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The mechanisms controlling the follicular growth continuum in the
pig involve the interaction between local growth factors which are
expressed throughout development and extra-follicular factors such
as gonadotrophins. A large number of follicular growth factors, many
belonging to the transforming growth factor-p (TGF-B) superfamily, have
been identified in the somatic cells and in the oocyte. The relative
importance of these intra-follicular factors varies with stage of development.
The initiation of follicular growth and early preantral development is
controlled locally (by factors including c-kit-kit ligand, members of the
bone morphogenetic family (e.g BMP-15) and growth differentiation
factor-9 (GDF-9)) and gonadotrophins are not thought to be involved until
later. During antral follicle development, the oocyte secretes factors that
stimulate porcine granulosa cell proliferation and differentiation, modulate
apoptosis and suppress progesterone production, thereby preventing
premature luteinisation. Likely candidates for mediating these effects
include BMP-6, -15 and GDF-9 that are critical for fertility and ovulation
rate in several mammals. There are also paracrine interactions between
the somatic cells, with theca derived transforming growth factor p (TGF-)
playing a key role in regulating antral follicle maturation. Finally, during the
periovulatory period, members of the EGF family from the granulosa cells
stimulate cumulus expansion and oocyte maturation. Evidence indicates
that some of these local factors may also influence oocyte developmental
potential, emphasizing further the complexity, and importance, of these
intra-follicular interactions.

Introduction

In many mammalian species including the pig, primordial follicle growth, once initiated,
continues until the follicle either becomes atretic (>99.9%) or proceeds to ovulation. Although
the gonadotrophic regulation of antral follicle.development has been studied in some detail
in the pig, the role of local factors is less well known. In recent years however, significant
progress has been made in understanding the complex intraovarian control mechanisms. Within
the ovarian follicle, cocyte growth and differentiation depends upon an intimate association
between the somatic follicular cells and the developing germ cells. An abundance of follicular
growth factors, many belonging to the transforming growth factor-p (TGF-B} superfamily, have
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been identified in the somatic cells and in the oocyte and are thought to be involved in the
recruitment, selection and growth of follicles from the primordial stage through to ovulation
and corpus luteum formation. This review will focus on the accumulating evidence that
intrafollicular factors are key regulators of follicle development in the pig. Although much of
the information generated in this field has come from rodent models and ruminants, we will
emphasise pig data where available and integrate the available information te form conclusions
relevant to porcine follicular development.

The initiation of follicle growth and preantral development

The ovarian reserve of primordial follicles is established before birth in the pig and the
recruitment of resting primordial follicles into the growing pool begins during fetal life. The
activation of oocytes in primordial follicles causes transformation of their surrounding granulosa
cells to a cuboidal shape. Throughout gestation and post-natally there is a gradual shift in the
proportions of oogenic structures within the porcine ovary - initially egg nests predominate
but they decline from around day 60 of gestation whilst primordial follicles increase. Primary
follicles appear from approximately day 70, secondary follicles from birth and antral follicles
from around day 60 post partum (Oxender et al. 1979). Evidence suggests that gonadotrophins
are unlikely to be a critical factor for initiating primordial follicle growth (Yuan et al. 1996).
The precise mechanisms controlling the initiation and the number of primordial follicles that
start to grow and avoid regression are still unclear, although several growth factors, particularly
members of the TGF-B superfamily have been implicated in other species {Visser & Themmen
2005, Knight & Glister 2006). The development of primary follicles to the late preantral stage
involves oocyte growth, extensive granulosa cell proliferation, formation of the basal lamina
and theca layer. The following sections will review the role of some of the key growth factors
in early follicle development in the pig.

c-kit/Kit Ligand Interactions

The c-kit-Kit ligand (KitL) complex is a pleiotropic receptor—growth factor complex active in
diverse cell systems in both the adult and the embryo. C-kit receptor is a type 1l transmembrane
tyrosine kinase receptor expressed in the oocyte and granulosa cells, while its ligand, KitL also
known as stem cell factor, is a proto-oncogene product of the granulosa cells and is expressed
in the pre-granulosa cells that surround the oocyte in primordial follicles. In the fetus, it has
been proposed that the interaction between c-kit and its ligand is necessary for germ cell
migration to the developing gonadal ridge in mice (Keshet et al. 1991). Postnatally in the
mouse, the receptor-ligand interaction may aid follicle recruitment into the pool of growing
follicles (Parrott & Skinner 1999) and in the recruitment and proliferation of theca cells from
the surrounding stromal tissue (Nilsson & Skinner 2004). Furthermore, in ovine follicles,
c-kit is expressed before the follicle stimulating hormone {FSH) receptor, suggesting that c-kit
may be one of the regulatory factors preceding the actions of FSH on early follicle growth
(Clark et al. 1996). In vitro studies in mice have shown that the addition of KitL to culture
medium accelerates oocyte growth, and also that the oocyte can regulate KitL expression. In
addition to its role in the survival of fetal germ cells and initiation of follicle growth, there is
increasing support for the importance of KitL/c-kit activity for oocyte growth during preantral
development (Packer et al. 1994) which may be modulated by the presence of gap junctions
(Klinger & De Felicic 2002). Evidence suggests that the c-kit ligand complex has a similar role
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in the porcine ovary. C-kit expression has been detected in all oocytes from primordial to large
antral follicles, in the theca cell layer and endothelial tissue, and mRNA for KitL was found in
granulosa cells of preantral and antral follicles (Brankin et al. 2004, Moniruzzaman & Miyano
2007). Furthermore, exposure of porcine cortical tissue to KitL prior to xenografting increased
oocyte survival (Moniruzzaman & Miyano 2007). Thus it is likely that the c-kit-KitL interaction
is necessary for early follicle development in the pig, as in other species, and is probably also
involved in a complex regulatory loop with oocyte factors and FSH (Thomas & Vanderhyden
2006; see below),

TGF-B superfamily
The bone morphogenetic proteins (BMPs}

The BMP subfamily represents a relatively large subset of the TGF-B superfamily. Bone
morphogenetic proteins are synthesized and secreted as prepropeptides and are proteolytically
cleaved to form mature, activated disulphide-linked dimmers (Elvin et al. 2000). The subfamily
is comprised of at least 8 ligands namely BMP-2, -3, -4, -5, -6, -7, -8, and -15 and, with the
exception of BMP-8, their expression has been reported in ovarian follicles of several species
(Knight & Glister 2006). These ligands are known to interact with at least 7 different receptors
that can be separated into type 1 receptors including ActRIA {(or ACVRI, ALK2), BMPR1A {or
ALK3), BMPR1B (or ALK6), TGFBR1 (or ALK5) and type Il receptors including BMPRII, ActRI
and ActRIIB (Shimasaki et al. 2004, Juenge! & McNatty 2005). For the purpose of this review,
GDF-9 and its known receptors (TGFBR1 and BMPRII) will also be included in this section.

Transduction of the BMP and GDF-9 signal requires the formation of a hetero-oligomeric
complex of a type Il and a type | receptor, followed by a signalling cascade that involves the
Smad proteins (see review by Miyazono et al. 2001). What makes the BMP family of such
interest is that both induced and naturally occurring genetic mutations in BMP family members
in mammals such as mice and sheep profoundly affect very early follicle development and
ovulation rate (Dong et al. 1996, Gatloway et af. 2000).

QOocyte derived BMPs

Particular focus has been given to BMP-6, BMP-15 and GDF-9 since they have been shown to be
primarily derived from the cocyte and can regulate somatic cell differentiation and proliferation
(luenge! & McNatty, 2005, Gilchrist et al. 2008). There appear to be crucial species differences
in the timing of expression and importance of some members of the BMP family. For example,
GDF-9 is expressed in primary and later follicles in mice (Dong et al. 1996) but in contrast, is
expressed by primordial follicles in sheep and cattle (Bodensteiner et al. 1999). The function
of GOF-9 in primordial follicle growth remains somewhat obscure. Mice deficient in GDF-9
show an arrest in follicle development at the primary stage, the granulosa cells are abnormal
with increased expression of KitL and they fail to acquire a theca layer, although oocyte growth
is accelerated. Ewes with naturally occurring mutations in GDF-9 also suffer from primary
ovarian failure and these results indicate a paracrine role of GDF-9 in early folliculogenesis,
by regulating granulosa cell proliferation and recruitment of theca cells, while limiting growth
of the oocyte (Dong et al. 1996, Nilsson & Skinner 2002). Little is currently known about
GDF-9 in early porcine follicle development, although GDF-9 expression has been detected
in fetal and neonatal ovaries, albeit not to specific structures (Shimizu et al. 2004a). Evidence
for a functional role for GDF-9 in the pig ovary was provided by the studies of Shimizu et al.
{2004b) who injected GDF-9 gene fragments into the ovaries of prepubertal gilts and found
that this increased the number of primary, secondary and tertiary follicles, concomitant with a
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decrease in the number of primordial follicles. Thus GDF-9 can promote early folliculogenesis
in the porcine ovary, but whether it is obligatory or not remains unclear.

Two other TGF-B superfamily members, BMP-15 {also known as GDF-9B) and BMP-6 are
selectively expressed by cocytes from early-stage mouse and sheep follicles, as for GDF-9 {Elvin
et al. 2000; McNatty et al. 2005). However, unlike GDF-9, knockout of the BMP-6 gene in mice
has little effect on ovarian function and BMP-15 null mice express only minor histopathological
defects and are subfertile (Yan et al. 2001). Thus they do not appear to be crucial for fertility
in the mouse. However, again there are species differences, as naturally occurring mutations
of either the BMP-15 or GDF-9 gene have profound effects on fertility in sheep (McNatty et
al. 2005). It is hypothesized that these mutations decrease production of the mature protein
or interfere with binding to celiular receptors. Ewes that are heterozygous for either of these
mutations show an increase in ovulation rate, while homozygotes are infertile with follicles
failing to develop beyond the primary stage due to lack of granulosa cell proliferation; on a
histological level, ovaries from homozygotes show many of the same features as GDF-9 null
mice ovaries (McNatty et al. 2005). Collectively, this evidence suggests that oocyte-derived
GDF-9 (rodents) or both GDF-2 and BMP-15 (sheep) have critically important effects on follicular
somatic (pre-granulosa and/or granulosa) cells of primordial and/or primary follicles that are
essential for further follicle progression. The precise mechanisms through which this is achieved
remain unclear, although it has been postulated that upregulation of KitL expression may be
involved (Knight & Glister 2006).

Although the roles of BMPs and GDF-9 in early porcine follicle development have not yet
been examined in detail, work from our laboratory and others has localised BMP-15 and BMP-6
to the porcine oocyte (Quinn et al. 2002, Brankin et al. 2005a, Zhu et al. 2008) in pre-antral
and antral follicles, but it is unknown how early in development expression starts and this
clearly requires investigation. BMP receptors (BMPR-IA, -IB and -ll} have been identified in
porcine fetal ovaries, specifically in the fetal egg nests and cocytes of primordial follicles (Fig.1:
Quinn et al. 2004a) and BMP-4, -5, and -6 have been detected in neonatal ovaries (Shimizu
et al. 2004a). These data indicate that there is an active BMP system in the porcine ovary
from the fetal stage onwards and indicate the potential involvement of BMPs in the formation,
activation and early development of pig follicles.

Somatic cell derived BMPs

In rodents, BMP-4 and BMP-7, are expressed in theca cells from the primary/secondary stage
onwards and have been shown to reduce the number of primordial follicles whilst increasing
the number of primary, preantral and antral follicles (Lee et a/. 2001, Nilsson & Skinner 2003).
This suggests a positive paracrine action of these BMPs on the growth of preantral follicles,
as there is in antral follicles (see below). Again data on early follicle development in pigs is
lacking, although as mentioned above, BMP-4 and -6 and their receptors are expressed early
in development {Quinn et al. 2004a, Shimizu et al. 2004a).

Anti Mullerian Hormone (AMH)

There is compelling evidence from a number of species, particularly the mouse, that another
TGF-f superfamily member, AMH, plays an inhibitory role in the initiation of primordial
follicle growth (Durlinger et al. 2002). In addition to its role in the differentiation of the male
reproductive tract, AMH is expressed by the granulosa cells of the female gonad and exposure
of neonatal mouse ovaries to AMH halved the number of growing follicles, whereas deletion of
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regulate steroidogenesis, proliferation, differentiation, apoptosis, cumulus expansion, cocyte
maturation and developmental potential. Although our knowledge of these intra-follicular
regulatory factors, particularly members of the TGF-R superfamily, has increased dramatically
in recent years, there are still unanswered questions including how the temporal and spatial
expression of these factors is regulated, why there appears to be redundancy of some of the
ligands and precisely how the various growth factor families interact in the growing follicle.
Furthermore, much of the information discussed in this review has been generated from in vitro
or localisation studies, or by extrapolation from other species and whilst such information is
extremely valuable, particularly from a mechanistic viewpoint, there is still a need to understand
precisely how these factors interact in vivo. Therefore the testing of some of the hypothesised
roles of these paracrine hormones in animal models should be a high priority to help unravel
their relative importance in regulating follicle development in the pig. It is only through increased
understanding of the precise roles of these intra-follicular factors, that further improvements in
reproductive efficiency will be made.
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