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Conceptus development in mammals depends on an intra-uterine 
environment filled with histotroph that includes molecules that are secreted 
by uterine epithelia and/or selectively transported into the uterine lumen. 
In pigs, total recoverable glucose, fructose, arginine, leucine and glutamine 
increase in histotroph with advancing days of the peri-implantation period 
of pregnancy and in allantoic fluid later in gestation.  During pregnancy, 
the uterine luminal epithelium (LE) and trophectoderm of conceptuses each 
express specific transporters for glucose. The most abundantly expressed 
amino acid transporters in uterine LE and trophectoderm are those for 
glutamate, neutral amino acids and cationic amino acids.  These nutrient 
transporters are also expressed in uterine epithelia and placental tissues of 
pigs throughout gestation and expression of transporters and accumulation 
of nutrients in the uterine lumen is affected by progesterone and estradiol. 
Treatment of porcine trophectoderm cells with glucose, arginine and 
leucine stimulates the mechanistic target of rapamycin nutrient sensing 
cell signaling pathway to increase phosphorylation of RPS6K, RPS6 and 
EIF4EBP1 in the nucleus or cytoplasm to stimulate proliferation, mRNA 
translation and protein synthesis.  Glucose and fructose are equivalent 
in stimulating proliferation of pig trophectoderm cells and in inducing 
synthesis of hyaluraonic acid via the hexosamine pathway. The results of 
our research indicate mechanisms whereby select nutrients act differentially 
to affect translation of mRNAs for cell signaling molecules that affect 
conceptus growth, development, and survival during pregnancy in pigs. 

Introduction

Embryonic mortality and fetal morbidity claim 20-50% of conceptuses (embryo/fetus and 
extra-embryonic membranes) in pigs (Bazer et al. 2009; Bazer et al. 2011a).  Successful 
establishment and maintenance of pregnancy requires orchestrated communication between 
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conceptus trophectoderm and uterine epithelia mediated by autocrine, paracrine, and endocrine 
molecules that regulate uterine and/or trophectoderm expression of genes that support conceptus 
development.  The uterine epithelia synthesize and secrete, as well as transport numerous 
proteins and nutrients, collectively known as histotroph,  required for conceptus development, 
implantation and placentation (see Bazer et al. 2011b; Bazer et al. 2012a).

Pig conceptuses initiate secretion of estrogens for pregnancy recognition signaling to maintain 
CL that secrete progesterone (P4) required for an intrauterine environment that supports 
pregnancy (Spencer et al. 2004).  Interactions among the conceptus and uterine luminal (LE), 
superficial glandular (sGE) and glandular (GE) epithelia and stromal cells effect changes in 
components of uterine histotroph (Bazer et al. 2012a) (Figure 1).  In the absence of uterine 
glands, pregnancy fails in ewes (Gray et al. 2001) and litter size is reduced in gilts with reduced 
development of uterine glands  (Bartol et al. 2006).

Uterine histotroph includes nutrients that increase in the uterine lumen during the peri-
implantation period of pregnancy including arginine (Arg), leucine (Leu), glutamine (Gln) and 

Fig. 1  A. Oocytes fertilized in the oviduct enter the uterus at the 4- to 8-cell stage, advance developmentally 
to blastocysts and then elongating conceptuses (embryo and its extra-embryonic membranes).  B.  The 
endometrial epithelia cease expressing receptors for progesterone (PGR) due to autoregulation by 
progesterone and estradiol-17β along with prolactin maintains exocrine secretion of prostaglandin F2α (PGF) 
into the uterine lumen to prevent regression of the corpus luteum.  Estradiol-17β also induces interferon 
regulatory factor 2 (IRF2) that silences expression of classical interferon stimulated genes (ISG).  The uterine 
luminal epithelium (LE) secretes fibroblast growth factor 7 that acts via its receptor (FGFR2IIIb) expressed 
by uterine LE, uterine glandular epithelium and trophectoderm. With down-regulation of PGR in uterine 
epithelia the uterine luminal (LE) and superficial glandular epithelia express genes that are induced by 
progesterone, presumably acting via a progestamedin from uterine stromal cells, and further stimulated 
by estradiol-17β and perhaps interferons delta and gamma.    Collectively, molecules secreted by uterine 
epithelia or transported into the uterine lumen are referred to as histotroph. C.  The adhesion cascade for 
implantation of the conceptus in the pig occurs between Days 13 and 25 of pregnancy.
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glucose (Wu et al. 2010).  The mechanistic target of rapamycin (MTOR) cell signaling pathway is 
a key nutrient sensing cell signaling pathway (Kim et al. 2002).  As shown in Figure 2, the MTOR 
complexes (MTORC1 and MTORC2) include FRAP1 (FK506 binding protein 12-rapamycin 
associated protein. MTORC1 includes FRAP1, MTOR associated protein LST8 (MLST8) and 
regulatory associated protein of MTOR (RAPTOR) associated with cell proliferation, mRNA 
translation and protein synthesis.  MTORC2 includes FRAP1, LST8 and rapamycin insensitive 
companion of MTOR (RICTOR) associated with cell migration, cytoskeletal organization and 
cell survival.  The combined effects of MTORC1 and MTORC2 influence proliferation and 
migration of trophectoderm cells, as well as changes in cytoskeletal organization and gene 
expression required for elongation of porcine conceptuses (Guertin et al. 2006).  FRAP1, a 
highly conserved serine-threonine protein kinase, senses and responds to changes in amino 
acid levels and energy sufficiency, as well as hormones and mitogens (Dennis et al. 1996; 
Gingras et al. 1999; Gingras et al. 2001; Jacinto et al. 2006).   Knockout of Frap1 (Gangloff 
et al. 2004; Murakami et al. 2004),  Raptor and  mLST8 (Guertin et al. 2006), Rictor (Guerten 
et al. 2006; Shiota et al. 2006), and  Mapkap1 (Jacinto et al. 2006) genes in mice results in 
dysfunction of MTORC1 and MTORC2, and fetal lethality at different stages of development.

Amino acids and glucose in cell signaling

Arginine.   Arginine is nutritionally essential for conceptus growth and development via its role 
in nitric oxide (NO) signaling and polyamine synthesis (Wu et al. 2004; Figure 3).  In mice, 

Fig. 2  Select nutrients such as L-arginine, as well as insulin-like growth factor 2 (IGF2) and secreted 
phosphoprotein 1 (SPP1) that are known to be present in the uterine lumen can induce cell signaling 
via the AKT1/mTORC1/mTORC2 pathways to affect cell proliferation, cell migration, mRNA translation 
and cytoskeletal remodeling in trophectoderm cells during elongation of the conceptus that are critical 
to survival and development of the conceptus.  
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NO promotes blastocyst attachment and trophoblast motility, possibly through modifications 
of the extracellular matrix and stimulation of vasodilation of maternal blood vessels (Gwatkin 
1966).  Arg activates MTOR in our established porcine (pTr) and ovine (oTr) trophectoderm 
cell lines more than any other amino acid (Bazer et al. 2012a; Kim et al. 2013). NO enhances 
utero-conceptus blood flow and the transfer of nutrients and oxygen from mother to fetus 
(Bird et al. 2003).  Polyamines regulate DNA and protein synthesis, scavenge reactive oxygen 
species, induce cell proliferation and differentiation (Igarashi & Kashiwagi 2000), and stimulate 
trophectoderm cell motility, implantation, and conceptus development (Martin and Sutherland 
2001; Martin et al. 2003; Dey et al., 2004; Wu et al., 2007; Zhao et al. 2008). 

Leucine.   Leu, the most abundant branched-chain essential amino acid in many dietary 
proteins, affects protein synthesis and degradation, leptin secretion, energy balance and, in 
excess, it is an energy substrate to spare glucose (Lei et al. 2012).  Leu and Arg stimulate MTOR 
cell signaling in oTr cells (Kim et al. 2011a) and these amino acids are required for transition 
of morulae to blastocysts in rodents (Gwatkin 1996) (Figure 4).  Leu is a major donor of the 
amino group for endogenous synthesis of Gln  in pigs (Self et al., 2004; Wu et al., 2011).  

Glutamine.   Metabolism of Gln provides reducing equivalents for production of ATP in 
ovine (Wales & Du 1994) and bovine (Rieger et al. 1992) conceptuses to complement glucose 
metabolism (Rieger, 1992).  Gln can be converted into citrulline, the precursor of Arg, in 
porcine and ovine placentae (Kwon et al. 2003) and Gln inhibits NO production from Arg (Wu 
et al. 2001); therefore, Gln and Arg are linked in amino acid catabolism.  Gln is critical for the 
glutamine:fructose-6-phosphate amidotransferase 1 (GFPT1) pathway for conversion of fructose 

Fig. 3  L-Arginine can affect proliferation and migration of ovine trophectoderm cells by being converted 
to nitric oxide (NO) by nitric oxide synthase (NOS) or by being converted to L-ornithine by arginase with 
ornithine then being converted to polyamines by ornithine decarboxylase (ODC1).    The activity of all 
NOS isoforms requires tetrahydrobiopterine (BH4) that is dependent of GTP cyclohydrolase (GCH1) for 
its synthesis. Arginine stimulates GCH1 expression in ovine conceptus trophectoderm (Kim et al., 2011c), 
but this has not been demonstrated for pig conceptus trophectoderm. 
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6-PO4 to glucosamine 6-PO4 and the synthesis of uridine diphosphate N-acetylglucosamine 
(UDP-GlcNAc) and glycosaminoglycans such as hyaluronic acid (Flynn et al. 2002; Kim et 
al. 2012). 

Glucose.  Glucose is required for survival and development of embryos during the 
preimplantation period when its utilization is partially regulated by the PI3K pathway and its 
metabolism increases from the 2-cell to the blastocyst stages of development (Riley & Moley, 
2006).  Pyruvate is a primary energy source from fertilization to hatching of blastocysts in 
the uterus, and then glucose uptake by blastocysts increases and lactate is a major product of 
glucose metabolism (Wales 1986; Rieger 1992; Wales and Waugh 1993; Gardner et al. 1996).    
There is accumulation of glucose, but little glycogen synthesis by ungulate conceptuses (Pike 
1981).  Rather, glucose not required to meet demands of the conceptus is converted to fructose 
(see Kim et al. 2012).  Glucose-fructose isomerase in uterine flushings and allantoic fluid of 
pig conceptuses may allow some interconversion of fructose to glucose (Zavy et al. 1982; Gu 
et al. 1987; Bazer et al. 1991).  Wen et al. (2005) linked MTORC1 with GFPT1 as a nutrient 
sensing pathway that stimulates proliferation of trophectoderm cells.

Fig. 4   Studies of mouse blastocysts revealed that develop is arrested when maintained for 5 days in culture 
medium lacking arginine, lysine and histidine (Gwatkin 1996). This suggests that blastocyst expansion 
and implantation are controlled in vivo by the presence of these specific amino acids in the uterine 
lumen. Additional research confirmed that mouse blastocysts also require the presence of either leucine 
or arginine to exhibit expansion, motility and outgrowth of trophectoderm required for formation of the 
blastocyst and implantation (Martin and Sutherland, 2001; Martin et al., 2003).   These developmental 
events are also considered critical for growth and development of porcine embryos and blastocysts that 
precedes the essential processes of elongation and attachment of conceptus trophectoderm and uterine 
LE for implantation. The figure is adapted from Senger (2003).
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Changes in abundance of Arg, Leu, Gln and glucose in uterine flushings  
and in allantoic fluid of pigs

Conceptus development in pigs is affected by glucose and select amino acids, particularly 
Arg (Kim et al. 2013).  Glucose, Arg, Leu and Gln increase in uterine flushings of pregnant, 
but not cyclic gilts between Days 10 and 15 after onset of estrus and in uterine flushings from 
pseudopregnant and ovariectomized gilts treated with P4.  Temporal and cell-specific changes 
in expression of glucose and amino acid transporters in the uterine epithelia and conceptus 
trophectoderm of pigs are coincident with conceptus elongation.  In pigs, SLC2A1 is the most 
abundant glucose transporter in uterine LE from Days 15 through 80 of pregnancy, and it is 
expressed by the allantoic epithelium between Days 20 and 30 of pregnancy.  Patterns of 
expression of SLC2A4 and SLC2A1 are similar, but SLC2A4 is less abundant and not detectable 
after Day 30 of pregnancy. SLC2A2 mRNA is abundant in conceptuses from Days 12 to 50, 
and unique to placental areolae and peaks of folds of the chorion between Days 50 and 85 
of pregnancy.  The amino acid transporter SLC7A3 is most abundant in the chorion when Arg 
transport across the placenta is maximal. SLC5A1 expression is induced in uterine LE by E2.  
Treatment of gilts with P4 increases amounts of neutral amino acids in the uterine lumen of pigs.  

Additional studies evaluated expression of genes that encode transporters for neutral (SLC1A1, 
SLC1A4, and SLC1A5) and cationic amino acids (SLC7A1, SLC7A2, SLC7A7 and SLC7A9), as well 
as ornithine decarboxylase (ODC1) in the uterine endometrium, peri-implantation conceptus 
and chorioallantoic placenta of pigs (J.Shim, H. Seo, Y. Choi, J. Kim, F.W. Bazer and H. Ka, 
unpublished results).    In the uterus SLC1A1 mRNA increases on Day15 of pregnancy and then 
decreases near term as SLC1A5 and SLC1A4 mRNAs increase during mid- to late pregnancy. 
The abundance of SLC7A1, SLC7A2 and SLC7A9 mRNAs is highest on Day 12 of pregnancy, 
but lower throughout the remainder of pregnancy. Expression of SLC7A7 mRNA is also high 
during early pregnancy, but low during mid- to late pregnancy. SLC1A1, SLC7A7, SLC7A9 and 
ODC1 mRNAs are localized to uterine LE and GE, and chorion during pregnancy. SLC1A1, 
SLC1A4, SLC1A5, SLC7A1, SLC7A7 and SLC7A9 mRNAs are expressed in conceptuses on Days 
12 and 15 of pregnancy.  In placental tissues there is biphasic expression of SLC1A4 mRNA 
with highest levels on Day 30 and at term, while expression of SLC7A2, SLC7A9 and ODC1 
mRNAs is highest on Day 30 of pregnancy.  Expression of SLC1A1, SLC1A5, SLC7A1 and 
SLC7A7 in the placenta was not affected by day of pregnancy. These changes in expression of 
amino acid transporters in the endometrium and conceptus are likely critical for development 
of pig conceptuses.

Arg and ornithine nitrogen account for 40% to 55% of the total free alpha-amino acid nitrogen 
in allantoic fluid between Days 30 and 45 of gestation which suggests significant roles for those 
amino acids during placental development that precedes rapid fetal growth later in gestation 
(Wu et al. 1996).  Arg is readily converted to NO and polyamines to enhance conceptus 
development.   These nutrients  and components of uterine histotroph in allantoic fluid are 
available to support growth and development of the pig conceptuses (Bazer et al. 1991; Kim 
et al. 2013) which have a true epitheliochorial placenta and rely on histotroph for nutrients 
and other factors throughout pregnancy (Knight et al. 1977; Geisert et al. 1982).

Endocrine and paracrine signaling for establishment of pregnancy and  
gene expression in uteri of gilts  

Pig conceptuses secrete estrogens as the pregnancy recognition signal during the peri-
implantation period of pregnancy (Bazer &Thatcher 1977; Zeicik et al. 2011).  Pig conceptus 
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trophectoderm also secretes both interferon delta (IFND)  and interferon gamma (IFNG) that 
stimulate expression of an array of IFN-stimulate genes (ISGs) in a temporal and spatial (cell-
specific) manner (Bazer et al. 2009; Johnson et al. 2009),but the roles of IFND and IFNG are 
not known (Johnson et al. 2009).  Uterine receptivity to implantation is dependent on P4 and 
estradiol-17β (E2) in pigs. The paradox is that receptors for P4 (PGR) are down-regulated after 
Day 5 and receptors for E2 (ESR1) are not expressed after Days 15 to 16 in uterine LE and GE 
of pregnant pigs.  Loss of PGR and ESR1 in uterine epithelia is a prerequisite for implantation, 
expression of genes for secretory proteins, and selective transport of molecules into the uterine 
lumen to support conceptus development (Geisert et al. 1993; Geisert et al. 1994; Ka et al. 
2007).  Down-regulation of PGR is coincident with loss of expression of proteins such as MUC1 
that interfere with interactions between integrins and extra-cellular matrix molecules required for 
implantation (Carson et al. 2002).  Then, both E2 and P4 are required to induce expression of 
fibroblast growth factor 7 (FGF7) by uterine LE initially and, from around Day 20 of pregnancy, 
uterine GE to effect transcription of genes in trophectoderm that affect conceptus development 
and in uterine LE and GE to affect secretion and transport of components of histotroph (Ka 
et al. 2000; Ka et al. 2001; Ka et al. 2007).  Changes in uterine histotroph in ewes occurs 
in response to P4 and interferon tau (IFNT), as well as FGF10 and hepatocyte growth factor 
(HGF) from uterine stromal cells which regulate gene expression by uterine LE and sGE and 
trophectoderm (Bazer et al. 2012a).   Similarly, the composition of histotroph in pigs is likely 
affected by P4, E2, IFND and IFNG.    

Effects of select nutrients on porcine trophectoderm (pTr) cells   

During the peri-implantation period of pregnancy, elongation of the conceptus involves 
proliferation, migration, differentiation and cytoskeletal changes in the pig trophoblast 
(trophectoderm and extra-embryonic endoderm) (Geisert et al. 1982).  Research with oTr cells 
and Day 16 ovine conceptus explant cultures revealed that Arg, Leu and glucose activate AKT1, 
MTORC1, RPS6K and RPS6 cell signaling to stimulate proliferation and migration, mRNA 
translation and protein synthesis (Kim et al. 2011a; Kim et al. 2011b; Kim et al. 2011c).  Those 
nutrients differentially increase: 1) NOS isoforms and production of NO from Arg; 2) ODC1 
for conversion of ornithine to putrescine; 3) guanosine triphosphate cyclohydrolase 1 (GCH1) 
for conversion of guanosine triphosphate to tetrahydrobiopterin, an essential cofactor for all 
NOS isoforms; and 4) IFNT, the pregnancy recognition signal in ruminants (Kim et al. 2011b).   
Arg is most stimulatory to proliferation, migration and protein synthesis in oTr cells (Kim et 
al., 2011a; Kim et al., 2011b) and pTr cells (Kong et al. 2012; Kim et al. 2013) probably due 
to its metabolism to NO and polyamines (Kim et al., 2011a; Kim et al. 2011c) (See Figure 3).    

Arginine, leucine, glutamine, glucose and fructose activate the nutrient sensing cell 
signaling pathway in porcine conceptus trophectoderm

Expression of insulin-like growth factor-2 (IGF2), ODC1 and NOS isoforms is stimulated by 
nutrients via the MTOR- RPS6K-RPS6 pathway (Nielsen et al. 1995; Kimball et al. 1999; Martin 
& Sutherland 2001).  IGF2 enhances placental and fetal growth (Ohlsson et al. 1989) through 
effects mediated by the IGF1 receptor and RPS6K under the control of MTORC1 (Nielsen 1992; 
Nielsen et al. 1995) and by inducing NO production (Kaliman et al. 1999).  ODC1 regulates 
conceptus development and differentiation by catalyzing the synthesis of polyamines required 
for proliferation and migration of trophectoderm cells in ruminants (Van Winkle & Campione 
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1983; El-Badry et al. 1990; Bachrach et al. 2001 and mice (Mehrotra et al. 1998; Martin & 
Sutherland 2001; Martin et al. 2003), as well as rapid growth of the conceptus and increases in 
placental blood flow in pigs and sheep (Wu & Morris 1998; Kwon et al. 2004; Wu et al. 2005).  
NO promotes blastocyst attachment and trophoblast motility, possibly through modifications of 
the extracellular matrix and stimulation of vasodilation of maternal blood vessels (Gwatkin 1966). 
These are controlled through PI3K/AKT/MTOR cell signaling induced by HGF (Cartwright et al. 
2002) and/or secreted phosphoprotein 1 (SPP1, also known as osteopontin) which stimulates 
MTOR cell signaling (Takahashi et al. 2000; Guo et al. 2005; Kim et al.. 2008).  When pTr cells 
are treated with Arg, Leu or Gln there is a significant increase in phosphorylated forms of RPS6K 
and RPS6 (Kim et al. 2013). These nutrients increase the abundance of pRPS6K in nuclei and the 
abundance of pRPS6 protein in the cytoplasm (Kim et al. 2013) as one would expect since pRPS6 
increases mRNA translation and protein synthesis. Arg, Leu, and Gln also increase the abundance 
of phosphorylated EIF4EBP1 protein in the nucleus of pTr cells that is associated with protein 
synthesis for trophectoderm cell growth, proliferation, and metabolism. Arg and Leu increase 
proliferation of pTr cells by 8.2-, and 8.1-fold, respectively; however, in the absence of glucose, 
Gln does not increase proliferation of pTr cells. But, Gln in the culture medium does significantly 
increases proliferation of pTr cells in response to Arg and Leu (Kim et al. 2013).  

The combined effects of MTORC1 and MTORC2 account for proliferation and migration 
of trophectoderm cells, and change the organization of the cytoskeletal elements and gene 
expression required for elongation and implantation of porcine conceptuses. Kim et al. (2013)  
studied effects of Arg, Leu and Gln on proliferation of pTr cells transfected with either MTOR 
siRNA, RPTOR siRNA or RICTOR siRNA.  MTOR siRNA inhibited effects of Arg, Leu, and Gln on 
cell proliferation, as did RPTOR siRNA, and RICTOR siRNA at 48 h post-transfection of pTr cells 
(Kim et al 2013).   Thus, MTORC1 (MTOR-RPTOR) and MTORC2 (MTOR-RICTOR) signaling 
pathways are stimulated by Arg, Leu, and Gln in pTr cells (Kim et al. 2013).  

Histone H3 is phosphorylated during both mitosis and meiosis and affects different phases 
of cell division/proliferation (Hans and Dimitrov, 2001).  Arg, Leu, Gln and glucose stimulated 
cell proliferation is associated with nuclear localization of phosphorylated histone H3 (J. Kim, 
G.Song and F.W. Bazer, unpublished results).  Further, Leu, but not Arg acts downstream of AKT1 
or MTOR to increase beta catenin localization in junctional complexes of pTr cell membranes 
whereas Arg induces changes in the cytoskeletal architecture of pTr cells that may account for 
changes in shape of trophectoderm cells during conceptus elongation(J. Kim, G. Song and F.W. 
Bazer, unpublished results).  

In vivo effects of arginine on successful outcomes of pregnancy

Arg is a nutritionally essential amino acid for survival, growth and development of the embryo/
fetus and neonate (Wu et al., 2010).  Dietary supplementation with Arg-HCl from Day 30 of 
pregnancy to term increases fetal survival in gilts (Mateo et al. 2007), and embryonic survival and 
litter size in rats (Zeng et al. 2008).   In a subsequent study, dietary supplementation with 0.4% 
or 0.8% Arg significantly increased concentrations of Arg in maternal plasma, total volume of 
amniotic fluid, vascularity of chorionic and allantoic membranes, and litter size was  increased by 
two conceptuses while embryonic mortality decreased by 14% (X.L. Li and G. Wu, unpublished 
results). 

In ewe models of intra-uterine growth retardation, intravenous administration of Arg-HCl 
enhanced fetal growth (Lassala et al., 2009; Lassala et al., 2011).  Also, in women with intra-
uterine growth retardation of their fetus at week 33 of gestation, daily intravenous infusions of 
arginine increased birth weights (Xiao and Li 2005). 
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Roles of glucose and fructose in trophectoderm cell function 

Pig blastocysts undergo morphological changes and differentiation that require select nutrients in 
the uterine lumen that include glucose and fructose (Bazer et al., 1991).  Glucose and fructose 
are equivalent in stimulating proliferation of pTr cells, as well as increasing the abundance of 
phosphorylated RPS6K, -EIF4EBP1 and -RPS6 proteins, and as substrate for metabolism via the 
hexosamine pathway via glutamine-fructose-6-phosphate transaminase 1 (GFPT1) (Figure 5).   
These effects of glucose and fructose on pTr cells were inhibited by azaserine, an inhibitor of 
GFPT1.  GFPT1 siRNA also blocked metabolism of fructose and glucose via the hexosamine 
pathway for synthesis of hyaluronic acid which is a significant glycosaminoglycan in the 
developing placenta. 

Fig. 5  The hexosamine pathway allows for both glucose and fructose to be metabolized to 
glucosamine-6-phosphate that lead to activation of the MTOR cell signaling pathway, as well 
as synthesis of glycosaminoglycans, including hyaluronic acid, that are critical to growth 
and development of the conceptus.  There is also synthesis of UDP-N-acetylglucosamine 
that may stimulate MTOR cell signaling (Wen et al. 2005).

Fructose and glucose can be used for synthesis of neutral lipids and phospholipids in heart, 
liver, kidney, brain and adipose tissue of fetal lambs (Scott et al. 1967) and fructose can 
enter adipocytes by both insulin-dependent and insulin-insensitive mechanisms (Halperin & 
Cheema-Dhadli 1982).  Fructose is also incorporated into nucleic acids (Huggett and Pelc, 
1964; White et al. 1979; White et al. 1982).   In  HeLa cells fructose mostly enters the pentose 
shunt to produce reducing equivalents and nucleic acids necessary for biosynthetic processes 
(Reitzer et al. 1979). Developing pig conceptuses may use fructose in a similar manner to 
spare glutamine which is required for conversion of fructose-6-PO4 to glucosamine-6-PO4 by 
GPFT1 (Wu et al. 2011).  

Concentrations of fructose in plasma of fetal pigs are 2- to 4-times higher than those of 
glucose (Randall and L’Ecuyer, 1976; Pere, 1995), but it is poorly metabolized to carbon dioxide 
(Meznarich et al., 1987) suggesting that it is not a significant source of ATP. The placenta 
converts large amounts of glucose to fructose; therefore, to consider fructose unavailable for 
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metabolism by the fetal-placental tissues is not logical.  First, it is not necessary to convert 
fructose to carbon dioxide in order for the fetus to gain ATPs. Second, the use of fructose as an 
energy substrate is not the only pathway for its utilization by the conceputs (Figure 6). 

Fig. 6  A. Nutrients are transported from the maternal capillaries across the uterine luminal epithelium 
towards the apical surface of the chorionic epithelial cells and into the fetal-placental circulation of the 
conceptus.  B.  A Na+/K+ ATPase pump likely produces an ion gradient across the chorion to mediate 
active transport of nutrients into the connective tissue of the chorioallantois.  C. Nutrients then diffuse or 
are transported into the vasculature within the allantois and into the general circulation of the conceptus.  
D. Nutrients may diffuse to the basal surface of the allantoic epithelium and then across to the allantoic 
sac or be transported by nutrient transporters into the allantoic fluid.  E and F.  Nutrients can be stored in 
allantoic fluid for transport across the allantoic epithelium into the fetal-placental vasculature by nutrient 
transporters by an undefined mechanism.  The transporters identified for transporting nutrients from 
maternal circulation into the uterine lumen and from there into the conceptus are shown for uterine 
luminal (LE) and glandular (GE) epithelia and trophectoderm/chorion; however, transporters in the placental 
stromal cells and allantoic epithelium are unknown.  There is  evidence for transport of nutrients from 
allantoic fluid into the vasculature of the chorioallantois (Bazer 1989).

Sugars are converted to carbon dioxide and water by aerobic metabolism, liberating energy 
in the form of ATP.  But, anaerobic glycolysis also generates ATP and lactate.  There are high 
concentrations of both fructose and lactate in blood of fetal pigs (Pere, 1995; Fowden et al., 
1997) and the  placenta is a net producer of lactate while the fetus is a net consumer of lactate.  
This suggests that the placenta engages in anaerobic metabolism.  The placental capillaries are 
located primarily on either side of the epithelial cell bilayer, i.e., chorion and allantois (Leiser 
and Dantzer, 1988; Dantzer and Leiser, 1994), making them relatively well oxygenated, while 
placental stromal cells some distance from those capillaries are relatively poorly oxygenated.  
Thus, placental stromal cells exist in a relatively anaerobic environment and synthesize lactate, 
a hallmark of anaerobic metabolism via lactate dehydrogenase A (LDHA) (Draoui and Feron, 
2011).   Results of a preliminary immunohistochemical analysis localized LDHA to placental 
stromal cells in pigs and RNA-seq analysis of pig trophoblast cells detected their expression 
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of LDHB, which converts lactate to pyruvate for aerobic metabolism (J. L. Vallet, unpublished 
results).   These results support the hypothesis that a dichotomy exists in pathways for generation 
of ATP between epithelial and stromal cells in the pig placenta (Figure 7). 

Fig. 7  This figure depicts a model for transport of glucose to the chorion where it is converted to fructose 
and transported into the placental capillaries to be metabolized by fetal-placental tissues.  Glucose 
can be converted to carbon dioxide and water by aerobic metabolism, liberating energy in the form of 
ATP.  But, anaerobic glycolysis also generates ATP, and the end result for mammalian cells is typically 
lactate.  The placenta is a net producer of lactate and the fetus is a net consumer of lactate. For example, 
stromal cells, in the placenta are subjected to low oxygen tension and, therefore, engage in anaerobic 
metabolism whereas the relatively well oxygenated epithelial cells (chorion and allantois) engage in 
aerobic metabolism. The synthesis of lactate, a hallmark of anaerobic metabolism, is associated with 
expression of lactate dehydrogenase A (LDHA) (Draoui and Feron, 2011).  Preliminary results indicate that 
LDHA is localized to placental stromal cells whereas trophectoderm expresses the LDHB which converts 
lactate to pyruvate aerobically (J. L. Vallet, unpublished results).   This result supports the hypothesis that 
a dichotomy exists in pathways for metabolism of glucose for generation of ATP between epithelial and 
stromal cells in the pig placenta. 

The dichotomy in energy metabolism between stromal and epithelial cells of the pig placenta 
may be due to differences in availability of sugar substrate. This can be controlled by access 
of fructose and glucose to the two cell types which exhibit differential expression of glucose 
transporters.  SLC2A5, a specific fructose transporter (Burant et al., 1992), is most abundant in 
trophectoderm (Vallet et al., 2012) which is the source of fructose generated by the placenta 
(Huggett et al., 1951).  SLC2A5 likely transports fructose out of the trophectoderm cells into 
the fetal circulation.  The expression of SLC2A5 by stromal cells is evidence that fructose has 
access to these cells as a candidate substrate for anaerobic metabolism and metabolism via 
other metabolic pathways such as the hexosamine pathway. The hexosamine pathway may 
also regulate cell proliferation by activation of the MTOR pathway (Wen et al. 2005; Kim et 
al. 2012).
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Glucosamine represents half the sugar molecules making up both hyaluronan and heparan 
sulfate (Moussian, 2008) and it is produced from fructose via the hexosamine pathway (Buse, 
2006). Thus, fructose is a substrate for synthesis of glucosamine-6-PO4 and glycosaminoglycans 
including hyaluronan and heparan sulfate required for placental development.  Fragments 
of both hyaluronan and heparan sulfate are angiogenic (West et al. 1985; Ilan et al. 2006; 
Jakobson et al. 2006), suggesting that turnover of these glycosaminoglycans plays a role in 
the development of capillaries on either side of the epithelial bilayer of the chorioallantoic 
placenta of the pig.  Hyaluronic acid and hyaluronidase increase in the uterine lumen of pigs 
in response to progesterone (Ashworth et al. 1990), which may stimulate angiogenesis (West et 
al. 1985) and/or angiogenesis, morphogenesis and tissue remodeling of the pig placenta as for 
the human placenta (Ponting & Kumar 1995).  Hyaluronic acid accumulates in the placentae 
of most mammals and localizes to the umbilical cord and placental blood vessels (Mitchell 
et al. 2003) where it supports fibroblasts and stem cells (Wang et al. 2004).  It is clear that 
angiogenesis is critical to conceptus development in all species and that fructose is used for 
synthesis of hyaluronic acid that supports angiogenesis. 

The placental stromal cells in pigs includes the extracellular matrix of which primary 
components are hyaluronan and heparan sulfate (Steele and Froseth, 1980; Vallet et al., 2010), 
as well as hyaluronidase (Vallet et al., 2010) and heparanase (Miles et al., 2009) that degrade 
those glycosaminoglycans. Increases in hyaluronidase activity in placentae of small pig fetuses 
suggests greater turnover of placental hyaluronan to support more extensive folding of placentae 
as a compensatory mechanism to increase placental surface area for exchange of nutrients and 
gases (Vallet et al., 2010).  Hyaluronidase activity has not been localized to specific placental 
cells in pigs; however, heparanase is produced by cuboidal cells of the folded chorioallantoic 
bilayer suggesting that these cells participate in fold development by degrading heparan sulfate 
in the extracellular matrix (Miles et al., 2009).  RNA-seq analysis of trophoblast cells identified 
heparinase as a major gene in the cuboidal cells, while the two most differentially expressed 
genes in tall columnar cells were for A Disintegrin and Metalloprotease Domain 28 (ADAM)  
and TransMembrane 4 L Six Family Member 5 (TM4SF).  Protein products from both genes 
participate in cell migration (Mochizuki and Okada, 2007; Lee et al., 2010) likely required 
for chorioallantoic folding.  Thus, the unusual abundance of fructose in fetal blood and fetal 
fluids allows fructose to fulfill novel physiological roles during gestation that must be taken 
into account in studies of intra-uterine development of ungulate conceptuses.
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