNA fragmentation were found in the brains of transgenic pigs (Yang et al. 2010).

Porcine cancer models 

Pigs have been produced with a knockout of the breast cancer associated gene 1 (BRCA1) which 
predisposes for breast cancer and accounts for the majority of the cases of familial breast and 
ovarian cancer. Cells with a knockout of BRCA1 mediated via recombinant adeno-associated 
virus were produced and used in SCNT. Targeting efficiency was high, however, all BRCA1 
hemizygous transgenic piglets died shortly after birth (Luo et al. 2011). The reasons of this 
postnatal mortality remain unclear; it illustrates the difficulty to produce a meaningful large 
animal model for specific diseases. 

Gene targeted cloned pigs carrying a mutation in the APC (adenomatous polyposis coli) gene 
displayed a similar pathology in the intestine as human patients with familial adenomatous 
polyposis (Flisikowska et al., 2012). This large animal model is promising for the development of 
novel diagnostic and therapeutic strategies for colorectal cancer. Live pigs with a mutation in the 
tumor suppressor p53 gene were produced, that is orthologous to the oncogenic human mutant 
TP53R175H and mouse Trp53R172H mutation. Gene targeted MSCs were successfully employed 
in SCNT and viable piglets were produced with the TP53R167H mutant allele in a heterozygous 
form. This is the first pig model that demonstrates the feasibility of an inactivation mutation 
of the gatekeeper tumor suppressor gene p53 in a non-rodent mammal (Leuchs et al. 2012). 

Immunodeficient pigs

A porcine model of severe combined immunodeficiency (SCID) has been produced which is 
largely similar to the well-known mouse model. Fibroblasts were targeted for disruption of the 
X-linked interleukin 2 receptor gamma chain gene (Il2rg) and were employed as donor cells 
to produce cloned pigs. Viable heterozygous Il2rg females were produced, whereas the IL2rg 
heterozygous males were athymic and showed significantly reduced immunoglobulin and T 
and NK cell production, clearly mimicking the human SCID situation (Suzuki et al. 2012). 
Moreover, allogeneic bone marrow transplantation was compatible with stable integration of 
heterozygous Il2rg-IY and reconstituted the Il2rg-IY lymphoid lineage. These pigs are a very 
important step towards the creation of pig models for the evaluation of cell based regenerative 
treatments. These significant advances may complement the already existing arsenal of 
genomically humanized mice that are a valuable tool for gaining a better understanding of 
basic immunological activity (Devoy et al. 2012).

Porcine atherosclerosis models

Modeling atherosclerosis in pigs has been difficult because rapid atherosclerosis could not be 
induced in normal pigs by high-fat feeding regimens. Promising transgenic approaches have 
been reported recently. Transgenic Yucatan minipigs were produced that over-expressed human 
catalase on the endothelial cells. The transgene was transfected into fibroblasts and transgenic 
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fibroblasts were used in SCNT. Transgenic pigs showed increased activity of catalase and reduced 
levels of H2O2 in culture (Whyte et al. 2011). Using Sleeping Beauty DNA transposition and 
SCNT, Yucatan minipigs were created with liver specific expression of the human D374Y-PCSK9 
gain of function mutation. The PCSK9 gene encodes human proprotein convertase subtilisin/
kexin type 9 that is critically involved in cholesterol metabolism. D374Y-PCSK9 transgenic 
pigs displayed the typical pathology of human atherosclerosis, including reduced hepatic low-
density lipoprotein (LDL) receptor levels, impaired LDL clearance, severe hypercholesterolemia 
and atherosclerotic lesions in the vasculatory system (Al-Mashhadi et al., 2013). Moreover, 
pigs with a mutated LDL receptor were created using specific TALEN, but the phenotype has 
not yet been reported (Carlson et al. 2012). 

Porcine models of human skin diseases

The keratinocyte-specific human transgene K5-hGli2ΔN was expressed in transgenic 
pigs produced by SCNT. This gene is critically involved in the development of basal cell 
carcinomas. The transgenic pigs developed the typical skin lesions that could not be treated 
by antibiotics leading to an early death of the animals. This pathology has not been observed 
in the corresponding mouse model (McCalla-Martin et al. 2010). A model for cutaneous 
inflammation was produced in Göttingen miniature pigs, expressing the human β1 or a2 integrin 
genes under control of a keratinocyte specific promoter (Staunstrup et al. 2012). Transgenic 
pigs showed ectopic expression of human integrins and localization within the keratinocyte 
plasma membrane. This indicates that regulation of integrins β1/a2 by over-expression of the 
transgenes occurred via different cellular signaling pathways. Several markers of perturbed 
skin homeostasis were identified. These pigs are the first model with molecular markers of skin 
inflammation (Staunstrup et al. 2012). 

Xenotransplantation of porcine organs to human patients

Today more than 250,000 people owe their lives a successful human organ transplantation 
(allotransplantation). Ironically, the success of organ transplantation technology has led to an 
acute shortage of appropriate organs, because cadaveric and live organ donation falls far short 
of meeting the demand in western societies. To close the growing gap between demand and 
availability of appropriate organs, transplant surgeons have long considered the possibility of 
using xenografts from domesticated pigs (Bach 1998; Platt et al. 1998; Kues and Niemann 2004). 
Essential prerequisites for successful xenotransplantation are: (i) overcoming the immunological 
hurdles, (ii) preventing the transmission of pathogens from the donor animal to the human 
recipient, and (iii) compatibility of the donor organs with human physiology. This requires a 
series of critical steps and can be time, labor and cost expensive (Figure 2).

An important advantage of xenotransplantation is the opportunity to modify the genome of the 
donor animals. Two modifications are required for preventing the first immunological hurdle, 
the hyperacute rejection (HAR), in pig-to-human transplantation: i) Elimination of antigenic sugar 
residues via genetic knockout of the porcine α1,3-galactosyltransferase (GGAT-1)(homozygous 
Gal kO), and/or ii) Suppression of the recipient’s complement system by the introduction of 
one or more regulators of complement activation (RCA), such as CD55, 46, or 59 (Figure 3). 
A tremendous amount of research focused on the production of genetically engineered pigs 
expressing inhibitors of the human complement cascade. The validity of this approach has been 
convincingly demonstrated by several groups (Schuurman et al., 2002; McCurry et al., 1995; 
Bhatti et al., 1999; Chen, et al. 1999). Most importantly, it has been demonstrated that organs 
from genetically engineered pigs lacking functional α1,3-galactosyltransferase and thus lacking 
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expression of α-Gal epitopes (GGTA1-KO pigs), do not undergo HAR once transplanted into 
primates (Yamada et al., 2005; Kuwaki et al., 2005). 

While induction of a knockout of a specific gene is extremely difficult and inefficient in 
somatic cells used in SCNT, novel approaches have been successfully explored to overcome 
this bottleneck in the production of pigs with inactivation of epitopes critically involved in the 
immunological rejection after porcine-to-primate xenotransplantation. Zinc finger nucleases 
(ZFNs) are a class of engineered DNA-binding proteins that facilitate editing of the genome by 
creating double-strand breaks in DNA at targeted loci. The ZFN mediated knock-out makes 
the integration of an antibiotic selection cassette superfluous that are used in conventional 
HR strategies for selection of the targeted cells. The first pigs with a homozygous GGTA-1KO 
induced with the aid of specific ZFNs were recently reported (Hauschild et al. 2011). 

Fig. 3  Schematic diagram of the rejection responses in a xenotransplantation setting and 
molecules that are involved in these processes. (for details see text)

1.	 Production and propagation of transgenic pigs (SCNT)
2.	 Determination of transgenic expression patterns 
	 - mRNA
	 - Protein (intensity, tissue specificity, etc.)
3.	 Selective breeding of transgenic lines
4.	 In-vitro-testing to determine the protective properties against HAR and/or AVR (eventually 

safety testing for PERV, etc.)
5.	 Perfusion of isolated porcine organs with human blood  

(Modelling the human situation)
6.	 In-vivo-studies in primates
	 - Physiological compatibility
	 - Protection against immune reactions
	 - Testing for transmission of pathogens

Fig. 2 Steps of the evaluation of transgenic pigs for suitability in xenotransplantation
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Even in the case of GGTA1-KO pigs, porcine xenografts eventually failed as a consequence 
of the acute humoral (AHXR) or delayed (DXR) xenograft rejection, also called acute vascular 
rejection (AVR) (Platt et al., 1998; Bach et al., 1996). Several factors have been implicated in 
the pathogenesis of AHXR and pathology is primarily characterised by vascular thrombosis, 
blood extravasation and oedema (Platt et al., 1991). Cellular infiltrates include neutrophils, 
macrophages, CD8+ T cells and few NK cells (Vega et al., 2002). AVR is characterised by the 
progressive deposition of antibodies and complement and is associated with apoptosis and 
necrosis of endothelial cells, contributing to platelet aggregation and thrombosis in the graft. 
The current view is that long term survival of xenografts after transplantation into primates 
requires a specifically tailored immunosuppression regimen compliant with current clinical 
standards, and additional modifications of the pig genome. Several candidate genes, incl. 
human thrombomodulin (hTM), human heme-oxygenase 1 (hHO-1), human A20 (hA20), or 
CTLAIg (soluble CD28 receptor analog), have been explored in their ability to improve long 
term survival of porcine xenografts after transplantation into nonhuman primates (Petersen et 
al., 2009; Petersen et al., 2011; Oropeza et al., 2009; Phelps et al., 2009) (Figure 3). 

Extensive research has revealed that the risk of porcine endogenous retrovirus (PERV) 
transmission to human patients is low, paving the way for preclinical testing of xenografts 
(Switzer et al. 2001; Irgang et al. 2003). RNA interference (RNAi) is a promising method for 
knocking down PERV expression in porcine somatic cells. Using RNAi mediated knockdown, 
PERV expression has been significantly reduced in porcine somatic cells for 4-6 months, these 
cells were successfully used in SCNT and gave normal piglets with long-term suppression 
of PERV (Dieckhoff et al., 2008; Semaan et al., 2012). RNAi knockdown thus provides an 
additional level of safety for porcine-to-human xenotransplantation.

Although additional refinements will always be possible, it is expected that appropriate 
lines of transgenic pigs will be available as organ donors within the next five to ten years. 
Guidelines for the clinical application of porcine xenografts already exist in the USA and 
are being developed in other countries. The general consensus of a worldwide debate is that 
the technology is ethically acceptable provided that the individual`s well-being does not 
compromise public health (e.g. the risk of PERV recombination). The improvement in quality 
of life for patients receiving conventional allotransplants is dramatic, but xenotransplantation 
is also economically attractive because the long term costs of maintaining patients with severe 
kidney disease on dialysis or treating patients with chronic heart disease can be greater than 
the cost of a successful transplant. Preliminary functional data on porcine kidneys and hearts in 
non-human primates is promising although the long term interaction between porcine organs 
and human physiology is to a great extent unexplored (Ibrahim et al. 2006).

Reprogramming of somatic cells and development of cell based therapies

To facilitate the use of domesticated pigs as a tool for preclinical testing of novel therapies and 
to facilitate the derivation of germ line competent pluripotent stem cells, Oct4-GFP transgenic 
pigs were recently produced from our laboratory (Nowak-Imialek et al., 2011). The transcription 
factor Oct4 is essential for the maintenance of pluripotency and for reprogramming somatic 
cells into a pluripotent state. Using a18 kb genomic sequence of the murine Oct4 gene fused to 
the enhanced green fluorescent (eGFP) cDNA, pluripotent cells could unequivocally identified 
by the green fluorescence. Expression of the EGFP reporter was confined to germ line cells 
in live pigs, the inner cell mass and trophectoderm in blastocysts and in testicular germ cells 
(Figure 4). Reprogramming of fibroblasts from these animals by fusion with pluripotent murine 
embryonic stem cells or viral transduction using human Oct4, Sox2, KLF4 and cMYCcDNAs 
revealed Oct4-EGFP reactivation (Figure 5) clearly showing the usefulness of this approach. 
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These cells have been used for studies to isolate and characterize pluripotent stem cells in the 
pig (Kues et al., 2013; Petkov et al., 2013). 

Transgenic pigs were also produced that expressed mitochondria localized enhanced yellow 
fluorescent protein under the control of the germ cell specific stimulated by retinoic acid (Stra8) 
promoter in the testicular tissue. Expression of the Stra EYFP transgene in spermatogenic cells 
could serve as a useful model for germ cell transplantation and in vitro spermatogenic studies 

Fig. 5 Activation of the reporter transgene Oct4-eGFP in porcine fibroblasts by over-
expression of the 4 reprogramming factors. The green fluorescence indicates expression 
of the pluripotency marker Oct4 which in turn indicates reprogramming of the somatic 
cells into a pluripotent state.

Fig. 4 Germ line specific expression of the Oct4/eGFP transgene, the green fluorescence 
indicates the presence of Oct4 expression in porcine testicular tissue, which is a marker 
for pluripotency.

(Analysis of 12 transgenic fetuses on days 25-30)
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(Sommer et al., 2011). Chimeric pigs derived from induced pluripotent stem cells with germ 
line transmission in the absence of tumor formation, were recently reported. This is a major 
step forward towards the establishment of a translational model to study effects and safety of 
stem cell therapies (West et al., 2011). 

Concluding remarks and perspectives 

The pig has a long and successful history in biomedical research and has thus benefitted 
significantly human health and well-being. The number of non-transgenic pig models is already 
large and the potential of the pig in biomedical research will be further enhanced with the recent 
availability of the porcine genome and molecular tools needed for targeted genetic modification 
similar to the laboratory mouse. Pig models will not replace the already existing mouse models 
but can provide significant novel insight into a variety of diseases, as mouse models frequently 
do not mimic the human situation. Transgenic pigs will also play an increasing role in the 
development of novel therapies based on stem cell technology. The biomedical use of pigs 
will also facilitate transgenic pig production for agricultural production. This will be stimulated 
by novel genomic knowledge and tools emerging from ongoing research.
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