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Fertilization is a decisive moment in life and enables the combination of
the DNA from two gametes to ultimately form a new organism. The sperm
surface, especially the head area, has distinguishable subdomains that are
involved in distinct fertilization processes. It is known that the sperm head
surface undergoes constant remodelling during epididymal maturation
and migration in the male and female genital tract. But intriguingly, the
identity, origin and spatial ordering of proteins at the sperm surface that are
involved in mammalian fertilization are essentially unknown. This review
deals with sperm surface protein modifications that are under somatic cell
control. As soon as the sperm is released from the seminiferous tubules it
is subjected to these modifications. These surface reorganisations continue
until the sperm reside in the fallopian tube where they meet the oocyte and
may fertilize it. Most likely, a selective process allows only functionally
mature and intact sperm to optimally interact and fertilize the oocyte.
Recent data suggest that even the perivitel I ine fluid is involved in sperm
surface remodelling as it contains factors which could facilitate the first
penetrating sperm to fertilize the oocyte. In this contribution, the kinetics
of proteins at the sperm surface will be overviewed. Better understanding
of this would help to design strategies to improve male fertility or to devise
novel contraceptives.

Introduction

Although it is still not clear how sperm fertilize the oocyte, the general consensus is that only
functionally mature sperm can fertilizes the oocyte and this is somehow accomplished at
the surface of the sperm head (Yanagimachi 1994). The sperm is a highly polarized cell with
a minimum of cytosol and organelles (Eddy & O'Brien 1994). The sperm head consists of
the nucleus that houses the male haploid genome which is highly condensed together with
protamines in the late haploid phase of spermatogenesis, and a large secretory granule called
the acrosome which is oriented over the anterior area of the sperm nucleus. At the distal part
of the sperm head the flagellum sprouts. In the mid-piece of this flagellum mitochondria are
spiralled around the microtubules of the flagellum. In the tail part, specific cytoskeletal elements
surround the microtubules of the flagellum. The surfaces of the sperm head, mid-piece and the
tail parts of the sperm are heterogeneous (Phelps et al. 1988, Gadella et al. 1995) and reflect
the polar distributed organelles that lie under the surface. In particular, the sperm head surface
is heterogeneous and at least three subdomains can be distinguished which have separate
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functions in the fertilization process. In general, the sperm has lost many somatic cell features
and doesn't house an endoplasmic reticulum, Golgi, lysosomes or peroxisomes. Moreover, the
loss of ribosomes disables the sperm's capability to express genes (both transcription as well
as translation processes are silenced (Boerke et al. 2007)). Furthermore, due to the removal
of almost the entire cytoplasm in the testis (Eddy & O'Brien 1994) and during epididymal
maturation (Dacheux et al. 2005) the sperm has a typical ordering of the remaining organelles
and cytoskeletal elements and probably this polar ordering is reflecting into the lateral domains
ordering of the sperm's surface (Gadella et al. 2008).

Function of sperm membrane domains at fertilization

The subdomains of the sperm head area have diversified functions in the series of processes
that are involved in fertilization. The apical ridge area of the sperm head specifically recognizes
and binds to the zona pellucida (ZP, van Gestel et al. 2007); a larger area of the sperm head
surface (the pre-equatorial domain) is involved in the acrosome reaction which results in the
release of acrosome components required for ZP-penetration (Yanagimachi 1994, Flesch &
Gadel la 2000). The equatorial segment of the sperm head remains intact after the acrosome
reaction and is the specific area that recognizes and fuses with the oolemma (the oocyte's
plasma membrane) in order to fertilize the oocyte (Vjugina & Evans 2008). Although the
plasma membrane at the mid-piece and tail of sperm are also heterogeneous, the functions of
these surface specialisations are not yet understood (Kan & Pinto-da Silva 1987). It is possible
that they are involved in the organisation of optimal sperm motility characteristics. The sperm
surface protein organisation is rather complex and, especially in the sperm head, the surface is
subjected to constant dynamical changes evoked by the series of changing environments in the
male and female genital tract or during sperm handling as is overviewed in the next section.

Sperm surface kinetics

The domained surface of sperm is already apparent in testicular sperm (Eddy & O'Brien 1994),
however, the molecular dynamics, involved in the establishment of surface specialisation upon
spermatogenesis, is largely unknown. Generally, the polar organization of the extracellular
matrix components the cytoskeleton and the cell organelles of the sperm are involved in its
heterogeneous surface. In mature spermatids the amount of cytosol is minimal and indeed
the observed surface domains mirror the organisation of the acrosome, the post-equatorial
nucleus the mitochondria and the fibrous sheath, respectively. Moreover, once liberated in the
lumen of the seminiferous tubule, the sperm will start its travel through the male and female
genital tract and will meet a sequence of different environments. During this voyage, surface
remodelling takes place most likely at any site within the two genital tracts. These constant
changes start with stabilization of sperm in the male genital tract and is probably accomplished
upon epididymal maturation (Gatti et al. 2004, Dacheux et al. 2005) and by re- and decoating
events induced by the accessory fluids combined at ejaculation (Gwathmey et al. 2006,
Girouard et al. 2008). Beyond surface rearrangements epididymal maturation also results in
the removal of cytoplasmic droplets (the cytosolic remnant of the bridges between spermatids)
and the acquisition of sperm motility. In the pig, the most important contributions to seminal
fluid originate from the seminal vesicles and the bulbo-urethral gland (see Fig. 1). After their
deposition in the female genital tract, the reorganization process continues to ensure its further
journey in and prepare the sperm surface for its fertilization task. The removal of extracellular
glycoprotein coating (release of decapacitation factors) and further remodelling by (cervical)
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uterine and oviduct secretions activate the sperm to meet the oocyte (in vivo capacitation) (Suarez

& Pacey 2006, Rodriguez-Martinez 2007; see Fig. 2). Surface reorganizations are also induced
by the interaction of sperm with cumulus cells and remaining follicular fluid components that
surround and impregnate the ZP (Getpook & Wirotkarun 2007, Gil et al 2008) as well as in

the peri-vitel I ine space (i.e. the fluid filled space between the ZP and the oolemma) (Barraud-
Lange et al. 2007a,b). All these changing environments may cause surface remodelling of the
sperm and thus may influence its potential to fertilize the oocyte.

Hg. 1 An overview of the boar reproductive organs. Sperm that leave the testis mature in
the epididymis then migrate via the ductus deterens and are mixed with secretions of the
indicated accessory sex glands before entering the urethra. Red arrows indicate where
the secretions are added to the migrating sperm. The transport ot sperm is indicated with
black arrows. The epididymis is indicated in green as this is the site where sperm are
interacting with epithelia

The possible mechanisms whereby the sperm surface is altered were reviewed earlier (Gadel la
2008) and are summarized in Fig 3. It is very difficult to study sperm surface alterations in
site. However, for many mammalian species, including human, specific sperm handling and
incubation media have been optimised for efficient in vitro fertilization purposes. In general,
mammalian sperm are activated in a medium that compares with the oviduct in that it

contains several capacitation factors, such as high concentrations of bicarbonate, free calcium
ions and lipoproteins such as albumin (Flesch & Gadella 2000). In some species, specific

glycoconjugates (Mahmoud & Parrish 1996) or phosphodiesterase inhibitors are added for
extra sperm activation (Barkay N al. 1984). All strategies are designed to evoke capacitation
in vitro. This implies that the researcher can observe the relevant sperm surface reorganisation
prnned uncier in vitro conditions for fertilization. The membrane composition as well as the

ordering of membrane components can be compared with control conditions (media without
capacitation factors) or with the membrane ordering of sperm at collection time. Sperm can be

bladder

\ [ ejaculation
closed around

sernirT<,.
sick, v

k

ulbo-urethrdr.
_gland 7)

btil bo-urethralt,

preputial
fluids

-o removed

-o before
collection ofc»
ejaculate

(-a\

CD

Prostate
(pars dissiminata +
common body)

collection usually with gauze to filter
the gelatinous fraction from the
ejaculate (predominantly secreted by
the bulbo-urethal gland)

glans'rieni



2 6 P S. Rai rind 8.A1 dadelld
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Fig. 2 An overview of the sow reproductive organs. The area where sperm interact with

the epithelia is indicated in green (oviduct). Note that the entire female genital tract has

been described to be involved in secretory activity. The quantity and composition of the

epithelial secretions vary at different sites of the female genital tract and are influenced by

the stage of the ovulatory cycle of the sow.

collected from boars where the preputial fluid is removed before collection and the gelatinous

fraction is removed by filtering through gauze (see Fig. 1). The collected sperm are washed

through a discontinuous density gradient to remove aberrant sperm and non-sperm particles,

seminal plasma and factors delaying sperm capacitation (Harrison et al. 1996). The pelletted

cells have, after being resuspended into in vitro capacitation media, been extensively studied

for the surface reordering of membrane proteins and lipids in the sperm head (for reviews see

Flesch & Gadel la 2000, Gadel la & Visconti 2006). Most relevant for fertilization is that sperm

surface proteins that are entrapped into small lipid ordered domains (lipid rafts) are clustered

into the area that is specifically involved in sperm zona binding (van Gestel et al. 2005) as

well as in the docking of the sperm plasma membrane to the outer acrosomal membrane. It is

necessary to stress the importance of the sperm surface reordering and changes in composition

of membrane components by diverse extracellular factors. The induced lateral redistribution

of membrane components appears to also be instrumental for the assembly of a functional

sperm protein complex involved in sperm-zona binding as well as for the zona-induction of

the acrosome reaction (Fig. 4; Ackermann et al. 2008, Tsai et al. 2007, van Gestel et a). 2007).

Therefore, beyond the composition of sperm surface proteins, one needs to study how these

proteins are organized and whether they are functionally complex for their physiological role in

fertilization. Moreover, the relatively simply defined in vitro capacitation methods probably do

not provide all information about sperm surface reorganisation in utero or in the oviduct where

hormones and other bioactive non-protein components probably regulate sperm physiology

TT-

ovulation

fertilization


site
ovarium

uterine body

sperm binding


to epithelium

cervix

vagina

semen deposition

oviduct



Exosome secretion Epithelial cell binding

Fig. 3 Hypothetical scheme of aossible interactions of I -kale and female genital tr act components with

the sperm surface. 1. From the diverse epithelia of the male and female genital tr act, Webbing vesicles

containing cytosol might be re eased into the genital fluids. Such vesicles may ii teract and exchange

surface components with sperm. It is highly unlikely that such vesicles fuse with the sperm as this would

dramatically increase the volume of sperm (which has been reduced maximally it order to obtain an

ergonomically designed cell optimally suited for fertilization). Blebbing of vesicles has been demonstrated

in the ductus epididymides and the epithelia of the vesicular gland and the prostate of the boar (Rodriguez-

Martinez personal communication). The eventual tormation of bleb vesicles in uterus and oviductal

epithelia is probably an artefact induced by removing these parts from the pig. 2a. Serum components can

he released into the genital tluids by transcytosis (Cooper et al. 1988). Interestingly, lipoprotein particles

may invade the surroundings of sperm and may facilitate exchange of larger particles and the sperm

surface. 2b. Fluid phase secretion and adsorption of either fluid or mucosa may directly alter the ECM

of sperm. 3. Apocrine secretion of exosomes has been suggested to alter the sperm surface and sperm

functioning. Exosomes have heen demonstrated to he secreted by the epididymis (epididymosomes) by

the prostate (prostasomes) and the uterus (uterosomes) (Gatti et al. 2005, Thimon et al. 2008, Grittiths et
al. 2008). Interestingly, exosomes may provide sperm with tefiaspan ins, a group of membrane proteins

involved in tethering of proteins into protein complexes. Recently the addition of CD9 onto the sperm

surface by membrane particles has been described to occur even when sperm reaches the per ivitel lin space

(Barraud-Lange et al. 2007 a,b). 4. Sperm interacts with ciliated epithelial cells this has been observed in

the epididymis and the oviduct (Gatti et al. 2004, Sostaric et al. 2008), and probably has a physiological

role during in situ capacitation Sperm interactions with other ciliated epithelial cells of the female and

male genital tract have not been studied extensively. It is possible that such interactions are important for

sperm surface remodelling and for sperm physiology. 5 Semen entering the uterus evokes immunological

responses (Schuberth en al. 2008) such as the migration of leukocytes into the uterine fluid (Taylor et
al. 2008) which may affect the surface of sperm but most likely is involved in cleaning the uterine fluid

from deteriorated sperm (Woelders & Matthijs 2001). Probably the sperm fraction involved in fertilization

occupies the lower parts of the oviduct (where no leukocyte infiltration takes place) at an earlier occasion

than required tor the responses in the uterus (Rodriguez-Martinez et al. 2005).
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Fig. 4 Protein kinetics at the sperm surface. A An atomic force microscopic surface view

of a porcine sperm head. B. Lipid ordered m icrodom ains at the sperm surface cluster into

the apical ridge area of the porcine sperm during in vitro capacitation C. The interactions

that the sperm undertakes with die zona pellucida and the oocyte leading to fertilization.

1. zona binding, 2. the acrosome reaction, 3. zona drilling, 4. oolemma binding and

fertilization, 5. activation of pronocleus formation and oocyte activation, 6. induction of

a blockade for polyspermic fertilization. The numbers indicated in panel A refer to the

specific sperm surface area where these interactions do take place.

differently. Nevertheless we have identified a number of proteins involved in zona binding

and in sperm plasma membrane docking with the acrosome using in vitro capacitated sperm

(see Fig. 5)

Origin and identification of sperm proteins involved in the cascade


leading to in vitro fertilization

Testicular sperm, just released from the Sertoli cells into the lumen of the seminiferous tubules,

are equipped with a number of proteins reportedly involved in ZP-binding. Ai its surface, the

sperm has transmembrane proteins belonging to the ADAMs family, initially thought to be

involved in the fertilization process and now reported to be involved in sperm-ZP binding.
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Fig. 5 Left: Summarizing scheme of a hypothetical sperm zona pellucida-binding complex

formed during sperm capacitation by ratt-induced protein clustering. This may result in

a multifunctional protein complex known to play a role in diverse processes leading to

tertilization. For explanation and identification ot proteins see text Note that this scheme

is based on biochemical and proteomic approaches from epididymal and ejaculated

sperm before and after IVF incubations It is not clear how this picture compares to in situ
fertilization where the sperm surface may have been functionally remodelled along the

female genital tract Upper right: Multiple membrane fusions involved in the acrosome

reaction exclusive for the anterior part of the sperm head surface, lower right: Molecular

impression of trans SNARE fusion complexes that show a Ca' dependent conhguration

changes required for these membrane fusions (from Tsai & Gadella, unpublished

observations).

ADAM-2, also named fertilin [3, has such a function on hoar sperm (van Gestel et al. 2007).

Other testicular sperm proteins such as sperm lysosomal like protein (S[191, Herrero et al.

2005), and sperm acrosomal membrane proteins (SAMP14 and 32, Vjugina & Evans 2008)

and 5p56 (Buffone et al. 2008) are involved in secondary ZP-binding as they are localized in

the acrosome and only become exposed to the ZP structure after the induction of the acrosome

reaction. Some secretory proteins like define CRISP are also involved in sperm-ZP adhesion,

sperm oolemma binding or the fertilization fusion (Cohen et al. 2007, Da Ros et al. 2007, Busso

et al. 2007a). Interestingly, CRISP 2 is of testicular origin but CRISP 1 and 4 originate from the

epididym is (Busso et al. 2007b). The exact way in which CRISPs are associated to the sperm

surface is not yet known, although CRISP 1 is one of the abundant proteins in epididymosomes

(Thimon et al. 2008). Epididymosomes are also reported to intluence the lipid composition

of the sperm surface (Re(ran el al. 2006). Other proteins that have been shown to be added
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to the sperm surface in the epididymis are P47 or SED1, known to have a role in oviduct and

ZP-binding (Shur et-al. 2006). In porcine, the spermadhesin AQN-3 and carbonyl reductase are

also added to the sperm surface (Ekhlasi-Hundrieser_et al. 2002). Inhibition of hamster carbonyl

reductase activity caused a decreased affinity for the ZP while the sperm remained motile and

intact (Montfort et al. 2002). Even under very stringent detergent conditions AQN-3 was still

able to bind to the ZP (van Gestel et al. 2007). Proteomic analyses identified proteins that do not

have a function directly in sperm ZP-binding but that are associated into a ZP-binding protein

complex (van Gestel et al. 2007). Some of these proteins are involved in sperm signalling

(such as protein phosphatases), while others are involved in the redox balance (peroxiredoxin

5). The latter include a potassium channel which might induce membrane hyperpolarization

by K ' efflux. This hyperpolarization may in turn open voltage dependent Caj* channels that

enable Ca dependent processes in the capacitating sperm. An interesting observation was that

the major ZP-binding proteins listed above tend to aggregate in capacitating sperm (under IVF

conditions) at the surface area involved in ZP-binding i.e. the apical head area (van Gestel et al.

2005, 2007) and that this coincided with the attraction of SNAREs (soluble N-ethylmaleimide-

sensitive factor attachment protein receptor) involved in the acrosome reaction (Tsai et al. 2007).

The fact that both outer acrosomal SNAREs and plasma membrane SNAREs were observed

after capacitation led to the assumption that the lipid ordered membrane aggregation is a

preparative step for the acrosome reaction (as proposed in Fig 4). The identified ZP-interacting

protein complex is thus not only involved in sperm-ZP binding but may link this event with

preparative steps for the acrosome reaction.

In our approach, we only identified the major ZP-binding proteins of the sperm plasma

membrane but did not consider the identification of minor proteins or hidden proteins (covered

on 2 D IEF-SDS-PAGE gels by the glycosylated ZP-proteins). Therefore, we cannot exclude that

we have missed sperm surface proteins involved in sperm-ZP interactions. Although we did

not find any proteins originating from one of the accessory male sex glands (Fig. 1) it cannot be

excluded that these glands also play a role in sperm surface modification during ejaculation.

For instance, the possibility that prostasomes could fuse with sperm (Burden et a). 2006) is

interesting but needs to be experimentally validated. In any case, no prostate-derived proteins

have this far been described to be involved in sperm-ZP interaction although these fluids are

known to have an influence on the sperm surface organisation and protein composition (Russell

et al. 1984).

Surface modifications at the female genital tract

As mentioned above, far less is known about the contribution of the Female genital tract to the

ZP-binding processes in mammals (Fig. 2). Sperm reside for hours to days in the cervix, uterus

and eventually the isthmic part of the oviduct (depending on species tor time and deposition

place). In pigs, the semen is normally deposited in the cervix. Although there are no data on

the role of cervix epithelia and secretory products, it is well established that small numbers of

sperm can be inseminated when deposition is directly in the uterine body (Behan & Watson

2006, Roberts & Bilkei 2005). Moreover, a very low dose of sperm can be used for deep

intrauterine insemination (for review see Vazquez et al. 2005, 2008). A recent ex vivo study

using a lectin competition binding assay in uterine segments established that binding of sperm

to the uterine epithelium was carbohydrate-dependent (Taylor et al. 2008). However, the

proteins involved in this binding are not identified and it is also not clear whether this binding

is selective, thus allows only small numbers of sperm to migrate deeper in the uterus or that

whether this binding allows modification of the sperm surface that is needed in later processes
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leading to fertilization. The composition of uterine fluid and its effects on the sperm surface or
sperm functioning has been completely neglected by most researchers. The only study on the
effects of porcine uterine fluids on sperm reports on lipid modifications in sperm membranes
(Evans et al. 1987). Porcine sperm contain non-genomic progesterone receptors at the plasma
membrane (Jang & Li 2005) and most likely this hormone binding at the sperm surface is part
of the in vivo sperm capacitation process. Murine uterine fluids have been shown to contain
exosomes. Interestingly these particles called uterosomes contain the sperm adhesion molecule
SPAM-1 and other GPI-linked proteins that can be exchanged with cauda epididymal sperm
(Griffiths et al. 2008). It is possible that this exchange improves the sperm's capacity to fertilize
the oocyte. However, this possibility is not yet established nor is the presence of uterosomes
in the pig species. When semen enters the uterus, it elicits immunological responses which
can be observed by a migration of leukocytes (predominantly polymorphonuclear neutrophils;
PMNs) into the uterine fluid (Lovell & Getty 1960, Schuberth et al. 2008, Taylor et al. 2008). It
is not clear whether this infiltration will affect sperm that later enter the oviduct but leukocytes
clearly reduce the amount of sperm that will enter the oviduct by phagocytosis (Woelders &
Matthijs 2001). It is also uncertain whether phagocytosis is selective (for aberrant sperm) or
only unselectively depletes the amount of sperm that migrate further to the oviduct, which
is free of leukocytes and the site where sperm are capacitated in vivo in order to fertilize the
oocyte (Suarez 2008). In pigs the role of leukocyte infiltration on fertilization is questionable
as the vanguard cohort of sperm that occupy the oviduct have been shown to reside and bind
to the oviduct epithelia of the isthmic region within 30 minutes after insemination (Rodriguez-
Martinez et al. 2005) which is long before the invasion of PMNs into the uterus.

A number of reports have shown that fluids from the oviduct stimulate sperm capacitation
and induce hyperactivated sperm motility. One of the factors involved in this sperm activation
is bicarbonate, which is also commonly used for IVF treatments (Rodriguez-Martinez 2007).
Oviduct-specific glycoproteins (OSG) as well as osteopontin have been shown to support
fertilization in the cow and are secreted by the oviduct (Killian 2004). A sperm binding
glycoprotein from the oviductal fluid has recently been shown to induce porcine sperm
capacitation (Teijeiro et al. 2008). The lower part of the oviduct is considered to function as the
sperm activation site, making sperm capable to meet and fertilize the oocyte. In the isthmus,
small numbers of sperm are bound and become capacitated in vivo, there, sperm await to be
released at ovulation, to migrate to the upper part of the oviduct (the ampulla) and to fertilize
the passing oocyte(s) (for review see Suarez 2008). To this end, the oviduct epithelia and fluids
contain sperm binding factors as well as sperm releasing factors that are causing sperm adhesion
and release in the correct timing around ovulation (for binding and release characteristics in the
bovine oviduct see also Sostaric et al. 2008). Most likely, spermadhesins such as AQN-1 are
involved in the formation of the oviductal sperm reservoir as they are involved in sperm binding
to this specific epithelium (Ekhlasi-Hundrieser et al. 2005). Note that some spermadhesins
(DQH, Manaskova et al. 2007, AQN-3, AWN, P47, Gadella 2009) are added to the sperm phase
during epididymal sperm maturation, others (like PSP-I/PSP-II subunits) are partialy added in
the testis (Garcia et al. 2009). Interestingly, recently oviduct-specific glycoproteins have been
shown to modulate sperm-ZP interaction and to control the polyspermic fertilization rates in
pigs (Hao et a/. 2006, Coy et a/. 2008). Polyspermy is a well recognised problem in pig IVF and
prevention of this unwanted phenomenon may be accomplished by additions of oviductal fluid
components to the IVF media. Oviduct epithelial annexins have been suggested to immobilize
bovine sperm (by binding bovine sperm proteins BSI); lgnotz et al. 2007). Annexin A2 has also

been proposed to be involved in sperm-oviduct binding in the sow (Teijero et al. 2009). In the
bovine species this interaction is reversed by oviductal fluid factors such as catalase (Lapointe &
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Sirard 1998). Catalases that secreted from oviduct may protect sperm from peroxidation damage
as is demonstrated in the cow (Lapointe et al. 1998). The interplay of varying glycoproteins at
the surface of sperm and oviduct epithelia or oviductal fluid as well as the varying amounts
and composition of glycosidases probably orchestrate proper sperm activation just around
ovulation in the pig (Carrasco et al. 2008, Topfer-Petersen et al. 2008). However, the effect
of oviduct and uterine proteins on sperm-ZP binding as well as their putative association to
the sperm surface is not yet established. Of course it is possible that secreted products of the
female genital tract enhance sperm-ZP binding and that more protein candidates from the
female genital tract should be added to the surface of the ZP-interacting sperm. In this respect,
also the ZP itself, besides being a binding target, may add proteins to the sperm surface. The
cumulus cells and the ZP were impregnated with follicular fluid and remnants of this fluid
probably will remain attached to the cumulus oocyte complex. For instance, different growth
factors and extracellular matrix components have been involved in interactions of sperm to
the cumulus oocyte complex (for review see Einspanier et al. 1999). Sperm that interact with
these structures may respond to these fluid components like they do to extracted follicular
fluid (hyperactivated motility, Getpook & Wirotkarun 2007, Gil et al. 2007). It should also be
mentioned that the oviductal fluid has also been found to be supportive for early embryonic
development of the fertilized pig oocyte (Hao et al. 2008, Lloyd et al. 2009).

Finally, an interesting observation has recently been made showing that membrane
remodelling occurs after the acrosome reaction when sperm reach the perivitelline space but
before the fertilization fusion. Within the perivitelline space, membrane fragments containing
CD9 are added to the sperm surface (Barraud-Lange et al. 2007a,b). If correct, this would
demonstrate the "bestowment principle" that may exist in mammalian reproduction as the
oocyte facilitates the first incoming sperm in the perivitelline space to fertilize by transferring
functional tethering proteins to the surface of sperm cells. It remains to be established whether
such process also enables oviductal sperm to bind to the ZP. It may also be mentioned that
sperm proteins involved in oolemmal binding and the fertilization fusion are reported for mouse
and human sperm (Ellerman et al. 2006, Vjugina & Evans 2008) but data for boar sperm are
scarce.

Conclusions

The continuous sperm surface remodelling that occurs during sperm transit from the rete testis
towards the oviduct and possibly even within the peri-vitelline space and the physiological
role of this surface kinetics is, to a large extent, terra incognita. The identification of different
complex proteins systems within the male and female genital tract is promising; however, their
role and function in events associated with sperm-oocyte interactions are still difficult to test
(Roerke et al. 2008).

Wild-type and genotypically knock-out mice have already been used to validate the function
of certain proteins proposed to play part in sperm ZP-binding, the acrosome reaction, oolemma
binding as well as oolemma-sperm fusion (for an overview see Vjugina & Evans 2008). Such
approaches delivered some valuable information on the potential impact of certain proteins
involved in mammalian fertilization. However, the molecular intervention of transcription
and translation in gametes is hampered by the fact that in sperm both processes are silenced
and in the oocyte almost all mRNA is stored for post-fertilization translation. Therefore, it
is possible to intervene with molecular processes involved in either gametogenesis or post-
fertilization development rather than the molecular processes required for gamete interaction
and fertilization. An example of this is a mutation in spermatogenic cells of the syntaxin2/
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epimorphin gene. The protein translated from this gene plays, according to our research, a role
in the acrosome reaction (Tsai et al. 2007) but the mutation causes a defect in the transition
from spermatocyte to spermatids. Thus, a phenotypic knock-out of syntaxin 2 cannot be used
to study the effect of this protein on fertilization simply because the knock-out phenotype fails
to produce sperm (Akiyama et al. 2008). Furthermore, in many cases homologous genetic
recombination applications have shown that knocking out the expression of phenotypic factors
that were previously believed to be essential for fertilization were found to be dispensable to
this process (Okabe & Cummins 2007). This could be partly explained by the fact that biological
systems contain redundancies and compensatory mechanisms and both processes are believed
to play a prominent role in the evolution of gamete interaction and thus in speciation (Turner
& Hoekstra 2008, Herlyn & Zischler 2008). On the other hand, future outcome from genomic
approaches devoted to study the molecular mechanisms involved in mammalian fertilization
may also indicate that a substantial modification of classical fertilization models is required
(Okabe & Cummins 2007).

The production of knock-out pigs is very expensive and time consuming but it is possible to
isolate specific structures of the male or female genital tract from pigs. Gene specific silencing
of protein translation is possible with interference RNA technology. In this way the specific
role of proteins in fertilization and in sperm surface kinetics can be studied. The big problem
is that the treatment of explants and cells cause dedifferentiation and alter their interaction
with sperm (Sostaric et al. 2008).

Therefore, after leaving the testis, sperm are subjected to a series of events causing continuous
sperm surface remodelling, with specific sperm surface protein kinetics, relevant for its final
fertilization task. Difficulties in molecular intervention approaches as well as the difficulties
to study sperm surface remodelling in situ are nowadays compensated by high throughput
proteomic technologies that allow identification of low abundant proteins. In combination with
off-gel full LC-MS/MS platforms, sperm surface isolation and purification technologies, isobaric
tagging strategies for peptides (Ernoult et al. 2008, Zieske 2006) will enable us to cover the
full sperm surface proteome (Gadella 2009) in the near future, when the full pig genome and
its annotation will become accessible to the public (expected early 2010, Churcher, personal
communication).
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