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The reproductive performance of the sow is one of the key factors

affecting production profitability of the pig industry. Reproductive traits

are in general, lowly heritable, and with reliable markers, they can be

used to enhance current selection procedures for improvement of these

traits. To find potential markers, large scale quantitative trait loci (QTL)

and candidate gene studies have been conducted for reproductive traits.

The present review discusses QTL and candidate gene discovery, large

scale SNP association studies, gene expression profiling and discovery

of miRNA regulation of pig reproductive tissues. Many QTL have been

found for reproduction traits and a limited number of useful genes (e.g.:

ESR1, PRLR, FSHB, EPOR and RBP4) have been found to have significant

associations with reproductive traits. Expression studies with reproductive

tissues have revealed differential expression within a few gene networks

which need further mapping and association analyses to select prospective

gene markers. The near completion of the pig genome sequence and the

development of high density SNP chips will allow for large scale SNP

association studies for pig reproductive traits in the future. Collection

of appropriate phenotypes in large numbers and in broad populations

representative of the swine industry are required if such genomic studies

will ultimately be successful.

Introduction

Reproductive efficiency in pig breeding herds can best be measured as pigs per sow per year
among all breeding females. Pork producers are also increasingly concerned with the length
of sow productive life in a herd. Productive sows represent those animals which can farrow a
litter of pigs, lactate for — 21 days, return to estrus, successfully conceive, complete gestation,
and finally farrow again and again over many parities. The recent advances in pig genomics
including whole genome sequencing have provided the identification of useful candidate
genes and QTL (quantitative trait loci), expressed sequence tags (ESTs), single nucleotide
polymorphisms (SNPs) and microRNAs; which all may affect reproductive phenotypes. This
review focuses on the studies previously conducted and the roles they may play in improved
reproductive performance.
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Quantitative approaches to improved reproduction

Reproductive traits in the male and female differ considerably. In males, reproductive traits
or performance may be measured by testis size, semen volume, sperm concentration of the
ejaculate, sperm quality and libido or breeding aggressiveness. Reproductive traits in females
include age at puberty, estrous cycles and expression, litter size, weaning to estrus interval
and farrowing interval. The component traits of litter size are ovulation rate, fertilization rate,
embryo survival and uterine capacity. Fertilization rate is contributed in part by the boar. Embryo
survival and uterine capacity have also been viewed in part as under the genetic control of
the embryo/fetus. Hormone levels and control of hormone receptors are also important traits
under consideration. Genetic differences have been observed both among breeds and lines.
Those differences can be most effectively exploited through the use of crossbreeding. Within
breed or line, heritability estimates are measures of the additive genetic variation that can be
manipulated via selection of superior animals. Estimates of genetic parameters, heritabilities
and genetic correlations vary for several reasons, including the breed(s) studied, method of
analysis and sampling variation. Estimates of heritabilities for several traits are summarized
(Lamberson 1990, McLaren & Bovey 1992). Estimates for most male traits are moderate (e.g.
0.4, testis wt.) and would be expected to respond to selection while most of the heritabilities
for the female traits (e.g. 0.07, number born alive) are low and progress utilizing selection is
expected to be more limited. Hence, while progress can be made using conventional selection,
marker assisted selection (MAS) using useful genes and markers offer an opportunity to improve
selection programmes for reproductive traits and reduces generation interval and enhances the
accuracy of selection (Spotter & Distl 2006).

Candidate genes and QTL

To identify genetic markers the first approach has been to use genome scans using microsatellites
to find quantitative trait loci (QTL) (Rathje et al. 1997, Rohrer et al. 1999, Wilkie et al. 1999)
and the second approach has been to use candidate genes thought to play a role in controlling
phenotypes (Rothschild et al. 1996, Drogernuller et al. 2001, Jiang et al. 2001). QTL analysis is the
identification of genomic regions that are responsible for genotypic differences in a desired trait.
Most QTL analyses have used at least three generations hence it is time-consuming to produce
such pig populations for reproductive traits. Several QTL were found for both male and female
reproductive traits (Table 1 and 2). However, initial studies revealed that chromosomes 8 and X
harbored many QTL for female and male reproductive traits, respectively. Generally, QTL regions
cover 10-20cM regions which are difficult to use in selection programmes. Thus fine mapping
of QTL is necessary to develop markers to use in marker assisted selection programmes (Distl
2007). Several QTL have been found for reproduction traits but further research is required to
find the causative genetic variation in the gene influencing the trait. Studies on the association
of positional candidate genes are progressing and these studies require useful commercial
populations for validation. The requirement for the candidate gene approach is to test the gene
variants in different populations (Rothschild et al. 2000). Because lowly heritable reproductive
traits are influenced greatly by management and other environmental influences, it is important
to test the association of candidate genes with phenotypic traits in different populations under
different farm conditions. There may be inconsistencies in associations of candidate genes with
phenotypes in different studies but this does not mean that the gene marker does not work. Failure
to be predictive of a trait may be the result of the small sample size used to test the association.
In addition, association studies are usually affected by differences in the frequency of alleles and
genotypes responsible for the candidate gene effects, different linkage phases between the marker
and causal mutation in different populations and epistatic effects (Distl 2007).
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Table 1. QTL for female reproductive trails in pigs.
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Trait SSC Population* Reference**

Age at puberty 1, 10 WC x M Rohrer et al. 1999




7, 8, 12 LW x Lr Cassady et al. 2001




7, 8, 12, 15 LW x Lr Holl et al. 2004

Ovulation rate or Number of corpora
lutea

4, 8, 13, 15 LW x Lr Rathje et a/. 1997




8 Y x M Wilkie et a/. 1999




8, 3, 10 WC x M Rohrer et al. 1999




8 Y x M Braunschweig et a/. 2001




9 LW x Lr Cassady et al. 2001




9 LW x Lr Holl er a/. 2004




3 M x D Sato et al. 2006

Uterine capacity 8 WC x M Rohrer et al. 1999

Gestation Length 9 Y x M Wilkie et al. 1999

Litter size 6 GMP x M Yasue et al. 1999




7, 12, 14, 17 LW/Lr x M De Koning et al. 2001

Total number born 8 LW x M King et al. 2003

Number born alive 11. LW x Lr Holl et al. 2004•




1 (LW x Lr) x Lc Buske et a/. 2006a




7, 16, 18 LW x F Lr Tribout et al. 2008

Number of still born 4 Y x M Wilkie et al. 1999'




5, 13 LW x Lr Cassady et al. 2001




5 LW x Lr Holl ei al. 2004




6, 11, 14 LW x F Lr Tribout et al. 2008

Teat number 1, 3, 10 WC x M Rohrer 2000




1, 7 GMP x M Wada et a/. 2000




1, 8, 6, 7, 11 LW x Lr Cassady et a/. 2001




2, 10, 12 M x DP Hirooka et al. 2001




8 LW x M King et al. 2003




1, 8 M, P. WB crosses Beeckmann et al. 2003




5 M, P. WB crosses Lee er al. 2003




10 NI, P, WB crosses Dragos-Wendrich et a/. 2003




12 M, P. WB crosses Yue et al. 2003




X M, P. WB crosses Cepia et al. 2003




5, 10, 12 lb x M Rodriguez et al. 2005




3, 7, 8, 16, 17 LW x M Bidanel et al. 2008

F Lr: French Landrace; LW: Large white; Lr: Landrace; Y: Yorkshire; A4:meishan; WC: White composite; D:
Duroc; GMP: Gottingen miniature pig; Lc: Leicoma, P: Pietrain; WB: Wild boar; DP: Dutch piglines; lb: Iberian
" Most of the data were obtained from http://www.animalgenome.org/QTLdb/pig.html.

A list of some associations of candidate genes with female reproductive traits in different
populations is presented in Table 3. The first discovered and perhaps most important being ESR1,
which is a steroid hormone receptor mediating the actions of estrogens. The association of ESR1
with litter size was first reported by Rothschild et al. (1996) who found a Pvull polymorphism
in intron 9 of ESR1 in Meishans, Meishan Synthetic lines and Large White populations. Among
the PvuII genotypes (AA, AB and BB), the BB sows farrowed 2.3 and 1.5 piglets more than the
AA sows for both the total number of piglets born (TNB) and the number born alive (NBA)
traits respectively in Meishan synthetics and larger differences among purebred Meishan.
Similar results of ESRI associations were found in Large White and Yorkshire populations by
subsequent studies. (Table 3) though the effects were smaller but still quite significant. Short
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Table 2. QTL for male reproductive traits*

S.K. Onteru et al.




Trait SSC Population Reference

Testicular weight

300 d X, 1, 7, 5 White Duroc x Erhualin Ren et a/. 2008

220 d X Meishan x White composite Rohrer et al. 2001

180 d X Meishan x Large White Bidanel et a/. 2001

90 d X, 1 White Duroc x Erhualin Ren et al. 2008

60 d X, 3 Meishan x Duroc Sato et al. 2003

Epididyrnal weight

300 d 7, 3 White Duroc x Erhualin Ren et a/. 2008

180 d 4, 10, 13, 15 and X Meishan x Large White Bidanel et al. 2001

90 d 2 White Duroc x Erhualin Ren et al. 2008

Seminiferous tubular
diameter

300 d 16 White Duroc x Erhualin Ren et al. 2008

90 d X, 14, 13, 5 White Duroc x Erhualin Ren et al. 2008

Serum testosterone
concentration

300 d 7, 13 White Duroc x Erhualin Ren et al. 2008

Plasma FSH levels 3, 10, X Meishan x White composite Rohrer et al. 2001

* The data were obtained from http://www.animalgenome.org/QTLdb/pig.html.

et al. (1997) showed an additive effect of the B allele with average effect of 0.8 piglets in first

parity and approximately 0.7 piglets in later parities using four Large White-based commercial

pig lines with more than 4200 first parity records and over 4700 later parity records. This large

population is a good example of the population sizes needed for reproductive trait studies. A

favorable meta-analysis reported an association of the B allele with TNB and NBA using 15

studies in more than 9000 sows (Alfonso 2005). On the contrary, some much smaller studies

reported an association of superior litter size with the A allele rather than the B allele (e.g. Van

Rens et al. 2002). In addition, no significant association of ESR1with litter size was mentioned

in different swine populations (Depuydt et al. 1999, Drogemuller et al. 2001, Isler et al. 1999).

Many of these were small studies and environmental effects may have prevented seeing the

significant effect of ESRI. Recently, Muttoz et al. (2007) reported five silent mutations in the

coding region of ESR1 and found an association of a SNP Cl 227T with litter size. Because of

unaltered amino acid sequence by the reported polymorphisms of ESR1, the associated ESR1

polymorphisms may not be causal mutations, and instead might be linked with the causative

SNP. In addition, the genetic background (associations found only in Large White and Yorkshire

populations) may be important to consider when using ESR1 as a possible marker for marker

assisted selection programmes (Rothschild et al. 1996). Similarly ESR1 (Aval) and ESR2 (Pvull)

polymorphisms showed significant differences in semen volume and live sperm concentration

(Terman et al. 2006). ESR1 is used by many breeders and breeding companies worldwide.

An essential process to establish pregnancy in pigs is a shift in endometrial prostaglandin

(PG) F secretion from an endocrine (toward the myometrium and uterine vasculature) to an

exocrine (toward the uterine lumen) orientation (Bazer & Thatcher 1977). This is mediated by

interactive effects of estrogens and prolactin (Gross et al. 1990). Therefore, another important

candidate gene associated with reproductive traits is the prolactin receptor (PRLR). In pigs, this

gene was found to be associated with age at puberty, ovulation rate, uterine length and litter

size (Table 3). Initial results for litter size were first presented by Vincent et al. (1998) and later

confirmed by Van Rens & Van der Lende (2002) and Van Rens et al. (2003). These genotypes
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Table 3. Candidate genes associated with female reproductive traits in pigs.

Trait Associated
genest

SSC Polymorphism Polymorphism
location

Population* Reference

Age at
puberty

PRLR 16 Alu site




LW x M Van Rens & Vander Lende
2002




AKR1C2 10 Ilel 6 Phe Ntl 79 in coding
region

1/4M Nonneman et al. 2006




PAX5 1 C./T Intron 9 D x BT and Kuehn et al. 2008





Lr x BT




Ovulation
rate

PRLR 16 Alu site - Lr x M Van Rens et al. 2003




CNRHR** 8 - l'UTR M x LW Jiang et a/. 2001




NCOA I 3 T/T Exon 11 M x LW Melvile et al. 2002




MAN2B2 8 A/G Nt1574 mRNA M x WC Campbell et al. 2008

Uterine
length

PRLR 16 Alu site - Lr x m Van Rens et al. 2003




F5HB 2 FSHBMS
microsatellite

5'flanking region LW x M Li et al. 2008

Uterine
capacity

EPOR 2 C/T Intron 4 Yx Lr x CW x
LW

Vallet et al. 2005a




sFBP




Ser-Arg Exon 1 . M x W Vallet et al. 20056

Litter size ESR1*" 1 Pvull site Intron M x SI and LW Rothschild el al. 1996






LW Short et al. 1997






Lr Chen et al. 2000






M x LW Van Rens et a/. 2002






LW Matousek et a//2003






Czech LW Goliasova & Wolf 2004





Cu Exon 5 M x LW Muñoz el al. 2007




PRLR 16 -




LW Vincent et al. 1998






SL. Droggemuller et al. 2001






M x LW Van Rens & Vander lende






2002




FSHB' * 2 - Intron Y x EL Li et a/. 1998.






Lr and Y Zhao et al. 1999





Alu site Promoter LP, DP and Lr Du et al. 2002





FSHBMS
microsatellite

5'flanking region LW x M Li et a/. 2008




RBP4 14 - - LW 011iver et al. 1997





Intron SL Rothschild et al. 2000





Intron GW Spotter et al. 2009

. BF 7 - Intron (LW x Lr) x Lc Buske et al. 2005




LIF 8 . Exon 3 GL Spotter er al. 2009





C/T Intron 1 LW Lin et al. 2009




Furl




halal - (LW x Lr) x Li Buske et a/. 200E6




RNF4 6 UT Intron 5 CQ Niu et al. 2009

' AKR1C2: Aldo keto reductase 1C2; BF: Properdin; EPOR: Erythropoietin receptor; ESR1: Estrogen receptor 1;
FSHB: Follicle stimulating hormone beta; FUT1: fucosyl transferase 1; CNRHR: Gonadotropin releasing hormone
receptor; LIF: Leukemia inhibitory factor; MAN2B2: Mannosidase 282; NCOAl: Nuclear receptor coactivator 1;
PAX5: Paired box 5; PRLR: Prolactin receptor; RBP4: Retinol binding protein 4; RNF4: ring finger protein 4 gene;
sFBP: Secreted folate binding protein.

• BT: Yorkshire x maternal Landrace composite; CQ: Chinese Qingping; CW: Chester White; D: Duroc; DP: Duli pigs;

EL: Erhualian line; GL: German landrace; GW: German large white; LP: Laiwu pigs; Lr: Landrace; Lc: Leicoma; LW:
Large white; M: Meishan; SL: Synthestic lines; Y: Yorkshire; W: White European breed cross; WC: White composite

**Some of the mentioned gene information can be seen in http://www.animalgenome.org/QTLdb/pig.html
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were associated with significant (P < 0.01) differences in male reproductive traits such as
ejaculate volume and spermatozoa concentration in ejaculate (Kmiec & Terman 2004).

During pregnancy, the pig uterus secretes a large amount of proteins in response to
progesterone. These proteins are required to nurture the litter (Roberts & Bazer 1980). Among
them, retinol binding protein (RBP) is secreted by endometrial epithelial cells to deliver
retinol to the uterine lumen (Roberts et al. 1993). High levels of RBP secretion on day 12 of
pregnancy verify its importance during that period of time (Trout et al. 1991). The RBP4 gene
was investigated as a candidate gene and initial results, based on a limited number of sows,
indicated an additive gene effect for the favorable allele of 0.52 ± 0.30 pigs per litter in a Large
White Hyperprolific line and 0.45 ± 0.43 in the control (011ivier et al. 1997). It was again
verified as a useful candidate gene for litter size (Rothschild et al. 2000) using an MSP1 PCR-
RFLP assay and the favorable A allele had an approximate additive effect of 0.23 pigs per litter
(P < 0.05) for TNB and 0.15 pigs per litter for NBA in commercial Landrace lines. However,
other small studies were unable to identify a significant association of RBP4 with litter size in
selected lines (Blowe et al. 2006) and synthetic lines (Drogemuller et al. 2001). This gene has
been suggested for use only in Landrace populations.

The association of follicle stimulating hormone (FSH) with reproductive traits has been
well studied. The association of a retroposon element in intron 1 of the follicle stimulating
hormone-I3 (FSHB) gene with litter size was studied and it was found that the non-retroposon
homozygous allele (BB) females produced on average 2.53 piglets more than the retroposon
homozygous allele (AA) sows for total number born (TNB) and 2.12 for number born alive
in the first parity in Landrace and Yorkshire pigs (Zhao et al. 1999). An Alu element with a
difference in poly A length in the regulatory element of the FSHB gene was also found to be
associated with litter size. These results indicated that FSHB was associated with pig litter
size or it is linked with other genes (Du et al. 2002). Li et al. (2008) conducted a study on the
association of a microsatellite 4Kb upstream of the FSHB gene in a Large white x Meishan F2
population and found a significant association with higher number of piglets at weaning and
greater litter weight at weaning (P < 0.05).

In addition, the associations of polymorphisms in aldo keto reductase 1C2 (AKR1C2),
erythropoietin receptor (EPOR), fucosyl transferase 1 (FUTn, gonadotropin releasing hormone
receptor (GNRHR), leukemia inhibitory factor (LIF), mannosidase 262 (MAN2B2), nuclear
receptor coactivator 1 (inhibin beta A), paired box 5 (PAX5), properdin (BF), ring finger protein 4
gene (RNF4) and secreted folate binding protein (sFBP)with different female reproduction traits
have been reported. Using 119 SNPs from 95 genes, Fan et al. (2009) carried out association
analyses for six reproductive traits (total number born, TNB; number born alive, NBA; still born
number, SBN; mummy number, MN; gestation length, GL and non productive days, NPD)
recorded in 2,066 animals for six parities. It was found that 23 genes were significantly (P <
0.05) associated with at least three reproductive traits. In parity 1, COL9A1, NST, ADAM12,
WARS2, DKFZ and LRP5 were significantly (P < 0.05) associated with both TNB and NBA
while COL1A2, CALCR and IGFBP5 were significantly (P s 0.01) associated with SBN; and
1L6and ESR2 were significantly (P s 0.01) associated with MN and NPD, respectively. During
later parities, CASR, ESR2, WARS2, NST, IFNy and BMP8 had significant association (P < 0.05)
with TNB and NBA. The genes MC4R, FBN1, IGFBP2 and SFRP4were significantly (P < 0.05)
associated with GL in several parities. It should be noted that ESR1was not tested in this initial
study. For male reproduction traits Lin et al. (2006) mentioned the association of GNRHR with
motility, plasma droplet ratio and abnormal sperm rate; inhibin beta A (INHBA) with plasma
droplet ratio and abnormal sperm rate and inhibin beta B (INHBB) with sperm concentration.

Though many candidate genes examined so far have direct physiological roles in different
stages of reproduction, this is not mandatory. Instead, a QTL could be the result of genetic
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variation in regulatory protein or initiation factor genes that then affect the expression of genes

involved in pig reproduction. This concept of "polygenic paradox" was illustrated by Pomp et
al. (2001) using the example of putative regulation of FSHB gene.

ESTsand gene expression in pig reproductive tissues

Gene expression analysis is also a useful approach to understanding the biological basis of
reproduction and large numbers of expressed sequence tags (EST) to study gene expression
for these traits are essential. The Midwest consortium (Tuggle et al. 2003) isolated ESTsfrom

female reproductive organs and deposited 21,499 ESTsrepresenting 10,574 genes in public
databases. Out of these ESTs, 3,183 sequences were from the anterior pituitary; 3,900 were
from term placenta; 4,505 were from the peri-implantation uterus; 4,165 were from embryo/

fetus tissue; 1,544 were from hypothalamus and 1,643 were from ovary. Gorodkin et al.
(2007) presented an expression study based on 35 tissues representing 98 cDNA libraries and
1,021,891 sequences assembled by the Distiller assembly program, and concluded that gene

diversity is greater in the brain and testis, which are major components of reproduction. The
expression profiles of the hypothalamus-pituitary-gonadal axis between animals with different
reproductive performance are extremely useful in exploring variation among reproductive
traits in a given situation. Using differential display PCR, Bertani et al. (2004) reported 125 EST

sequences were differentially expressed in the anterior pituitary gland between control line
and a line selected for ovulation rate and embryo survival. The differential expressions of the
genes G-beta like protein, ferritin heavy chain and follicle stimulating hormone beta subunit,

were confirmed by northern blotting of anterior pituitary RNA between the above lines. The
expression levels of ferritin heavy chain and G beta like protein were less in a selected line
for enhanced reproduction compared to the control line, whereas the FSH beta gene was

increased in the selected line.
To date only a limited number of detailed transcriptome analyses on pig folliculogenesis

have been conducted. Two of them (Caetano et al. 2004, Gladney et al. 2004) used whole
follicles and were performed on pigs from lines selected for reproductive traits. It was found

that follicle sizes were bigger in the selected line than control line. By using differential display
PCR, Gladney et al. (2004) found that 152 genes were up regulated and 20 genes were down
regulated in follicles of the selected line. Three differentially expressed genes were confirmed

by northern hybridization. These genes were calpain 1 light subunit (CAPN4), cytochrome P450

aromatase and cytochrome P450 side chain cleavage enzymes. Similarly, microarray analysis
of pooled follicles with two versions of human cDNA arrays (UniGem V1.0 and V2.0) resulted

in 33 and 21 differentially expressed probes between selected and control line. Northern
hybridization of differentially expressed mRNA resulting from microarray analysis confirmed the
reduced expression of follistatin (FSTI) and increased expression of nuclear receptor subfamily
4, group A, member 1 (NR4A1) in the line selected for ovulation rate and embryo survival. It was

hypothesized that less expression of CAPN4 is favorable to decreased follicular degradation and

apoptosis, which promotes the recruitment of a larger pool of follicles for ovulation (Gladney et
al. 2004). Similarly, low follistatin increases the bioavailability of activins, which are required
for follicular growth and differentiation (Hasegawa et al. 1994). Higher expression of NR4R1

increases the sensitivity of follicles to steroid hormones (Gladney et al. 2004). To know the
expression profile of the ovary and follicle in the above mentioned selected and control lines,
a microarray with 4608 probes was prepared at the Nebraska Medical Center Core Facility

using the GMS417 Arrayer (Genetic Microsystems). Mixed model analysis of these microarray
data (Caetano et al. 2004) found evidence for differential expression of 71 and 59 genes in
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the whole ovary and ovarian follicles during the follicular phase of the estrous cycle between
animals from the selected and control lines. The genes involved in steroid biosynthesis (e.g.,
cytochrome P450 side chain cleavage enzyme, steroidogenic acute regulatory protein and others),
tissue remodeling (plasminogen activator inhibitor II) and apoptosis (calpain light chain I) were
all differentially expressed between the lines. It was suggested that the differential expression of
ovarian genes between the select and control lines was due to the effect of selection for increased
reproduction on the frequency of allelic variation within the genes themselves or from allelic
variation in genes that control the genes found to differ between lines (Caetano et al. 2004).

An ovarian transcriptome analysis was conducted on the effect of luteinization on preovulatory
follicles (Agca et al. 2006). This microarray analysis detected the decreased regulation of 107
genes and increased regulation of 43 genes during the transition from preovulatory estrogenic to
luteinized follicles. The decreased regulated genes belonged to cytoskeletal proteins, regulators of
cytoskeleton, nuclear proteins, nucleic acid binding proteins, metabolic enzymes, mitochondrial
transporters, proteins involved in the oxidative stress response, ligands, receptors and receptor
pathways (predominantly cAMP response system), and cell proliferation/differentiation functional
groups. The increased expression of certain genes during luteinization were for proteins that
are involved in cell adhesion and migration, cell growth inhibition or angiogenesis. Another
ovarian transcriptome study (Bonnet et al. 2008) found 79 differentially expressed transcripts
associated with terminal follicular growth. These genes were involved in functional networks
required for cellular growth, cell cycle, proliferation, cancer, reproductive system development
and function, molecular transport, protein synthesis and lipid metabolism. Genes in glutathione
metabolism (e.g. CSTA1, glutathione S-transferasealpha 1; and MCSTI, microsomal glutathione
S-transferase 1) and lipid metabolism (e.g. CYP19A, P450 aromatase A and many others) were
up regulated, and the ribosomal protein genes (e.g. CALU, calumenin; SLC40A1, solute carrier
family 40 and others) and cell shape genes (e.g. TUBA113, tubulin, CAPNS1, calpain, small
subunit 1 and others) were down regulated in terminal antral follicular development especially
in large follicles compared to small and medium ovarian follicles. A quantitative RT-PCR study
found significant (P < 0.05) correlations between oocyte number and the expression levels of
ESR1 and /GERI in ovaries of Duroc x Meishan and PIC lines (Hu et al. 2006). Whitworth et

al. (2005) compared expression profiles of germinal vesicle stage oocytes to that of 4-cell stage
and blastocyst stage embryos produced from in vitro fertilization and culture and in vivo derived
embryos. In vivo blastocyst stage embryos had higher expression of gene networks pertaining
to ribosomal function and ion transport than that of in vitro blastocyst stage embryos. Both in
vitro embryo stages had lower expression of plasma membrane-protein-tyrosine-phosphatase
activity, and increases in expression of the nucleolus, small nucleolar ribonucleoprotein complex,
and RNA binding and processing gene networks than in vivo embryo stages. The complete
list of differentially expressed genes in these stages of embryos can be obtained from http://

genomesnet.missouri.edu/Swine/Publications: The utilization of these transcript profiles allows
the identification of differentially expressed genes associated with embryogenesis as well as
developmental competency associated with in vitro fertilization systems.

Studies of the endometrium transcriptome were conducted to determine the differential
expression of genes in the uterus during the estrous cycle and pregnancy (Green et al. 2006). A
total of 4,827 genes were significantly differentially expressed at some time during the estrous
cycle. Clustering of these genes identified six main patterns across the estrous cycle. These patterns
are related to the functions of the endometri um such as sperm maturation, blastocyst growth and
position, and conceptus development and attachment. These data may be useful for transgenic
and cell transfer approaches to improve reproduction efficiency. Ross et a/. (2007) identified
numerous endometrial genes aberrantly expressed following exogenous estrogen exposure
prior to implantation that is associated with total pregnancy loss. In addition to different periods



Genomicsand pig reproduction 95

of estrous cycle and pregnancy, the transcriptome profile of uterine epithelium was studied in
comparison to other tissues using a 20,400 70 mer second generation pig oligonucleotide array
(Pigoligoarray; www.pigoligoarray.org), Steibel et a/. (personal communication). This study
found that 286 transcripts were differentially expressed in uterine epithelium relative to liver,
muscle and brain stem.

Because fertilization is an efficient process in pigs, mortality can be assessed throughout
gestation by comparing conceptus/fetus numbers to the number of corpora lutea. Pigs suffer
from a high incidence of prenatal mortality, ranging from 20 to 46% at term (Pope 1994). The
occurrence of embryonic mortality can be broadly broken into two phases; the peri-implantation
stageof development, Days 10-18 of gestation; and post-implantation development between Day
18 and 114 of gestation. In gilts where ovulation rate is not sufficient to exceed uterine capacity,
the majority of prenatal mortality is thought to occur during the peri-implantation period of
development (Anderson 1978). Transcript discovery and/or profiling during conceptus transition
from a 9-10 mm sphere on Day 11-12 to a transient tubular shape (15-20 mm) and into a long
filamentous thread (greater than 150 mm) over the course of a few hours has been achieved
through quantitative RT-PCR(Green et al. 1995, Kowalski et aL 2002, Yelich et aL 1997a,Yelich et
al. 1997b), differential display RT-PCR(Wilson et at 2000), suppression subtractive hybridization
(SSH)(Ross et al. 2003a), expressed sequence tag (EST)library construction and analysis (Smith
et al. 2001), utilization of embryonic based cDNA array (Lee et al. 2005), serial analysis of gene
expression (SAGE)(Blomberg et al. 2005) and Affymetrix GeneChip microarray (Rosset al. 2009).
Several transcripts have been consistently identified as differentially expressed during transition
through these critical developmental stages such as interleukin 1p (Ross et at 2003b, Lee et al.
2005), steroidogenic acute regulatory protein (STAR) (Blomberg et al. 2005, Lee et al. 2005)
and cyclooxygenase-2 (Wilson et al. 2000, Ross et al. 2009). The utilization of the Affymetrix
GeneChip identified 192 transcripts with the putative ability to serve as molecular markers due
to transient up or down regulation during early stages of trophoblastic elongation (Ross et al.
2009). In addition 482 transcripts were differentially expressed in filamentous day 12 conceptuses
compared to large spherical conceptuses representing biological processes associated with cell
motility, ATP utilization, cell growth, metabolism and intracellular transport (Ross et al. 2009).
Expression of numerous genes and gene products characterize this developmental process, which
is associated with the production of steroids (primarily estrogen), prostaglandins, cytokines and
morphogenic factors having a tremendous influence on maternal recognition of pregnancy,
immunological tolerance and growth of the conceptus.

Following the peri-implantation period, rapid fetal growth ensues and during the period
from Days 21 to 45, uterine capacity becomes limiting. Uterine capacity is defined as the
maximum number of piglets carried to term when potentially viable conceptuses are not
limiting (Christenson et al. 1987). Uterine crowding significantly affects fetal weight, placental
weight and protein secretion on both Days 25 and 35 of gestation (Vallet & Christenson, 1993),
suggesting the expression and regulation of transcripts in placental and fetal tissue during this
stage of gestation is responsive to environmental stresses. Wesolowski et al. (2004) conducted
a fetal transcriptome study using pig fetuses at 21, 35 and 45 days of gestation and identified 17
differentially expressed genes which play a major role in musculoskeletal growth, immune system
function, and cellular regulation. Comparison between Meishan and European Large White
composite gilts identified numerous single nucleotide polymorphisms within the transcriptome
of day 25 placental tissues (Bischoff et al. 2008).

Using human microarrays, differential expression of genes in testis between boars of high
and low steroidogenesis was studied and results indicated that seven genes were over expressed
in boars with high steroidogenesis. Among them three (CYBS, CYP19A1, and CYP1 1A1) are
involved in steroidogenesis (Stewart et al. 2005).
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MicroRNAs

The numerous transcriptional profiling experiments conducted in pig reproductive tissues
assess transcript diversity and genomic regulation of gene expression, but do not assess
post transcriptional regulation of mRNAs and how it influences cellular phenotypes in these
tissues. MicroRNAs (miRNA) are single-stranded RNA molecules of about 18-24 nucleotides
in length, and through their ability to confer post transcriptional gene silencing (PTGS) (Bartel
2004), may have a significant regulatory role in reproductive tissues. MicroRNAs are organized
throughout the genome in multiple ways that allow the expression of an individual miRNA alone
(Mendell 2005), clustered with other miRNAs (Lee et al. 2002) or, expressed within introns
of transcribed mRNA (Kim 2005). RNASEN, DGCR8, exportin 5 and DICER are all critical
enzymes for production of mature miRNA capable of conferring PTGS (Hutvagner & Simard
2008). Conditional knockout of DICER, the enzyme responsible for final processing of a mature
miRNA, during oogenesis causes infertility through major disruption of the miRNA repertoire in
the oocyte (Tang et al. 2007). In addition to the importance of miRNA in regulating oogenesis,
reproductive tract development is also dependent on miRNA function (Hong et al. 2008). During
implantation in mice, miR-101a and miR199a post-transcriptionally regulate cyclooxygenase 2
(COX2) (Chakrabarty et al. 2007), an enzyme whose transcript is also differentially expressed
during the opening of the implantation window in the pig (Ashworth et al. 2006).

Because miRNA:mRNA complementation sites are relatively short and often imperfectly
paired, slight changes in sequence, due either to RNA editing or the presence of a SNP in either
the recognition site of the target gene or the miRNA could significantly alter PTGS in reproductive
tissues. RNA editing can also produce variations in miRNA function, particularly, adenosine-to-
inosine editing (Pfeffer et al. 2005, Athanasiadis et al. 2004). For example, the miRNA, miR-376
undergoes tissue specific RNA editing that converts an adenosine to an inosine. In addition to
RNA editing, SNPs also affect miRNA function. Recent screening of miRNAs has revealed the
occurrence of 323 SNPs in 227 known human miRNA genes (Duan et al. 2007). This study
further demonstrated the ability of a SNP in miR-125a to prevent DROSHA recognition, in so
doing blocking its ability to be processed into a pre-miRNA, thereby reducing its effectiveness
in conferring PTGS (Duan et al. 2007).

In essence, miRNA influence, which can be impacted by appropriate enzyme expression
and function, RNA editing and SNPs in both target genes and miRNAs; have a distinct ability
to dramatically alter the phenotype of cells by influencing the mRNA and protein repertoire
through PTGS, potentially altering the efficiency of function. The importance being that very
few miRNAs have the ability to post-transcriptionally influence hundreds of mRNAs (Rajewsky
2006). The reports on miRNAs in different pig reproductive tissues are very limited. MicroRNAs
are expressed in porcine reproductive tissues such as ovary (Kim et al. 2006, Pratt et al. 2008),
oocytes (Rossand Prather, unpublished data), and day 33 fetus and extra-embryonic membranes
(Huang et al. 2008). Further research is required to examine miRNA expression profiles in
other reproductive tissues of the pig that require significant transcript turnover and proteome
reorganization to function efficiently.

Whole genome sequencing, SNP discovery and SNP chips

The development of advanced methods to improve genotyping in large scale projects and the
reduction of genotyping costs have allowed for large scale SNP discovery. These studies will
allow genotyping of hundreds of thousands of SNPs and genes. Such large scale SNP association
studies pertaining to pig reproduction traits are still in infancy. Following efforts to sequence the
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human, cow and chicken genomes, sequencing for the pig genome began. Initial sequencing

was done by a Sino-Danish team (Wernersson et al. 2005) and resulted in a .66X coverage
of the swine genome. Since then an international effort led by individuals at several U.S.
universities and centers around the world have focused on sequencing the pig genome at the

Sanger Institute in the UK. Now in its third year, the International Swine Genome Sequencing
committee has raised nearly 20 million dollars and nearly 75% of the pig genome is sequenced

(http://www.sanger.ac.uk/Projects/S_scrofal) to 6X coverage. It is expected that the sequencing
will be completed by the end of 2009. This sequence information can be further mined for
SNPs as was the case when nearly 100,000 SNPs were identified from the existing 1.2 Gb of

porcine sequence (Kerstens et al. 2009). Initial work by the Danish-Sino team led to the first

7K SNP chip (Vingborg et al. 2008). Furthermore, the next generation sequencing technology
revolutionized the ability to identify many more SNPs With the help of such technology, the
International Swine SNP Consortium designed a 60K Illumina Infinium iSelect" SNP Bead

Chip for pigs and produced over 1 million SNPs. The SNPs used for this chip were a small
group of previously validated SNPs in the public domain and the SNPs identified de novo by
second generation sequencing on the Illumina Genome Analyzer (Solexa) and Roche 454 FLX

sequencer (Groenen et al. 2009). These were then chosen on the basis of minor allele frequency
and spacing when known from existing sequence information. Initial work suggests the chip
have well over 50,000 useful SNPs with excellent minor allele frequency and is already being
employed. This chip has the potential to modernize association trials and lead to effective

genomic selection (Solberg et al. 2008).

Phenomics

The development of gene expression arrays, sequence information, SNP chips and other

genomic tools is relatively well advanced. But if we are to better use high density SNP chips
for association trials or investigate other gene action such as imprinting and epigenetics then
clearly more useful and varied phenotypes must be collected. This includes the usual traits like
number born and number born alive but also ovulation rate, embryo survival, hormone levels

and other traits of interest. This area of collecting new and interesting phenotypes is called
phenomics (Freimer & Sabatti, 2003). These traits must be measured not on tens of animals
or hundreds of animals but on thousands. Furthermore, utilization of the available tools and
resources to impact specific reproductive traits in swine requires cognizance that selection and

improvement of single traits, such as number born alive, can have deleterious effects on other
traits such as post-natal performance (Foxcroft et al. 2007). An effort is needed to determine
the relevance of various alternative measurable traits to improvements in swine reproduction.
Reproductive physiologists and animal geneticists need to participate more collaboratively to

accomplish such data sets.
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