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Among livestock species, swine exhibit the most severe naturally-occurring 
intra-uterine growth restriction (IUGR) primarily due to a reduction in 
net protein synthesis. Thus, new knowledge about fetal metabolism of 
amino acids (AA), which are building blocks for proteins and regulators 
of intracellular protein turnover, can provide a solution to this problem. 
Among all AA, requirements of glutamate and glutamine by fetal pigs 
are quantitatively the highest, but cannot be met through uterine uptake 
alone. Nearly all glutamate and ~70% glutamine in diets for gestating 
swine are degraded in the maternal small intestine and, therefore, do not 
enter the portal circulation. This necessitates interorgan AA metabolism 
involving maternal skeletal muscle, placenta, and fetal skeletal muscle 
to synthesize glutamate and glutamine from branched-chain AA, as well 
as storage of glutamate and glutamine in allantoic and amniotic fluids. 
The porcine placenta does not degrade arginine or glutamine, leading to 
their maximal transfer from maternal to fetal blood. Therefore, maternal 
sources of ornithine and proline play a major role in the placental synthesis 
of polyamines needed for placental growth including placental vascular 
growth. Likewise, during late gestation, uterine uptake of arginine, proline 
and aspartate/asparagine cannot meet requirements for optimal fetal 
growth.  To provide sufficient arginine, the fetal small intestine synthesizes 
citrulline and arginine from glutamate and glutamine, and fetal kidneys 
convert citrulline into arginine. Collectively, glutamine and arginine are 
major sources of AA nitrogen transferred between mother and fetus. Results 
of recent studies indicate that dietary supplementation with these two AA 
can ameliorate IUGR in swine. These findings greatly advance the field of 
maternal-fetal AA metabolism in pigs, but also have important implications 
for improving reproductive efficiency in swine production worldwide.  

Introduction

Domestic pigs have no brown adipose tissue (Satterfield & Wu 2011), but possess a high 
capacity for synthesizing triacylglycerides in white adipose tissue after birth (Smith et al. 1999). 
Excess white fat in the body causes insulin resistance, metabolic disorders, and impaired 
lactation performance in animals, including swine (Jobgen et al. 2006; Wu 2010a). Thus, 
during gestation, gilts or multiparous sows are usually fed a substantially reduced amount of 
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diet (e.g., 2 to 2.2 kg/day that is approximately 50% of their ad libitum feed consumption) to 
reduce energy intake and prevent females from becoming overweight (Ashworth 1991; Kim 
et al. 2009; Pond et al. 1969, 1981).  This strategy, however, results in inadequate provision 
of dietary amino acids (AA) to both mother and fetus (Wu et al. 2010). Amino acids are the 
building blocks for proteins in cells and, importantly, they are also precursors for synthesis of 
glucose and nitrogenous substances [e.g., nitric oxide (NO), polyamines, creatine, dopamine, 
thyroid hormones, and catecholamines] essential for whole body homeostasis (Wu 2009).  
Thus, AA have nutritional, physiological, and regulatory roles in animals (Fig. 1).

Current feeding programs for gestating swine remain suboptimal due, in part, to inadequate 
knowledge about maternal and fetal AA nutrition (Kim et al. 2009). Thus, among livestock 
species, swine suffer the greatest prenatal loss (up to 50%) and exhibit the most severe naturally-
occurring intra-uterine growth restriction (IUGR) primarily because of a reduction in net protein 
synthesis (Vallet et al. 2002; Wu et al. 2006).  This provides an impetus to develop novel and 
effective strategies to improve pregnancy outcome in pigs.  The major objectives of this article 
are to highlight maternal-fetal AA metabolism and nutrition in gestating swine.  Readers are 
referred to the work of Bazer et al. (2013) for recent advances in the roles of AA in regulating 
embryonic growth, survival and development during early pregnancy.  

Sources of AA for the fetus

The porcine fetus receives AA from its mother via placental transport and can synthesize some 
AA, including alanine, arginine, asparagine, aspartate, cysteine, glutamate, glutamine, glycine, 
proline, serine, and tyrosine (Wu et al. 2010).  Fetal blood, which contains relatively high 
concentrations of glutamine and glycine, is the parenteral source of all AA for the fetus.  In 
addition, allantoic fluid, which is derived from both maternal and fetal sources, is a reservoir 
of AA for the fetus and contains unusually high concentrations of arginine (e.g., 4 to 6 mM) 

Fig. 1 Nutritional, physiological and regulatory roles of AA in animals.  
Reprinted from Wu (2010) with permission from American Society of Nutrition.
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and glycine (4 to 5 mM) during early and late gestation, respectively (Table 1).  Nutrients in 
the allantoic fluid are transported through the allantoic epithelium, enter the fetal-placental 
circulation, and are utilized by fetal-placental tissues (Figure 2).  During early pregnancy, 
marked increases in concentrations of each AA in allantoic fluid are not accounted for by 
changes in allantoic fluid volume (Table 1) or by changes in concentrations of AA in maternal 
and fetal plasma (Wu et al. 1995).  AA may play an important role in regulating osmolality in 
allantoic fluid.

Amniotic fluid is derived from both the fetus (kidneys, lungs, epidermis, and fetal blood vessels 
in the placenta and umbilical cord) and the mother (blood vessels via amniotic membranes) 
(Schmidt 1992).  This fluid is removed by both the fetus and the mother through the same 

Table 1. Amino acid composition in the body and allantoic fluid of fetal pigs

Amino acid

AA composition in fetal pigs on different
days of gestation (mg AA/g wet weight)1

AA composition in allantoic fluid of fetal
pigs on different days of gestation (µM)2

40 60 90 110 114 30 40 60 90 110

Alanine4 3.63 3.01 4.26 5.87 6.46 233 281 92 396 669

Arginine5 3.77 3.24 4.58 5.85 6.47 185 4103 642 128 465

Aspartate4 2.90 2.34 3.01 3.92 4.25 16 164 85 170 195

Asparagine4 2.41 1.94 2.50 3.25 3.53 61 280 56 83 139

Citrulline4 0.023 0.024 0.032 0.046 0.054 10 72 46 96 30

Cysteine 4 0.78 0.67 0.92 1.19 1.28 70 220 308 230 604

Glutamate4 4.94 4.21 5.34 6.81 7.72 112 2383 609 1182 1056

Glutamine5 3.19 2.72 3.44 4.39 4.98 638 3442 273 652 701

Glycine5 3.69 3.60 6.53 9.23 10.8 803 360 195 4227 3054

Histidine3 1.54 1.05 1.42 1.85 2.07 76 687 61 73 78

Hydroxyproline4 0.50 0.91 2.08 3.01 3.48 61 49 28 41 82

Isoleucine3 2.18 1.71 2.08 2.61 2.89 28 80 31 10 13

Leucine3 5.04 3.83 4.82 6.13 6.75 63 153 38 14 33

Lysine3 5.15 3.42 4.14 5.19 5.77 362 1950 390 214 617

Methionine3 1.39 1.05 1.34 1.71 1.86 17 31 16 15 273

Ornithine4 0.08 0.075 0.09 0.12 0.13 124 2524 645 76 85

Phenylalanine3 2.78 2.03 2.52 3.14 3.44 36 40 34 195 51

Proline5 3.68 4.07 5.42 7.06 7.82 261 144 46 117 336

Serine4 3.05 2.35 2.96 3.98 4.33 553 902 79 603 1218

Taurine4 0.28 0.23 0.28 0.36 0.38 457 641 298 450 658

Threonine3 2.52 1.90 2.42 2.95 3.24 218 1780 89 343 545

Tryptophan3 0.72 0.61 0.82 1.03 1.11 13 53 69 164 574

Tyrosine4 2.13 1.58 1.85 2.27 2.43 45 70 22 42 39

Valine3 3.40 2.41 3.13 3.88 4.21 80 163 66 57 144

1Adapted from Wu et al. (1999).
2Adapted from Wu et (1995) and Wu et al (1996).
3Traditionally classified as “nutritionally essential AA” (EAA).
4Traditionally classified as “nutritionally nonessential AA” (NEAA).
5Currently classified as “conditionally essential AA” (CEAA; Wu 2013).
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channels, along with the participation of the fetal intestine following swallowing. Thus, with 
the development of intestinal amino acid transport systems during gestation, the drinking of 
amniotic fluid provides the enteral source of AA for fetal utilization.  The nutritional significance 
of amniotic fluid is graphically illustrated by the finding that esophageal ligation, which prevents 
the entry of this fluid into the small intestine, results in IUGR in the fetus (Trahair & Harding 
1995). The amniotic fluid provides a large amount of glutamine for supporting growth and 
development of the fetal small intestine (Dekaney et al. 2003).  Likewise, in gestating gilts fed 
a low-protein (0.5% crude protein) diet, reduced concentrations of glutamine in amniotic fluid 
are associated with IUGR between d 0 and 60 of gestation (Wu et al. 1998a,b).

Based on growth or nitrogen balance, AA were traditionally classified as nutritionally 
essential or nonessential (Wu 2010b). Nutritionally essential AA (EAA) were defined as those 
AA whose carbon skeletons are not synthesized by animals, whereas nutritionally nonessential 
AA (NEAA) as those AA which are synthesized de novo in adequate amounts by animals to 
meet requirements for maintenance, growth, development and health and, therefore, need 
not be provided in the diet. However, EAA and NEAA are only categorizations according to 
definitions, and physiological functions of AA should be taken into consideration in formulating 
diets for animals. In fetal pigs, concentrations of free NEAA, the content of NEAA in proteins, 
and, therefore, requirements of NEAA for tissue protein synthesis are greater than those of EAA 
at all gestational stages (Table 3). To date, there is no compelling experimental evidence for 
sufficient synthesis of NEAA by swine or other animals to meet requirements for maximum 
growth or optimal health (Wu et al. 2013). Thus, in recent years, some NEAA have been 
reclassified as conditionally essential AA (CEAA), which are defined as those AA that normally 
can be synthesized in adequate amounts by animals, but which must be provided in the diet to 
meet optimal needs under certain conditions (e.g., gestation, lactation, and weaning) wherein 
rates of utilization are greater than rates of synthesis (Wu 2009).

Limitations to uterine capacity in pigs

Fetal growth and survival in mammals is affected by complex factors, including uterine 
capacity and environment, including AA nutrition (Ashworth et al. 2001; Wu et al. 2006).  In 
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pigs, inadequate uterine capacity is a major factor contributing to suboptimal fetal growth and 
survival after d 25 of gestation (Bazer et al., 2009).  This problem is even more severe in modern 
highly prolific breeds than in breeds used in the swine industry 30 yr ago due to selection for 
increased litter size (Vallet et al. 2009). For example, IUGR piglets (< 1.10 kg birth weights) 
can account for up to 25% of total piglets born and represent 76% of preweaning deaths in 
pigs (Wu et al. 2010). At present, there is no nutritional support to increase growth and survival 
of IUGR piglets during postnatal periods to compensate for their reduced birth weight and, 
therefore, they are often culled on farms (Vallet & Freking 2006).

The gestating pig develops a noninvasive, diffuse type of epitheliochorial placentae, whose 
weights, lengths, and surface area vary greatly among conceptuses within the same uterus (Bazer 
et al. 2008).  Immediately after implantation of the conceptus, various genes are expressed in 
the trophectoderm to initiate placental formation (Bazer et al. 2009; Vonnahme & Ford 2004). 
Implantation begins around d 14 of gestation and is completed around d 18 in pigs, followed 
by placentation (Geisert & Yelich 1997).  The placenta undergoes rapid formation of new blood 
vessels (i.e., angiogenesis) and marked growth during pregnancy (Reynolds & Redmer 2001).  
Thus, blood vessels are clearly visible in porcine placentae and allantoic membranes on d 25 
of pregnancy (Li et al. 2010).  Notably, the porcine placenta grows rapidly between d 20 and 
60 of gestation and its development is nearly maximal by d 70 (Knight et al. 1977; Wu et al. 
2005), a period preceding rapid fetal growth (Table 2).  Placental angiogenesis is necessary 
to increase blood flow from the placenta to the fetus that supplies nutrients from mother to 
fetus (Bazer et al. 1988; Ford et al. 2002; Reynolds et al. 2006). The functional capacity of the 
uterus and the placenta for provision of nutrients and oxygen from mother to fetus is vital to 
fetal survival, growth and development (Wu et al. 2004; Bazer et al. 2008).  

Uterine uptake of AA for fetal growth in gestating pigs

To assess the availability of AA present in maternal blood to the placenta, we previously 
determined uterine uptake of AA in gestating gilts on d 110–114 of pregnancy based on uterine 
arteriovenous concentrations and the rate of uterine blood flow (243 mL/min/fetus).  All AA, 
except for γ-aminobutyric acid, which is negligible (< 0.1 μM) in uterine arterial and venous 
plasma, are taken up by the uterus of pregnant gilts (Table 3). Uterine uptake of glutamine 
is greatest, followed by glycine, proline, leucine, alanine, lysine, and arginine, in decreasing 
order. However, uterine uptake of aspartate/asparagine and glutamate represents only 9 and 
29% of fetal accretion, respectively.  Note that glycine, which has versatile physiological 
functions (Wang et al. 2013), has the highest rate of accretion in fetal tissue proteins among all 
AA (Table 3). Because AA are oxidized by the fetus, most of the NEAA and CEAA (including 
glutamine, glutamate, aspartate, glycine, arginine, and proline) taken up by the uterus are likely 
to be insufficient for fetal protein synthesis. Because hydroxyproline is not utilized for protein 

Table 2.  Placental and fetal weights as well as allantoic and amniotic fluid volumes in gestating pigs

Variable
Days of gestation 

18 20 30 40 60 90 110 114

Placental weight, g --- 0.22 33 59 182 208 237 225

Fetal weight, g 0.030 0.063 1.7 11 130 596 1176 1486

Allantoic fluid, ml 1.0 4.1 227 74 347 83 56 29

Amniotic fluid, ml 0.02 0.06 2.2 12.5 119 127 81 32

Adapted from Bazer 1988 and Wu et al. (2005).
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synthesis, peptide-bound hydroxyproline in fetal pigs is derived from proline. Pathways for AA 
synthesis via inter-organ cooperation in mammals including pigs are now largely known (Wu 
2013) and are illustrated in Figure 3. For example, the maternal and fetal skeletal muscle, as 
well as the placenta of gestating swine synthesize glutamine and glutamate from branched-chain 
AA and α-ketoglutarate.  In both the sow and her fetuses, the small intestine converts arterial 
glutamine as well as glutamine, glutamate, and proline within its lumen into citrulline and 
arginine.  The citrulline and ornithine transported from the maternal blood is used by almost 

Table 3. Dietary intake of AA, entry of AA into the portal vein, uterine uptake of AA and fetal accretion of AA in 
gilts at Days 110-114 of gestation

AA AA content in 
maternal diet  

(%, as-fed basis)1

AA intake from 2 
kg diet by gilt (g/

day/gilt)1

Entry of dietary 
AA into portal 

vein (g/day/gilt)2

Uterine uptake 
of AA (mg/day/

fetus)3

AA accretion in 
fetal pig (mg/day/

fetus)3

Alanine 0.78 15.6 11.7 891 723

Arginine 0.70 14.0 7.22 749 732

Aspartate 0.76 15.2 0.65 76 461

Asparagine 0.58 11.6 8.68 264 382

Citrulline 0.00 0.00 0.00 388 7.0

Cysteine3 0.23 4.6 3.28 202 136

Glutamate 1.07 21.4 0.74 420 922

Glutamine 1.22 24.4 6.92 2571 595

Glycine 0.55 11.0 7.76 1617 1375

Histidine 0.33 6.6 4.54 281 240

Hydroxyproline 0.00 0.00 0.00 119 434

Isoleucine 0.51 10.2 5.70 416 328

Leucine 1.17 23.4 13.3 1031 756

Lysine 0.58 11.6 7.48 762 661

Methionine 0.18 3.6 2.45 245 202

Ornithine 0.00 0.00 0.00 218 14.5

Phenylalanine 0.62 12.4 8.32 452 381

Proline 1.03 20.6 10.8 1179 887

Serine 0.50 10.0 7.14 575 471

Taurine 0.00 0.00 0.00 122 38.3

Threonine 0.49 9.8 6.07 482 361

Tryptophan 0.13 2.6 1.81 204 137

Tyrosine 0.45 9.0 6.19 340 254

Valine 0.65 13.0 7.27 585 455

1The diet was based on corn and soybean meal. Feed intake by each gilt was 2.0 kg per day during the entire 
period of gestation (Wu et al. 2010).  The average litter size at d 110-114 of gestation was 10.0 fetuses per gilt.
2Assuming true ileal digestibility of 86% for each AA.  
3Days 110-114 of gestation (Wu et al. 1999).
Values for the bioavailability (%) AA in the lumen of the small intestine to the portal vein are based on those for 
growing pigs (Wu et al. 2010):  Ala, 87; Arg, 60; Asn, 87; Asp, 5; Cys, 83; Glu, 4; Gln, 33; Gly, 82; His, 80 Ile, 65; 
Leu, 66; Lys, 75; Met, 79; Phe, 78; Pro, 61; Ser, 83; Thr, 72; Trp, 81; Tyr, 80; and Val, 65).  Products of intestinal 
AA metabolism that enter the portal vein are not included.
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all cell types in the fetus for the synthesis of arginine and proline, respectively. At present, 
quantitative aspects of placental uptake of AA in gestating swine are unknown due to the lack 
of data on placental blood flow. However, the parity between uterine uptake and accretion 
of AA in fetal pigs is particularly large for glutamate and aspartate, and to a lesser extent, for 
proline and arginine. Therefore, these AA must be synthesized from branched-chain AA and 
glucose, and possibly from other AA by the placenta and/or the fetus. 

Fetal to maternal ratios of glutamine and branched-chain AA in plasma are much greater and 
less than 1, respectively (Wu et al. 1995).  For example, in the plasma of pigs, fetal/maternal 
ratios for glutamine are 3.87 and 2.88, respectively, at d 45 and 110 of gestation. Such disparate 
glutamine levels between mother and fetus suggest that glutamine is actively synthesized by 
the placenta, which then releases glutamine into the fetal circulation. In contrast, fetal/maternal 
ratios for branched-chain AA are less than 0.70 between d 45 and 110 of gestation, suggesting 
extensive catabolism of uterus-derived BCAA in the placenta.  Results of both enzymological 
and metabolic studies indicate that branched-chain amino acids and glucose donate the amino 
group and the carbon skeleton, respectively, for the synthesis of glutamine by the porcine 
placenta (Self et al. 2004). Interestingly, there is no detectable catabolism of glutamine in the 
porcine placenta throughout pregnancy (Self et al. 2004), which ensures maximum output of 
glutamine by this tissue (Figure 3). These findings provide valuable insight into the dynamic 
role of the placenta in fetal metabolism and nutrition.

Utilization of AA for placental growth and development

The placenta uses both EAA and NEAA to synthesize proteins to support its growth and 
development. Protein synthesis is stimulated by polyamines (i.e., putrescine, spermidine, and 
spermine) (Wu et al. 2008). Unlike most other tissues which convert arginine to polyamines 
via arginase and ornithine decarboxylase, the porcine placenta lacks arginase and, therefore, 
cannot synthesize ornithine from arginine (Wu et al. 2005). This feature of AA catabolism helps 
maximize the transfer of arginine from maternal to fetal blood, leading to an unusual abundance 
of arginine in porcine allantoic fluid for supporting fetal growth (Wu et al. 1996).  At present, 
it is unknown whether arginine can be metabolized in the placenta to generate putrescine via 
arginine decarboxylase and agmatinase (Bazer et al. 2013). Interestingly, the porcine placenta 
expresses a high activity of proline oxidase for oxidizing maternal blood-derived proline to form 
pyrroline-5-carboxylate, a precursor of ornithine and, therefore, polyamines (Figure 3).  The 
synthesis of polyamines requires methionine as a donor of the methyl group via the formation 
of S-adenosylmethionine.  In maternal tissues, proline is synthesized from arginine (Wu et al. 
2011).  Besides polyamines, NO (a product of arginine degradation by NO synthase) plays an 
important role in placental growth, including placental angiogenesis and vascular growth, as 
well as blood flow (Meininger & Wu 2002; Wu et al. 2009).  Generation of NO from arginine 
is increased by some AA (e.g., taurine and citrulline) and is inhibited by others (e.g., lysine and 
homocysteine) (Wu & Meininger 2002).  Thus, appropriate proportions and amounts of all AA, 
including EAA and NEAA, are important factors affecting NO synthesis and uterine capacity.

Besides serving as substrates for placental synthesis of protein and nitrogenous metabolites, 
AA (e.g., arginine, glutamine, and leucine) regulate these metabolic pathways via various 
cell signaling mechanisms, including phosphorylation of the mechanistic target of rapamycin 
(MTOR) protein (Jobgen et al. 2006; Li et al. 2009; Bazer et al. 2012). Using trophectoderm 
cells derived from conceptuses on day 12 of gestation, we found that addition of 100 and 350 
μM arginine to culture medium increased the abundance of total and phosphorylated proteins 
for MTOR, ribosomal protein S6 kinase 1, and eukaryotic initiation factor 4E-binding protein-1 
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Fig. 3 Amino acid metabolism in the porcine placenta.  The enzymes catalyzing the indicated reactions 
are: 1, BCAA transaminase; 2, glutamate dehydrogenase; 3, pyrroline-5-carboxylate synthase; 4, 
pyrroline-5-carboxylate reductase; 5, aspartate transaminase; 6, alanine transaminase; 7, asparagine 
synthetase; 8, enzymes for synthesis of glycoproteins; 9, enzymes of glycolysis; 10, glutamine:fructose-
6-phosphate transaminase; 11, phosphate-dependent glutaminase; 12, glutamine synthetase; 13, 
ornithine aminotransferase; 14, arginase; 15, proline oxidase; 16, enzymes of the pentose cycle; 17, 
fructose kinase; 18. enzymes converting glucose into fructose; 19, serine hydroxymethyl transferase; 
20. enzymes for converting D-3-phosphoglycerate and glutamate into serine;  21, argininosuccinate 
synthase; 22, argininosuccinate lyase;  23, enzymes for GTP synthesis; 24, enzymes for converting GTP 
into tetrahydrobiopterin; 25, NO synthase; 26, branched-chain α-ketoacid dehydrogenase;  27, enzymes 
for converting glucose into α-KG; 28, enzymes for synthesis of nucleotides; 29, enzymes for DNA and 
RNA synthesis; 30, enzymes for protein synthesis; 31, polyamine synthesis via ornithine decarboxylase, 
spermidine synthase, and spermine synthase; 32, putrescine synthesis via arginine decarboxylase and 
agmatinase. BCAA = branched-chain amino acids; BCKA = branched-chain α-ketoacids; D3PG = 
D-3-phosphoglycerate;  F6P = fructose-6-phosphate; GlcN-6-P = glucosamine-6-phosphate; HCys 
= homocysteine; α-KG = α-ketoglutarate; MTH = N5-N10-methylene tetrahydrofolate; OH-Pro = 
hydroxyproline; KGM = α-ketoglutaramate; OAA = oxaloacetate; P5C = pyrroline-5-carboxylate; THF 
= tetrahydrofolate. Adapted from Wu (2013). The porcine placenta contains no activity of phosphate-
activated glutaminase (reaction 11) or arginase (reaction 14) (Self et al. 2004; Wu et al. 2005).

in a dose-dependent manner (Kong et al. 2012). Therefore, arginine at these concentrations 
stimulated protein synthesis and inhibited proteolysis, leading to enhanced proliferation of the 
cells (Kong et al. 2012).  Inactivation of autophagy appears to be a major mechanism for AA to 
inhibit protein degradation in cells (Wu 2013). Interestingly, an inhibition of NO synthesis by 
76% had only a modest effect on intracellular protein turnover in trophectoderm cells (e.g., a 
13% decrease in protein synthesis and a 20% increase in proteolysis) (Kong et al. 2012). Thus, 
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arginine promotes growth of porcine placental cells largely via an NO-independent pathway. 
Results of recent studies indicate that glutamine and leucine also activate the MTOR pathway 
to stimulate protein synthesis in porcine and ovine trophectoderm cells (Kim et al. 2011a,b,c; 
2012).  Similar results have been reported for pregnant rats (Zheng et al. 2008; 2012).      

Mechanisms for amino acids to regulate fetal muscle growth and development 

Enhancing the availability of AA in the fetus can increase fetal growth through providing the 
building blocks and activating the MTOR signaling pathway to enhance muscle protein synthesis 
(Wu et al. 2010). Because myocytes and adipocytes are derived from a common mesenchymal 
precursor (Sordella et al. 2003), fetal skeletal muscle is formed maximally while differentiation 
of stem cells into preadipocytes is impaired in response to appropriate signals (e.g., transcription 
factors Myf5 and MyoD) that favor development of myocytes (Kablar et al. 2003).  Thus, at 
birth, white adipose tissue in newborn pigs is only approximately 1%, in striking contrast to 
40% muscle mass (Wu et al. 1999).  There are two developing muscle fibers in fetal pigs: 
1) primary fibers formed by the rapid fusion of primary myoblasts between d 25 and 50 of 
gestation and 2) secondary fibers formed on the surface of primary fibers between approximately 
d 50 and 90 of gestation (Handel & Stickland 1987; Bee 2004).  The numbers of secondary 
muscle fibers, but not primary muscle fibers, are affected by the uterine environment (Dwyer 
et al. 1994) and the number of fetuses in utero (Town et al. 2004).  Because the total number 
of muscle fibers is fixed at birth, their prenatal development impacts the postnatal growth of 
skeletal muscle (Nissen et al. 2003).  The differences in prenatal and postnatal growth rates 
between IUGR piglets and normal litter mates correlate with a lower ratio of secondary to 
primary muscle fibers and a smaller size of the fibers in IUGR pigs (Handel & Stickland 1987).  
Polyamines are necessary for both proliferation and differentiation of cells (Flynn et al. 2009) 
and likely mediate growth and development of fetal muscle fibers (Wu et al. 2010). In support 
of this view, concentrations of arginine, ornithine, proline, glutamine, and polyamines were 
reduced substantially in skeletal muscle of IUGR fetal pigs, compared with normal-body-weight 
(NBW) littermates (Wu et al. 2010).  Similarly, concentrations of polyamines were much lower 
in allantoic and amniotic fluids of IUGR than in NBW fetal pigs (Wu et al. 2008).  Whether 
dietary supplementation with polyamines can improve growth and development of fetal skeletal 
muscle has yet to be determined.

Intracellular protein turnover, adipogenesis, and mitochondrial biogenesis play major roles 
in regulating protein deposition in skeletal muscle and fat accretion in fetuses (Wu  et al. 2010; 
Wang et al. 2012).  In this regard, it is noteworthy that results of proteomics studies indicate 
that newborn IUGR piglets have a greater abundance of proteasomes (i.e., the major protease 
complex for nonlysosomal protein degradation) in skeletal muscle and liver, but less eukaryotic 
translation initiation factor 3, a key requirement for protein synthesis, in skeletal muscle, when 
compared with NBW piglets (Wang et al. 2008). Recently, Wang et al. (2013) reported that 
muscle fiber diameters were smaller in IUGR fetal pigs than in NBW fetal pigs on all days of 
gestation. Although the number of primary fibers did not differ between these two groups of 
fetal pigs on d 60 of gestation, the total number of muscle fibers in IUGR fetal pigs was lower 
on d 90 and 110 of gestation (amounting to a 25% difference on d 110), when compared with 
NBW fetal pigs. Proteomic analysis revealed 37 differentially expressed proteins, which are 
involved in energy supply, protein metabolism, structure and type of muscle fibers, proliferation 
and differentiation of muscle fibers, nutrient transport, intracellular environment, and tissue 
integrity (Wang et al. 2013).  Twenty five of these proteins were less abundant in IUGR fetal 
pigs, including transferrin, glutathione S-transferase omega-1, mitochondrial ATP synthase, 
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myosin-7, citrate synthase, creatine kinase, and bifunctional purine biosynthesis protein. These 
findings provide some insight into mechanisms responsible for reduced growth and impaired 
development of skeletal muscle in IUGR piglets

Use of functional AA to improve fetal survival and growth in pigs

The current swine industry adopts restricted feeding programs to prevent excessive weight 
gain by gilts and sows during gestation (NRC 2012).  Such a strategy can ameliorate farrowing 
difficulties and appetite reduction during lactation; however, gilts and sows do not receive 
sufficient amounts of dietary AA to support optimal embryonic and fetal growth during early- 
to late-gestation (i.e., d 14 to 114) (Wu et al. 2010).  This problem is exacerbated further 
by: 1) degradation of large amounts of dietary AA in the small intestine; and 2) the naturally 
occurring inability of placentae to supply an adequate amount of nutrients to fetuses in pigs. 
For example, due to extensive catabolism of arginine by arginase in the small intestine (Bergen 
& Wu 2009), 60% of dietary arginine enters the portal circulation of pregnant gilts (Wu et al. 
2007a). Therefore, increasing dietary provision of arginine beyond that from a typical corn- and 
soybean meal-based diet may be an effective means to enhance circulating levels and improve 
fetal survival and growth in gestating swine.  The following lines of experimental evidence 
support this hypothesis.  

First, dietary supplementation with 1.0% arginine-HCl between d 30 and 114 of gestation 
increased the number of live-born piglets by 2 and litter birth-weight by 24% (Mateo et al. 2007).  
The contents of crude protein and arginine in the basal diet were 12.2% and 0.70% (on an as-fed 
basis), respectively. The arginine to lysine ratio in the supplemental diet was 2.64, which did not 
affect intestinal absorption of lysine or histidine (Mateo et al. 2007).  An arginine to lysine ratio 
of greater than 3:1 in the diet would likely result in antagonism among basic AA and should be 
avoided in dietary formulations (Wu et al. 2007b).  Second, compared with control gilts, dietary 
supplementation with 0.4% or 0.8% L-arginine between d 14 and 25 of gestation increased 
placental growth by 21-34% and the number of viable fetuses per litter by approximately 2 (Li 
et al. 2011).  Likewise, dietary supplementation with 1% arginine to gilts or sows between d 
14 and 28 of gestation increased the number of live-born piglets by approximately 1 at birth 
(Ramaekers et al., 2006).  Third, supplementation with 1% arginine between d 14 and 28 of 
gestation increased the number of fetuses on d 70 by 3 per litter and the ratio of secondary to 
primary muscle fibers in fetal pigs (Berard et al. 2009). Fourth, supplementing 1% arginine to 
gilts beginning on d 17 of gestation for 16 days increased placental weight by 16% and the 
number of live-born piglets per litter by 1.2 (Gao et al. 2012). Finally, dietary supplementation 
with 0.83% arginine between d 90 and 114 of gestation increased average birth weight of live-
born piglets by 16% (Wu X. et al. 2012).  Collectively, well-designed studies have demonstrated 
beneficial effects of arginine supplementation on reproductive performance in gestating swine 
managed under practical production conditions.

As a functional AA, arginine acts in concert with other functional AA to further improve 
reproductive performance of pigs (Wu et al. 2009).  One of the functional AA is glutamine, 
whose uptake by the uterus of gestating gilts is the highest among all AA (Wu et al. 1999) and 
whose concentrations during late gestation are reduced (Wu et al. 2011).  Supplementing a 
corn- and soybean meal-based diet (containing 0.70% arginine and 1.22% glutamine) with 0.4% 
arginine and 0.6% glutamine (on an as-fed basis) between d 30 and 114 of gestation prevented 
a decline in glutamine concentrations in the plasma of gilts (Wu et al. 2011) that occurred when 
only arginine was supplemented to the basal diet (Mateo et al. 2007).  Supplemental arginine 
and glutamine markedly reduced: 1) concentrations of ammonia (–29%) and urea (–27%) in 
maternal plasma (the reduction in both ammonia and urea indicate improved efficiency of 
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utilization of dietary AA); 2) variation in birth weights among all piglets born (–27%) and live-
born piglets (–24%); and 3) the proportion of piglets with birth weights of 0.6 to 1.29 kg (–23% 
for all piglets born and –22% for live-born piglets). Additionally, dietary supplementation with 
arginine plus glutamine increased: 1) the number of live-born piglets by 1.4 per litter; 2) litter 
birth weight for either all piglets born (+10%) or live-born piglets (+15%), and 3) the proportion 
of piglets with birth weights of 1.3 to 1.49 kg (+37% for all piglets born and +30% for live-born 
piglets).  The proportion of piglets with heavier birth weights (1.5 to 1.69 or 1.7 to 2.09 kg) did 
not differ between control and arginine plus glutamine-supplemented gilts (Wu et al. 2011).  
Collectively, our results indicate an important role for functional AA in improving pregnancy 
outcome in swine.  These findings led to the recent recognition of arginine and glutamine as 
conditionally essential AA for growing and gestating pigs (NRC 2012).  

Concluding remarks

Placental insufficiency contributes to high rates of embryonic/fetal mortality and the incidence of 
IUGR in swine.  As building blocks of protein and regulators of metabolic pathways, inadequate 
or disproportionate amounts of AA in maternal diets are major factors affecting pregnancy 
outcomes. Many of the traditionally classified “nutritionally nonessential AA” are not adequate 
in conventional sow rations to meet demands of the fetus, because rates of their utilization 
are much greater than those for “nutritionally essential AA” that are not synthesized by animal 
tissues.  Growing evidence shows that dietary supplementation with arginine to gilts or sows 
increases placental growth (including vascular growth), litter size, and litter birth weight.  Also, 
a combination of arginine with glutamine during late gestation further improves fetal growth, 
while reducing variation in birth weights of piglets.  These new results not only greatly advance 
basic knowledge about reproductive biology, but also have important implications for enhancing 
fetal survival and growth in swine and other livestock species (e.g., sheep and cattle).
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