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Next generation DNA sequencing is a high throughput method of 
sequencing DNA samples in parallel.  During the last 10 years, this 
technology has expanded to include sequencing and quantification of 
an entire transcriptome.  The advantage of this method of transcriptome 
analysis is that it allows the investigator to detect previously unknown 
genes and splice variants as well as detect potential DNA polymorphisms.  
Application of this technology, especially when used to perform cDNA 
sequencing, allows for comprehensive characterization of transcriptomes 
between cell types, tissues or under different physiological states.  In 
this review, we summarize high throughput transcriptome analysis, the 
sequencing platforms currently available, some of the software needed to 
handle the data generated and how to develop a picture of what the data 
means from a physiologist’s point of view. Lastly, we describe an example 
of this type of analysis applied to porcine placental trophoblast cell types.

Microarray analysis

A derivative of Southern blotting, one of the earliest reports of transcriptome analysis using a 
microarray was performed in Arabidposis on 45 genes (Schena et al. 1995).  After almost 20 
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years, the supporting technology and bioinformatics associated with microarrays is relatively stable 
and easy to perform.  In general, the RNAs of the transcriptome from a sample are labeled and 
hybridized to probes that have been previously arrayed on a supporting surface, and the amount 
of label hybridized to each probe is measured. The most significant drawback with microarrays is 
that only those genes and splice variants included on the array are detected.  Previously unknown 
splice variants are also not easily detected.  Lastly, it is usually necessary to validate differential 
expression of genes derived from microarray analysis, typically using real-time RT-PCR.

Serial Analysis of Gene Expression (SAGE) analysis

SAGE was developed in 1995 by Dr. Victor Velculescu and colleagues (Velculescu et al. 1995)
called serial analysis of gene expression (SAGE. It is similar to next generation sequencing in 
that the process produces short sequence fragments (<20 bp) that are then mapped back to a 
reference sequence/genome via computational analysis.  Because of the procedure, the sequences 
produced in SAGE are usually from the 3’ end of a transcript. Depending on the completeness 
of the genome of interest, the short read lengths and bias toward the 3” end of mRNA can limit 
the number of genes detectable using this technique.

High throughput (aka next generation) sequencing

Next generation sequencing (NGS) utilizes the sequencing by synthesis approach to DNA 
sequencing.  Currently, there are four major platforms which utilize this approach: Roche (454), 
Life Technologies (Ion Torrent), Pacific BioSciences (SMRT), Illumina (Genome Analyzer, HiSeq, 
MiSeq).  While each platform has specific advantages and disadvantages, each system sequences 
DNA strands by generating the complimentary strand.  This approach is similar to the addition 
of dideoxynucleotides used in Sanger Sequencing (e.g ABI 3730) but instead of terminating the 
DNA synthesis reaction with the addition of a dideoxynucleotide, the nucleotides added during 
synthesis are either differentially labeled or are made sequentially available to the ongoing 
sequencing reaction for incorporation.  The addition of nucleotides to the elongating strand is 
then detected, so that either the label or the sequence of added substrate allows one to determine 
which nucleotide was incorporated at each position.  

The output of the ION Torrent system is currently limited to 1-2 Gb with 400 bp read length.  
Data quality is robust with 99.99% accuracy but the system has a difficultly sequencing through 
AT rich regions (Quail et al. 2012).  The platform is currently most commonly used for sequencing 
of microbial genomes.

The Roche 454 system operates on a pyrosequencing approach where library fragments are 
attached to beads in a ratio of 1:1. Then, PCR amplification takes place in an emulsion to isolate 
beads and ensure purity of the DNA.  Beads are then randomly allocated to nanopores and 
sequencing occurs as labeled nucleotides are flowed across the sequencing chamber and the 
resulting signal is generated via chemiluminesence.  Maximal read length is 1000 bp with current 
chemistries with an average output of 0.7 Gb and consensus accuracy of 99.997%.

The PacBio SMRT system has the lowest output of all the systems but is capable of very long 
reads; up to +20 kb.  The PacBio is currently primarily used for sequencing prokaryotic genomes. 
The SMRT (Single Molecule Real Time) technology uses a high speed camera to capture sequence 
data as a DNA polymerase molecule incorporates a nucleotide in a single strand of DNA in real 
time.  Due to the speed at which the polymerase incorporates nucleotides into the complimentary 
strand, the SMRT system has a higher incidence of incorrectly called bases.  However, this error 
is random and individual DNA templates can be circularized and sequenced numerous times 
in a single run, so that errors can be eliminated by averaging multiple base calls at the same 
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position. The SMRT system performs particularly well when coupled with reads from the Illumina 
platform as the large amount of contiguous sequence available from the PacBio combined with 
the short error free reads from Illumina technology are very useful for dealing with repetitive 
elements in DNA.  

The Illumina HiSeq platform provides the greatest amount of sequence data of the systems 
available, capable of generating 600 Gb of sequence in a single run through massively parallel 
sequencing.  This is enough output to theoretically produce >200x coverage of a single porcine 
genome. To accomplish this, DNA fragments in a sequencing library are fixed to a stationary 
media. This is accomplished by fragmenting the DNA followed by size selection and ligation of an 
adaptor sequence that includes a unique sequence identifier tag. The adaptor sequence facilitates 
the fixation of the DNA fragment to the flow cell while the unique identifier sequence tag allows 
for multiplexing of different samples (e.g., different tissue sources, animals, etc.) during sequencing.  
The DNA plus the adaptor is then amplified using PCR to facilitate bridge amplification of the 
DNA strands.  During bridge amplification, the dsDNA is separated into single strands and non-
labeled nucleotides are used to replicate a “cluster” of approximately 1000 identical fragments of 
DNA within 1 µm in diameter.  Once cluster generation is complete, the non-labeled nucleotides 
are washed from the flow cell and a mix of primer, DNA polymerase and labeled nucleotides 
is applied to the flow cell to initiate the first detected cycle of cDNA synthesis.  From this point 
forward the instrument performs repetitive cycles (up to 200) of nucleotide incorporation, removal 
of the non-incorporated nucleotides, identification of the incorporated nucleotide and application 
of fresh labeled nucleotides.  The process is both time consuming (up to 11 days for 200 bp of 
sequence) and inefficient in its use of the labeled nucleotide (25%).  However, balancing this 
is the production of very high quality data with more than 80% of the bases possessing a high 
quality score with an accuracy of 99.99%.

Samples throughput, depth of coverage and data files

The amount of sequence information obtainable combined with the ability to individually tag 
sequences from different libraries within a single sequencing run provides great flexibility. The 
distribution of libraries within a single run depends on the depth of sequencing desired for 
each library. This is dependent on the goals of the experiment and the tissues being examined.  
Transcript discovery projects, where the detection of novel transcripts is important, demand the 
greatest depth of sequencing for each library within the experiment.  SNP discovery experiments 
require less depth of sequencing for individual libraries but the libraries are based on samples 
from a greater number of animals.  Physiology experiments fall somewhere in between. A useful 
target for the evaluation of a transcriptome of a given sample is 20 million sequences, though the 
number continues to evolve as the technique is refined.  As such, the sequencing files generated 
are typically very large (gigabytes) and the current Illumina software for exporting read data from 
the sequencer for individually tagged sequences truncates files at 4 million reads. Handling files 
this large necessitates access to software and hardware capable of handling large datasets.  

Gene identification: Shareware vs proprietary software

Once sequences are in the correct format and ready for processing, they need to be matched 
to a set of reference sequences.  For RNA-seq, the reference sequences are usually from a fully 
annotated genome, which is available for swine.

For RNA-seq,  the gold standard of available freeware is a suite of related software packages 
called TopHat and CuffLinks (Trapnell et al. 2009, 2010, 2013). These two programs map the 
reads generated during sequencing to a reference sequence, and then make comparisons 
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between given treatment groups. Use of these programs requires some knowledge of the use 
of the UNIX operating system, which can be confusing to inexperienced users. However, 
proprietary software packages designed for the non-bioinformatician have been developed 
and are currently available.  

These proprietary packages typically utilize a graphic user interface to facilitate utilization 
of the program (e.g. CLC Biosciences Genome Workbench).  With this system the user directs 
the needed operations of the software using a mouse and keyboard.  The specific algorithms 
used for mapping reads are proprietary, but one advantage of the analysis approach used by 
Genome Workbench is that it processes in parallel, reducing the amount of time required to 
map the reads.  

Counting reads and statistical analysis

Quantifying reads mapped to a gene is a complex problem.  Transcripts vary in size.  During 
fragmentation of cDNA, if transcript numbers are equal, more fragments are generated from 
transcripts of greater length than those of shorter length, which must be taken into account 
when quantifying the abundance of the original transcripts.  There are currently three different 
methods of quantifying RNA-seq data: TPM (Wagner et al. 2012), FPKM (Fragments Per Kilobase 
of exon model per Million mapped reads) and RPKM (Reads Per Kilobase of exon model 
per Million mapped reads; (Trapnell et al. 2010).  All of the methods are based on mapping 
each sequence in a library within genes in a reference list (Figure 1).  Each method takes into 
account the depth of sequencing of each library and the different sizes of transcripts. FPKM 
and RPKM are related methods and generate similar data.  The RPKM method is the most 
common method of quantifying RNA-seq data as it treats each sequence fragment in a paired 
end read (see below) as one piece of the same unit.  FPKM counts each fragment of a paired 
end read as an independent unit and counts them separately.  Thus, with RPKM, a paired end 
read with two mappable fragments counts as 1, whereas in FPKM, the two fragments count as 
two.  The advantage of FPKM is that when dealing with fragments of divergent quality, if only 
one fragment maps the value is one, compared to RPKM which would result in a count of 0. 
TPM makes similar adjustments for transcript size and the number of mapped reads, but also 
adjusts for the average size of transcripts in each library.

Fig. 1  Mapping results for Claudin-7 (CLDN7).  The number of reads mapped to a  reference 
sequence indicates the prevalence of a given sequence within a library. In this graphic, 5’ 
and 3’ UTR are annotated by the green areas of the gene, followed by the exons in yellow 
and introns in blue.  Below the reference sequence, the color of the reads indicates if both 
fragments of the read in this paired end library mapped to the reference sequence (blue), 
if the forward read mapped (green) and if the reverse read mapped (red).
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Once the abundance of the transcripts for each transcriptome is quantified, the abundance 
values can then be used for statistical analysis.  Which analysis is conducted varies, but one of 
the most common methods is to use Cufflinks to determine if statistical differences exist between 
treatment groups.  The statistical treatment used in Cufflinks utilizes a program named Cuffdiff 
to make comparisons using a Student’s t-test.  Alternatively, using an ANOVA with adaptive 
false discovery rate for multiple testing provides researchers with robust results that account 
for biological variation, replication, and the number of tests performed.

Reliability of transcript measurement

The repeatability of transcript measurements using the Illumina system is high (Spearman 
correlation value of replicate runs equals 0.96 (Marioni et al. 2008). The generation of 
reliable sequence data of 100 bp or greater makes sequence matching to reference sequences 
very reliable and has the added benefit of detection of previously unknown splice variants.  
Unmatched sequences provide an opportunity to detect mRNA that are not in the reference 
gene set if desired, which can be important depending on the quality of the reference gene set 
available. These advantages are even greater with the ability to generate paired-end sequence 
reads.  Paired-end reads are generated when sequence data is collected from both ends of each 
fragment, which is available for selection during an Illumina sequencing run.   Knowing that 
the paired- end sequence information conforms to this arrangement increases the probability 
of matching to a reference gene set. It can also improve identification of splice variants, when 
matching to the reference gene indicates that the distance between the paired- ends exceeds 
the predicted 100 bp intervening sequence. Finally, the paired-end sequence can be used for 
de novo assemblies of cDNA, which can then be used to improve the correspondence between 
the transcriptome and the genome, as well as the detection of SNP within cDNA.

Pathway analysis

The result of a transcriptome analysis is a list of differences in gene expression along with p 
values.  This would normally allow one to make interpretations of the results, but in the case 
of a comparison between transcriptomes, the list of genes that are statistically different can be 
in the thousands and does not take into consideration the biological roles of genes that were 
not different.  Understanding what the genes in a given cell/tissue contribute to biological 
function is an important consideration when drawing conclusions from RNA-seq data and is 
usually accomplished through the use of pathway analysis.

Similar to software for mapping of reads to a reference sequence, there are shareware and 
proprietary software options for understanding the biological functions found in a transcriptome 
analysis.  These software packages assemble known functions and/or associations from published 
reports,   and provide the researcher with the ability to interpret their transcriptomic results on 
the basis of those known functions.  This type of analysis can allow the formulation of testable 
hypotheses for future research.  Two of the most common software packages available are: 
Database Annotation, Visualization and Integrated Discovery (DAVID; Dennis et al. 2003), 
an open source software package, and Ingenuity Pathway Analysis (IPA, www.igenuity.com) 
a commercially available software. Both are available online.  While these software packages 
are incredibly beneficial to the biologist, the results generated in their analysis can be very 
biased by the version of the database/program used (Henderson-Maclennan et al. 2010).  
The number of genes analyzed by these programs can also affect the results of the analysis.  
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Usually, it is recommended that investigators filter their results according to abundance of the 
transcript and/or changes between treatment groups, so that results of pathway analyses are 
more meaningful.  Taking such an approach makes it easier for researchers to focus on the 
main functions found within the gene list and what functions are undergoing the most change.  
Lastly, these programs make it possible to identify upstream regulators that may be responsible 
for the changes observed.

A transcriptome analysis: Pig trophoblast cells

Trophoblast epithelial cells in the folded bilayer of the porcine placenta differ in morphology, 
with tall columnar (TC) trophoblasts located at the peaks and short cuboidal (SC) trophoblasts 
lining the sides and bottoms of the folds (Friess et al. 1980).   We used transcriptomic analysis to 
determine 1) how these two trophoblast cell types contribute to placental function and 2) how 
they differ from each other.  To accomplish this, we performed laser capture microdissection 
followed by high throughput sequencing of cDNA to characterize the transcriptome of each 
cell type.

Total RNA was extracted from the two cell types  of interest from 4 different animals on day 
85 of gestation.  RNA was reverse transcribed and resulting cDNA was amplified.  Sequencing 
libraries were then prepared for each animal/cell type combination, each library was tagged, 
and libraries were sequenced on an Illumina Hi-Seq 2000.  Reads were then mapped to the 
porcine genome (version 9.2).  Transcript abundance was expressed using the RPKM method.  
Contrasts of the RPKM values between treatment groups were made using ANOVA with an 
adaptive false discovery rate set at 0.05 in JMP genomics v 5.0.  Functional analyses were 
generated through the use of Ingenuity Pathway Analysis (IPA; www.ingenuity.com).

Main (20 RPKM threshold) functions of the average trophoblast

Mapping of sequencing reads to the Sus scrofa genome (version 9.2) resulted in the identification 
of 7398 unique genes/sequences with an RPKM value ≥ 1.8. The RPKM values for SC and TC 
trophoblasts were averaged to provide values for the average trophoblast, and the list of genes 
above each threshold were used for IPA analysis. The top five Main non-disease/non-disorder 
biological functions for trophoblasts were Cell death and survival, Protein synthesis, Cellular 
growth and proliferation, Post-transcriptional modification and Protein folding.

Main (20 RPKM) differences between short cuboidal and tall columnar trophoblasts

Restricting the gene lists to only those genes with an RPKM 20 and p-value 0.05 reduced the 
number of genes included in the analysis to 445 total genes (372, 343 genes in SC and TC 
trophoblasts respectively).  Results from pathway analysis indicated pathways responsible for 
Cellular growth and proliferation, Cell death and survival, Cell morphology, and Hematological 
system development and function.

Analysis of downstream effects of these differences in gene expression indicated that SC 
trophoblasts were associated with increased Engulfment of cells, Engulfment of myeloid cells, 
Response of myeloid cells, Adhesion of lymphocytes and Engulfment of antigen presenting cells 
(Z-score: 3.101, 2.688, 2.648, 2.642 and 2.608 respectively). The pathway in SC trophoblasts 
with the highest p-value and increased function was Invasion of cells (P= 5.54x10-9, Z-score: 
2.278).  Short Cubodial trophoblasts were predicted to be more mobile than TC trophoblasts 
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as the top five functional annotations for Cellular movement are all increased (Z-score range: 
2.426- 2.010).  These results support our earlier observations that heparanase expression is 
primarily found in the SC trophoblasts (Miles et al., 2009), and suggest that these cells are 
the primary contributors to placental fold development based on their capacity for increased 
cellular movement, specifically those genes known to facilitate cellular invasion such as 
heparanase (Koliopanos et al. 2001, Goldshmidt et al. 2003, Gingis-Velitski et al. 2004, 2007), 
prostaglandin-endoperoxide synthase-2 (COX-2) (Neufang et al. 2001, Debruyne et al. 2002, 
Yiu and Toker 2006, Banu et al. 2008, Slaby et al. 2009, Ding et al. 2010, Mitchell et al. 2010)
a rate-limiting enzyme in the biosynthesis of prostaglandin E(2  and CD44 (Bourguignon et al. 
2004, Kim et al. 2004, Celetti et al. 2005).

Increased expression of genes in TC trophoblasts was consistent with an increase in the 
Quantity of cells, Formation of cells, Protein metabolism, the Quantity of reactive oxygen species 
and Apoptosis of epithelial cells (Z score: 2.694, 2.476, 2.270, 2.207, 2.128 respectively).   
An increase in pathways involved in Protein metabolism was supported by increased mRNA 
expression of UBE2B, TPP2, and ITCH, which are known to increase protein degradation (Pati 
et al. 1999, Heissmeyer et al. 2004, Bhutani et al. 2007)few in vivo targets of the mammalian 
Cdc34 and Rad6 ubiquitin-conjugating enzymes are known. A yeast-based genetic assay to 
identify proteins that interact with human Cdc34 resulted in three cDNAs encoding bZIP DNA 
binding motifs. Two of these interactants are repressors of cyclic AMP (cAMP. The prediction of 
increased activity in reactive oxygen species scavenging pathways was supported by increased 
mRNA expression of PRDX1 and PRDX6 (Kang et al. 1998, Kim et al. 2000, Manevich et al. 
2002, Wang et al. 2003, Egler et al. 2005), which are known to reduce H2O2 concentrations.

Conclusions

High throughput sequencing is a valid and versatile method for performing a comprehensive 
transcriptomic analysis. Important details for consideration are the experimental design, 
the depth of sequencing required to provide useful data, and the availability and quality of 
reference sequences for matching. Despite some limitations imposed by the quality of the 
swine genome reference sequence used for the analysis, transcriptomic analysis using high 
throughput sequencing has provided intriguing clues to functions of pig placental trophoblast 
cells.  While further research is clearly needed to explore the functions of these two placental 
trophoblast cell types, these results provide results from which testable hypotheses can be 
generated.
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