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Proteomic analysis occupies an increasingly important place in gamete

and embryo biology as an independent tool of discovery and as a means
of follow-up to transcriptional profiling. Proteomics have been and will

be increasingly helpful in many areas of reproductive biology, including

applied science and technology development. Areas likely to be impacted
most rapidly by proteomic knowledge include fertility evaluation in male

farm animals, male infertility diagnostics in humans, assessment and

optimization of oocyte and embryo culture protocols, selection of fittest
oocytes for assisted fertilization and selection of most competent embryos

for embryo transfer. Oocyte proteomics will help us understand the

process of oogenesis and oocyte maturation, and to discover non-invasive
markers of oocyte quality. Sperm proteomics correlate with normal sperm

structure and function and can be applied to discover novel biomarkers
of farm animal fertility and diagnostic markers of human male infertility.

Putative receptors participating in fertilization, as well as proteins acquired

onto sperm surface from epididymal fluid and seminal plasma, have

been discovered by proteomic analysis. An added level of information
is provided by advanced proteomic approaches, capable of identifying

posttranslational modifications such as phosphorylation, glycosylation
and ubiquitination which play important functions in gametogenesis,

fertilization and embryo development. By no means exhaustive, the
present paper reviews some of the most interesting proteomic studies of

mammalian gametes and embryos published in the last decade.

Introduction

Genomic revolution brought us transcriptional profiling which allowed for the identification
of dozens of genes involved in mammalian gametogenesis, fertilization and preimplantation
embryo development. The next major challenge facing reproductive biology is to apply
meaningful approaches to analyze these gene products at the protein level. Proteomic analyses
could therefore be used as a follow up to transcriptional profiling, or as an independent
discovery tool. Proteomic follow-up of transcriptional profiling is important because of a lack
of consistency and repeatability in microarray data wherein multiple levels of verification
are necessary to confidently confirm differential expression. Also, some of the identified
transcripts could be products of untranslated pseudogenes, or their transcription levels may
differ from their translation levels. Other transcripts could represent non-coding RNAs with
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distinct biological functions that are not to be translated. Finally, protein half life varies greatly
and can be a cause of discrepancies between mRNA and the protein level of a given gene
product in a given cell type.

Cataloging of the oocyte proteome will be instrumental in studies of the process of oogenesis
and oocyte maturation. In addition, proteomic approach can be used to identify non-invasive
markers of oocyte quality in the oocyte proteome and oocyte secretome. Quality control
of oocyte maturation is of importance for farm animal embryo transfer technology and, in
particular, for human assisted fertilization. If sensitive biomarkers are identified in the oocyte
secretome, human oocytes or fertilized eggs could be cultured individually in media drops and
the oocyte-exposed media could be collected and evaluated for the presence or abundance of
protein biomarkers associated either with normal or deviant oocyte quality. Based on such a
test, oocytes or zygotes with highest developmental potential could be selected for fertilization
or embryo transfer, respectively.

Sperm proteomics correlate with normal sperm structure and function and can also be used
for comparison of normal and subfertile/infertile sperm samples. Furthermore, the carryover
of proteins translated during the haploid phase of spermatogenesis, the spermiogenesis, can
be informative of the mechanisms involved in spermatid differentiation into a spermatozoon.

During fertilization, sperm structures such as the acrosome are lost but their remains (e.g.
the acrosomal shroud or ghost) can be collected from the egg coats of the fertilized oocytes.
By tagging spermatozoa with biotin before fertilization, sperm proteins that interacted with
the egg coat can be purified and identified by protemics. This can lead to the identification
of sperm surface receptors involved in sperm-zona pellucida interactions during fertilization.
Of equal importance are the proteomics of seminal plasma and epididymal fluid, since it
is in the epididymis where many sperm surface proteins are acquired that convey sperm
fertilization-potential. Advanced proteomic approaches, capable of identifying posttranslational
modifications such as phosphorylation, glycosylation and ubiquitination, pick up where
conventional proteomics leave off, adding a new layer of information to straight protein
identification in gamete and embryo biology.

While not all inclusive, the present paper reviews a select group of recent reports on
proteomes of mammalian gametes, with particular emphasis on reports relevant to sperm
fertilizing ability and oocyte developmental potential. Readers are referred to other recent
review articles to complement the information reviewed here (Sirard et al. 2003, Aitken &
Baker 2008; Katz-Jaffe & Gardner 2008; Oliva et al. 2008). Some proteins related to the
ubiquitin-proteasome pathway are discussed in more detail, as this pathway is the main focus
of research in our laboratory.

Oocyte secretome

The importance of assessing oocyte secretome, i.e. the protein composition of culture media
enriched by oocyte-secreted or oocyte-leaked proteins, lies in its potential for identifying
molecular biomarkers of good or poor oocyte competence for fertilization and embryo
development. Thus far, ubiquitin was reported as the only informative marker of mouse and
human embryo quality (Katz-Jaffe et al. 2006). Ubiquitin is the central protein of the substrate-
specific, proteolytic ubiquitin-proteasome pathway (Glickman & Ciechanover 2002). Ubiquitin
can occur as a free protein (as seems to be the case of secretome in good quality oocytes and
embryos), or covalently linked to other proteins in form of a monomer (monoubiquitination),
dimer (diubiquitination), tetramer (tetraubiquitination) or polymer (polyubiquitination). Tetra
and polyubiqutiantion serve as signals for protein degradation by the 265 proteasome, an event
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central to a number of physiological cellular mechanisms (e.g. cell cycle regulation, antigen
presentation by immune system cells) and pathologies (e.g. Alzheimer's, AIDS, liver cirrhosis).
The housekeeping function of ubiquitin-proteasome pathway, i.e. the recycling of outlived and
damaged proteins is certain to play an important role in oocyte and embryo metabolism.

Oocyte proteome

Mass spectrometry of protein spots excised from two dimensional PAGE gels of porcine
oocytes before and after meiotic maturation revealed 35 abundant oocyte proteins, including
zona pellucida proteins, cytoskeletal proteins, redox proteins and ubiquitin-system proteins
(Ellederova et al. 2004). Relative abundance of these proteins was compared to that of actin,
revealing that spermine synthase, peroxiredoxin and ubiquitin C-terminal hydrolase L1 (UCHL1)
were extremely abundant in the porcine oocyte proteome, even more so than actin (Ellederova
et al. 2004). Among these proteins, UCHL1 amount doubled between the germinal vesicle
(GV) and metaphase!! (MI1) stage of oocyte maturation (Ellederova et al. 2004).

The role of UCHL1, and related UCHs and ubiquitin-specific proteases (USP) is to remove
ubiquitin from substrate proteins (deubiquitination) and regenerate the available monoubiquitin
pool by disassembling the multi-ubiquitin chains. A detailed study of porcine fertilization
revealed that UCHL1 is concentrated in the oocyte cortex, where it may regulate the events of
sperm oolemma-fusion and sperm incorporation (Yi et al. 2007a). Based on these studies, a role
of UCHL1 and a related enzyme UCHL3 was proposed in the regulation of anti-polyspermy
defense. Remarkably, electrofusion of a donor cell fibroblast during somatic cell nuclear transfer
(SCNT) produced an UCHL1 free cortex area on the oocyte pole to which the donor cell was
fused (Yi et al. 2007a). The cortical accumulation of UCHL1 is also observed in bovine (PS,
unpublished) and murine (Sekiguchi et al. 2006; Yi et al. 2007a) oocytes. The gracile axonal
dystrophy (gad) mutant mice expressing a truncated form of UCHL1 (Saigoh et al. 1999) were
subfertile in mating studies and appeared to produce many polyspermic zygotes by in vitro
fertilization (Sekiguchi et al. 2006). It is not clear whether the in vivo produced gad mutant
zygotes are also polyspermic.

A follow up study confirmed the high abundance of UCHL1 in porcine oocytes and provided
evidence that this enzyme participates in the regulation of oocyte meiosis-1, particularly at
metaphase-anaphase transition (Susoret al. 2007). Such a role is consistent with the requirement
of ubiquitin-dependent proteolysis for metaphase-anaphase transition in somatic cells, wherein
the ubiquitin conjugating and deubiquitinating enzymes are constituents of the anaphase
promoting complex (APC)(Pesin & Orr-Weaver 2008). In summary, UCHL1 is likely important
for protein turnover in the oocyte and embryo, but it also has more specific functions in the
cell cycle control during meiosis, and in the regulation of oocyte cortex and anti-polyspermy
defense during fertilization. Remarkably, UCHL1 was also identified as one of ten most abundant
proteins in the bovine oocyte proteome (Massicotte et al. 2006). Besides UCHL1, ubiquitin
conjugating enzyme E2D3, chaperone proteins HSP70, FISC71, cyclophilin A (CYPA), and
CCTE,glutathione-S-transferase GSTM5 (anti-oxidant), 2,3-bisphoglycerate mutase (2,3-BPMG;
glycolytic pathway enzyme), epidermal fatty acid binding protein E-FABP (lipid transport
protein), and two actin isoforms were identified (Massicotte et al. 2006).

The major vault protein (MVP; lung resistance-related protein/LRP) was also revealed to be
an abundant protein in the pig oocyte proteome (Ellederova et al. 2004). A more recent study
demonstrated that MVP, which is the major ribonucleoprotein component of the cytoplasmic
vault particle (Kickhoefer & Rome 1994), accumulated during oocyte maturation in porcine
ova and showed aberrant accumulation patterns in morphologically abnormal human
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oocytes (Sutovsky et al. 2005). High MVP levels would appear to be desirable in oocytes
and preimplantation embryos as this drug resistance-related protein is thought to have a cell
protecting activity (Scheffer et al. 2000). High content of MVP protein could have positive
influence on oocyte maturation and preimplantation development; the MVP containing vault
particles protect cells from stress and conveys resistance to chemotherapy drug treatment
in cancer cells (Steiner et al. 2006). The turnover of MVP in porcine oocytes and zygotes is
regulated by ubiquitin-dependent proteasomal proteolysis (Sutovsky et a/. 2005). Translation and
turnover of MVP appears to be misregulated in cloned porcine embryos and could contribute
to their reduced developmental competence (Antelman et al. 2008).

Proteomes of immature and mature bovine oocytes were compared using saturation labeling
(2-D DIGE)(Berendt et al. 2009). Ten proteins were identified as significantly different in their
amount between immature and mature oocytes. These included the Ca(2 +)-binding protein/
translationally controlled tumor protein, enzymes of the Krebs and pentose phosphate cycles,
clusterin, 14-3-3 epsilon signaling protein, elongation factor-1 gamma, and redox enzymes
including GST mu 5 and peroxiredoxin-3 (Berendt et al. 2009).

Large scale proteomic profiling of mouse metaphase II oocytes identified 380 proteins,
including 53 putative phosphoproteins (Ma et al. 2008). According to gene ontology annotation,
most abundant categories included protein metabolism, protein binding, and hydrolase
activity.

Sperm proteomics

Comprehensive analysis of the human sperm proteome was undertaken as part of a contraceptive
target identification project at Wyeth Research, an effort that also generated a valuable depository
of testicular and epididymal transcriptomes and sperm protein sequences (Johnston et aL 2005).
A total of 1,760 proteins were identified, of which 1,350 proteins were associated with the
soluble sperm fraction, 719 with the insoluble fraction, and 309 identified in both fractions.
The high content of insoluble fraction-associated proteins in the sperm proteomes is likely a
result of a high level of disulfide bond cross-linking and detergent resistance observed in the
sperm accessory structures. Dominant ontologies by protein function included, in decreasing
order of identified protein number, protein folding & degradation, cytoskeletal function, cell
growth/maintenance and metabolism in the soluble fraction and cytoskeleton, protein folding/
degradation, and cell growth/maintenance in the insoluble fraction (Johnston et al. 2005).
Twenty seven different subunits of the 265 proteasome, a multi-subunit protease implicated in
fertilization process (Sutovsky et al. 2004), were identified.

Baker et al. (2008a) identified 829 rat sperm proteins by using prefractionation of sperm extracts
with narrow range immobilized pH gradient (IPG) gel strips. This technique, described by (Essader
et al. 2005), can increase the chance of identifying low abundance proteins. Identified sperm
proteins were clustered according to subcellular localization, molecular function, and biological
processes in which they were known to participate. By protein annotation/localization, 82% of
identified proteins were intracellular, 29% were mitochondrial proteins, and only 14% were
annotated as cytosolic proteins, which is understandable due to low abundance of cytoplasm
in spermatozoa. Molecular function was attributed to 600 proteins, of which 69% possessed
a binding domain and 66.5% contained a catalytic domain. Among proteins of interest to
gamete and fertilization biologists were superglobulin family protein IZUMO and ADAM family
disintegrin-proteins implicated in sperm-oolemma fusion during fertilization, ion transporters,
26S proteasome subunits implicated in both spermatogenesis and fertilization, proteins related
to spermatid elongation/differentiation and proteins related to sperm maturation.
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The same group also analyzed 858 proteins in the mouse sperm proteome and found some of
the same proteins as described above for rat sperm proteome. As an example of this conserved
proteome composition, they reported that 26 of the 42 identified proteases were subunits of the
265 proteasome (Baker et al. 2008c). Other proteins of interest included previously characterized
sperm proteins IZUMO, zonadhesin, CatSper4, and 0DF1 & 2.

Proteomic analysis can be used to compare protein composition of fertile and infertile/
defective spermatozoa, potentially identifying novel biomarkers of male fertility. In such
comparisons of high and low fertility bull sperm proteomes, 125 differentially expressed proteins
have been identified, including proteins involved in sperm-oocyte interactions such as IZUMO,
CRISP and ADAM-family proteins including fertilin alpha (Peddinti et al. 2008). Proteins
involved in metabolism, cell signaling, spermatogenesis and cell motility were upregulated
in the high fertility group. In particular, proteins involved in EGF signaling, PDGF signaling,
oxidative phosphorylation, and pyruvate metabolism pathways were upregulated in the high
fertility group (Peddinti et al. 2008).

For human infertility research, proteomes of normozoospermic men and asthenozoospermic
patients were compared, and 17 differentially expressed proteins were identified (Oliva et al.
2008). They were actin-B, annexin-A5, cytochrome C oxidase-6B, histone H2A, prolactin-
inducible protein and precursor, calcium binding protein-5100A9 (2 spots), clusterin precursor,
dihydrolipoamide dehydrogenase precursor, fumarate hydratase precursor, heat shock protein-
HSPA2, inositol-1 monophosobatase, 3-mercapto-pyruvate sulfurtransferase/dienoyl-CoA
isomerase precursor, proteasome subunit-PSMB3 (205 proteasomal core subunit beta 3),
semenogel in 1 precursor and testis expressed sequence 12.

In a separate study from the same group, the relative abundance of 58 identified proteins
correlated significantly with the expression of other proteins in sperm samples from 47
infertile patients and 10 fertile donors (de Mateo et a/. 2007). Several proteasomal subunits
were identified, with inter-correlated expression patterns. The 26S proteasome has been
increasingly implicated in several steps of mammalian fertilization (Yi et al. 2007b). Eight
proteins, including proteasomal subunit P5MA6 and mitochondrial membrane protein prohibitin
correlated positively with sperm DNA fragmentation revealed by TU NEL assay (de Mateo et al.
2007). Prohibitin also showed increased levels in sperm samples with abnormally low ratios
of protamine 1 to protamine 2, an indicator of sperm chromatin structure. Of importance,
prohibitin ubiquitination in the bull sperm mitochondria has been implicated in the mechanism
of targeted degradation of paternal mitochondria after fertilization (Thompson et al. 2003).

Proteomics have been applied to identify sperm antigens that could induce autoimmune
infertility in humans (Bohring & Krause 2003). Human antisperm antibodies were found
to recognize 18 major antigens in the preparations of human sperm plasma membrane and
acrosomal membrane proteins, including heat shock proteins H5P70 and HSP70-2, disulfide-
isomerase-ER60, caspase-3 and two different proteasomal subunits (Bohring & Krause 2003).
Major proteins most frequently identified by human antisperm antibodies in the proteomic screen
of mouse sperm extracts included apo lactate dehydrogenase (LDHC4), voltage-dependent
anion channel (VDAC2), outer dense fiber protein ODF2 and glutathione 5-transferase mu5
(Paradowska et al. 2006).

Epididymal fluid and sex accessory gland

Studying epididymal fluid (EF) proteome, which represents the secretome of epididymal

epithelial cells and proteins released from epididymal spermatozoa, is of importance to gamete

and fertilization biology. It is during epididymal maturation and storage when spermatozoa
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acquire their fertilizing potential through posttranslational modifications of testicular origin-
sperm proteins and addition of new epididymis-secreted proteins onto sperm surface. The
acquisition of fertilizing capacity is first observed between the distal caput and proximal
corpus epididymis, suggesting that secretory proteins of these epididymal regions are of
particular importance for sperm function (Moore 1981). In recent years, the understanding of
epididymal function expanded well beyond sperm storage function (Cornwall 2009). Most
abundant epididymal proteins are those governing sperm maturation, epididymal protein
turnover and sperm storage. Early biochemical and proteomic studies established that clusterin
alone represents —20-40 0/0of total epididymal fluid protein in various mammalian species

(Dacheux et al. 2003). Clusterin is a glycoprotein found in a number of tissues and biological
fluids. Besides sperm maturation, clusterin has been implicated in complement regulation,
lipid transport, cell-cell interactions and various diseases (Rosenberg & Silkensen 1995). Other
abundant EFproteins include cytosine rich secretory protein CRISP implicated in sperm-oocyte
interactions, lactoferrin, mannosidase and hexosoaminase (Syntin et al. 1996).

Proteins of the EF are secreted by epididymal epithelial cells via specialized membrane
vesicles, apical blebs and epididymosomes, allowing for apocrine secretion of cytosolic proteins
that in other cell types do not enter secretory pathways (Hermo & Jacks 2002, Baska et al.
2008, Cornwall 2009). Proteomics of human epididymosomes revealed 146 proteins, including
enzymes (27%), adhesion molecules (14%), transporters and protein trafficking molecules
(13%) and signal transducers (12%) (Thimon et al. 2008). Analysis of bovine caput and cauda
epididymis epididymosomes by liquid chromatography quadrupole time-of-flight tandem mass
spectrometry (LC-QToF-MS/MS) identified 10 proteins, including aforementioned clusterin and
also aldose reductase, an enzyme involved in steroid hormone metabolism (Frenette et al.
2006). Cauda epididymal fluid proteins have also been analyzed with regard to fertility of dairy
bulls. A total of 118 differential spots were identified in 2D gels of the EFfluid from high versus
low fertility bulls. Amounts of alpha-L-fucosidase 2 and cathepsin D were more than two fold
greater in high-fertility bulls, while prostaglandin D-synthase was upregulated in low fertility
bulls (Moura et al. 2006). In another study, the same group used in vitro fertilization to assay
the effect of seminal plasma from high and low fertility sires on sperm ability to penetrate the
oocytes. Proteins identified as beneficial to fertilization included seminal plasma glycoproteins
BSP A1/A2, BSP A3 and BSP 30 kDa, and also clusterin, albumin, phospholipase A(2) and
osteopontin (Moura et al. 2007a). Osteopontin has been used as an additive to porcine in vitro
fertilization medium, to improve embryo development and reduce the rates of polyspermic
fertilization (Hao et al. 2006; Hao et al. 2008).

Proteomic data on boar seminal plasma have been reviewed previously (Strzezek et al.
2005). Most abundant proteins include spermadhesins, cell protectants with antioxidant
properties, immune suppressors, sperm decapacitating factors and proteins implicated in the
regulation of sperm motility via protein phosphorylation such as phosphotyrosine protein acid
phosphatase.

Bovine seminal plasma proteins BSP-A1/A2, BSP-A3 and BSP-30 kDa represent 40-57 %
of bovine seminal plasma proteins (Nauc & Manjunath 2000). Spermadhesins, clusterin
and osteopontin are also highly abundant (Moura et al. 2007b). The BSP proteins coat the
sperm head and have been implicated in various aspects of sperm function, including sperm
capacitation, maintenance of sperm motility within female reproductive system and sperm
binding to and release from the oviductal sperm reservoir (Gwathmey et al. 2006). Detailed
analysis of bull seminal plasma by 2D SDS-PAGE and MS/MS revealed 99 proteins, including
BSP proteins, clusterin, spermadhesin 2 and osteopontin, but also 49 minor proteins that were
not previously reported in seminal plasma of any species (Kelly et al. 2006). Seminal plasma
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is one of eleven human body fluids covered by a recently established proteomic database (Li
et 2009). Human seminal plasma was found to contain 923 proteins, with most abundant
proteins being semenogelins, fibronectin, lactoferrin, laminin and serum albumin (Pilch & Mann
2006). Seminal plasma proteins display a wide range of posttranslational variants (Fung et al.
2004). The many roles of the above seminal plasma proteins include adding viscosity to seminal
plasma, protecting spermatozoa from stress, microbes and immune cells, providing energy
substrates, preventing premature sperm capacitation and mediating the interactions between
spermatozoa and oviductal epithelial cells (Calvete & Sanz 2007, Muino-Blanco et al. 2008).

Sperm-oocyte interaction proteomics

During fertilization, sperm structures undergo irreversible changes, and some of them are lost or
partially retained on the egg vestments. Proteomic studies profited from these irreversible and
relatively stable binding reactions for identification of sperm proteins involved in interactions
with oocyte surface.

van Gestel et al. (2007) isolated, purified and solubilized plasma membranes from boar
spermatozoa and incubated such preparations with porcine zona pellucida fragments. They
resolved the complex sperm and ZP proteins on 2D gels and identified the potential ZP-binding
sperm proteins by using Q-Tof Nanospray MS/MS. They identified four dominant proteins in
these ZP-bound sperm membranes, including spermadhesin AQN-3, lactcadherin/p47, fertilin
beta and peroxiredoxin 5. Except for peroxiredoxin 5, all three remaining proteins have been
implicated previously in sperm-oocyte interactions. Other sperm membrane-associated proteins
included eight ADAM family disintegrins, ion channels and transporters, enzymes, secretory
pathway associated proteins, acrosomal surface proteins and various plasma membrane
receptors.

Sperm head tail-separation and subcellular fractionation of the sperm head components
were applied to identify mouse sperm head proteins potentially involved in different steps
of fertilization (Stein et al. 2006). To distinguish the sperm surface proteins from the rest,
spermatozoa were surface biotinylated and membrane surface, membrane vesicle and acrosomal
matrix fractions were recovered. Of the identified proteins, one third were products of genes for
which the mutations have been shown previously to cause subfertility or infertility. Identified
acrosomal proteins included glycolytic and proteolytic enzymes and enzyme inhibitors, receptor
proteins for zona pellucida, secretory pathway proteins and proteins involved in protein folding
(Stein et al. 2006). Identified proteins with a proposed function in fertilization included those
implicated in sperm zona interactions (e.g. 5P38/IAM38/ZPBP2), sperm-oolemma binding
(ADAM-family proteins) and various acrosomal enzymes.

Biotinylated oolemmas were harvested to identify mouse oocyte surface proteins potentially
involved in fertilization and zygotic development. The putative surface-labeled proteins
identified by biotinylation included heat shock proteins HSP70 and HSP90a, chaperone
proteins GRP94 and GRP78, oxygen regulated protein ORP150, calreticulin, calnexin and
protein disulfide isomerase (Calvert et al. 2003).

Some proteins involved in sperm capacitation and acrosome reaction assemble within
designated membrane microdomains, the lipid rafts (Boerke et al. 2008). Some of these proteins
were identified in the mouse detergent-resistant membrane fractions (Miranda et al. 2009).
Among the most abundant proteins were those previously implicated in fertilization process,
including IZUMO and SPAM1. Other proteins of interest were membrane raft-associated
proteins caveolin 2 and flotilin 2, TEX101 and hexokinase 1.
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Posttranslational modification proteomics in gamete research

Phosphoproteomics are particularly important for sperm studies due to the importance of sperm
protein phoshorylation for the process of sperm capacitation (Bailey et al. 2005). In spite of

intensive research, relatively few capacitation-related phosphoproteins have been identified.
A predominant one is the tyrosine phosphorylated p32 antigen/group of antigens migrating at
32 kDa in boar sperm extracts. These are acrosomal proteins including acrosin-binding protein

sp32 and two triosephosphate isomerase isoforms (Bailey et al. 2005).
Proteins phosphorylated on Tyrosine residues were detected by 2-D Western blotting with

anti-phosphotyrosine antibodies in non-capacitated versus capacitated mouse spermatozoa and

identified by MS/MS. Among proteins identified were 20S proteasomal core subunit alpha 6
(PSMA1), VDAC, tubulin, PDHE1 beta chain, glutathione S-transferase, NADH dehydrogenase

(ubiquinone) Fe-S protein 6, acrosin binding protein sp32-precursor and cytochrome b-cl
complex (Arcelay et al. 2008). Findings from an earlier study of capacitated human sperm
phosphoproteome by the same group zeroed in on phosphoproteins in the sperm tail principal
piece that are likely to convey signals for hyperactivated sperm motility observed in capacitated

spermatozoa, including the A-kinase anchoring proteins (AKAP3 and AKAP4). Also identified
was the valosin-containing protein (VCP) involved in substrate presentation to 265 proteasome
(Ficarro et al. 2003). This study used Fe3 + immobilized metal affinity chromatography (IMAC)

to enrich phosphopeptides generated by enzymatic digestion of sperm phosphoproteins prior
to MS/MS. Preliminary data from a large scale proteomic study of sperm phosphoproteome
have been presented recently, but not yet published as a peer-reviewed article (Baker et al.
2008b).

Oocytes have also been subjected to phosphoproteomics. Phosphoprotein profiling of
bovine oocyte maturation identified 40 proteins belonging to various protein families such as
protein kinases, cell cycle regulators, chaperone proteins, and cytoskeletal proteins (Bhojwani
et al. 2006). Identified proteins included some found in other oocyte proteome studies
discussed above, such as MVP, heat shock proteins and peroxiredoxin 2. Proteins differentially
phoshorylated during oocyte maturation included beta-tubulin, beta-actin, cyclin E2, aldose

reductase and UMP-synthase, protein disulfide isomerase 2 and peroxiredoxin 2.
We have been particularly interested in posttranslational modification of gamete proteins

by ubiquitination. Ubiquitinated proteins can be purified by using the agarose-immobilized
recombinant UBA domain of ubiquitin binding-protein p62 (Vadlamudi et al. 1996). Such

proteins can be resolved on PAGE and excised for proteomic identification. Using this approach,
we have identified three abundant, ubiquitinated proteins in porcine oocytes: MVP (Sutovsky
et al. 2005), UCHL1 (Yi et al. 2007a), and TEAM (Antelman et al. 2008). Ubiquitin binds
covalently to an internal Lys-residue of its substrate proteins through its C-terminal residue

Gly-76, backed by Gly-75 and Arg-74. Consequently, trypsin digestion of ubiquitinated proteins
around the ubiquitinated substrate Lys-residue produces a unique fingerprint-peptide with Gly-
Gly adjunct and a mass increased by 114 Da (Peng et al. 2003). This "Gly-Gly" modification

can be accounted for in proteomic database searches and used to identify the position of the
ubiquitinated Lys-residue on the substrate protein. Studies are in progress to identify such
ubiquitin-modified sites in several sperm and oocyte proteins that participate in fertilization.

Protein S-nitrosylation is a covalent posttranslational modification that results in the formation

of an S-NO bond on a thiol group of a cysteine residue of the modified protein. Nitrosylation
was examined in human spermatozoa by Lefievre et al. (2007). Sperm proteins in which
nitrosylation was identified included proteins that were shown to be nitrosylated in other cell

types (e.g. tubulin, GST and several heat shock proteins), as well as sperm/seminal plasma
proteins such as the A-kinase anchoring proteins AKAP3 and AKAP4, and semenogelin 1 and
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2. Similar to other sperm proteomes discussed above, subunits of the 205 proteasomal core
were represented prominently.

Conclusions

Table 1 summarizes the proposed functions of the most prominent proteins found in mammalian
gametes and secretions of the male sex accessory glands. Altogether, the present review illustrates
positive impact of proteomics on our understanding of mammalian gametogenesis, fertilization
and preimplantation embryo development. An outstanding challenge in basic gamete and
embryo research is the optimization of strategies for a high throughput proteomic validation
of transcriptional profiling data. Antibody arrays are being developed by several companies.
Recent examples of such arrays applied to the study of mammalian oocyte and embryo is the
screening of 400 + signal transduction proteins in porcine maturing oocytes by using Kinex
antibody microarray (Pelech et al. 2008). The problem with antibody arrays is that at the present
time only a small portion of changes observed in protein expression and posttranslational
modification seem to be repeatable and validated by immunoblotting (Pelech et al. 2008). The
large number of oocytes necessary for proteomic analysis is another limitation, particularly in
studying rodent and human oocytes. This issue will likely be mitigated by an increased use
of large animal models in basic gamete research and by steadily increasing sensitivity and
decreasing total protein requirement of novel proteomic protocols. Differential isobaric tagging
of a protein sample, akin to the differential probe labeling employed by microarray technology,
will allow for the accurate comparison of protein composition between samples.
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