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Structural patterning and functional programming of uterine tissues are
mechanistically coupled. These processes ensure anteroposterior

differentiation of uterine tissues from adjacent segments of the developing
female reproductive tract (FRT) and radial patterning that establishes

uterine-specific histoarchitecture and functionality. Uterine organogenesis

begins prenatally and is completed postnatally. Genes required for FRT
development include Pax2, Lim 1 and Emx2, genes in the abdominal-B

Hoxa cluster, and members of both Wnt and Hedgehog (Hh) gene families.
Disruption of morphoregulatory gene expression patterns can prevent

FRT development entirely or compromise uterine organogenesis

specifically. Oestrogen receptor-a (ER) -dependent events associated with

development of the neonatal porcine uterus can be altered by
administration of oestrogen (E) or relaxin (RLX). Expression of the RLX

receptor is detectable in porcine endometrium at birth, before onset of
ER expression and uterine gland genesis. Uterotrophic effects of both E

and RLX can be inhibited with the ER antagonist ICI 182,780, indicating
that RLX may act via crosstalk with the ER system in neonatal tissues.

Exposure of neonatal gilts to E alters temporospatial patterns of Hh, Wnt
and Hoxa expression in the uterine wall. Oestrogen given for two weeks
from birth produced hypoplastic adult porcine uteri that were less

responsive to periattachment conceptus signals as reflected by reduced

growth response and luminal fluid protein accumulation, altered
endometrial gene expression, and reduced capacity for conceptus support.

Data reinforce the concept that factors affecting signalling events in uterine

tissues that produce changes in morphoregulatory gene expression
patterns during critical organisational periods can alter the developmental

trajectory of the uterus with lasting consequences. Thus, uterine tissues
can be programmed epigenetically for success or failure during perinatal
life.

Introduction

The uterus is a mesodermally derived specialisation of the Müllerian ducts. In mammals, in-




cluding the pig (Susscrola), these paired tubular structures arise from invaginations of coelomic

epithelium on the lateral aspects of the urogenital ridges, grow caudally and begin to fuse
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(Bartol, 1999). The degree of fusion can be complete, partial or incomplete and defines gross
morphological characteristics (simplex, bicornuate or duplex phenotypes) of adult uteri. Antero-
posterior patterning of the MOMedan ducts results in their segmentation into structurally and func-
tionally unique parts of the female reproductive tract (FRT) including the oviducts, uterus, cervix
and anterior vagina. Radial patterning begins prenatally, is completed postnatally and establishes
the principal histological elements of the uterine wall including the endometrium, myometrium,
and perimetrium (Bartol et al., 1993; Bartol 1999; Gray et al., 2001a). Uterine functions in mam-
mals include: (1) transport, storage and maturation of spermatozoa; (2) embryo spacing, recogni-
tion, reception and support; and (3) foetal and placental expulsion during parturition. Additionally,
endometrial prostaglandin production is required for luteolysis in many animals, including the pig
(Bartol, 1999).

Uterine abnormalities and dysfunction can compromise fertility, increase embryonic mortality,
contribute to intrauterine growth retardation and associated complications and potentiate dysplasia
and disease (Bartol et al., 1999; Gray et al., 2000b; Gray et al., 2001b; Kitajewski and Sassoon,
2000; Ashworth et at, 2001; Greenwood and Bell, 2003; Hales and Ozanne, 2003; Kobayashi and
Behringer, 2003; Tarleton et al., 2003b). The aetiologies of such problems are complex. How-
ever, it is clear that the integrity, stability and functionality of adult uterine tissues are defined, to
a significant extent, by the course of events associated with development of uterine tissues during
perinatal life (Bartol et al., 1999; Kobayashi and Behringer, 2003).

Morphogenesis (structural patterni ng)and cytodifferentiation (functional progamming) are coupled
processes. For epithelial-mesenchymal organs including the uterus, these processes involve the
progressive generation of increasingly complex and specific cellular relationships and interactions
(Bartol et al., 1993; Bartol et al., 1999; Kitajewski and Sassoon,2000; Gray et al., 2001b; Kobayashi
and Behringer, 2003). These interactions are accompanied by and drive the evolution of
organisationally critical, temporally and spatially unique morphoregulatory gene expression do-
mains that direct and specify cell fate, define patterns of development, and determine cell and
tissue identity. Genes most centrally involved in tissue patterning and cell fate specification
include those that encode transcription factors and signalling ligands, their receptors and down-
stream elements of signalling pathways (Davidson, 2001; Hu et al., 2004). Here, elements of the
primary organisational palette of factors governing uterine organisation will be described and the
consequences of disruption of critical organisational mechanisms governing uterine development
and endometrial programming will be discussed, with emphasis given to recent observations
involving the pig.

Genesis of the female reproductive tract

Efforts to identify genes and gene networks required for development of the mammalian FRT have
been aided by advances in molecular profiling techniques, the power of murine genetics and
inferences drawn from murine phenotypes produced through targeted mutagenesis. From such
studies it is clear that expression of genes encoding the transcription factors Pax2, Liml and Emx2,
aswell as Wnt4, a secreted morphoregulatory glycoprotein, is required for FRTformation (Kobayashi
and Behringer, 2003). The fact that mice with compound mutations for retinoic acid receptor
(RAR) genes can lack either all or caudal portions of the FRT (Mendelsohn et al., 1994; Kastner et
al., 1997) indicates that complex RAR signalling is also required for the formation of these tissues.

Genes governing FRT development

Pax2-null murine females lack kidneys and reproductive tracts, owing to Mfillerian duct degen-




eration during embryogenesis. Normally, Liml is expressed in Miff lerian epithelium, the meso-
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nephros, metanephros and metal gonads (Kobayashi et al., 2004). Female Lim /-null mutants have
normal ovaries, but lack Mill lerian derivatives. Additionally, Lim-1-null Mullerian epithelial cells
do not contribute to uterine epithehum, but can contribute to uterine stroma, indicating a require-
ment for epithelial Lim-1 expression in Miillerian epithelium as a prerequisite to successful uter-
ine development (Kobayashi et al., 20041. Emx2-null mutants lack kidneys, gonads and reproduc-
tive tracts (Kobayashi and Behringer, 2003).

Wnt4 is one of several Wm genes implicated in patterning and function of the FRT (Miller et al.,
1998; Sassoon,1999; Vain io et al., 1999; Carta and Sassoon2004; Mericskay et al., 2004). Mullerian
ducts do not form in male or female Writ4-null mutants (Vainio et al., 1999). Female Wm4-null
mice lack female, but contain male reproductive tract tissues (Vainio et. al., 1999) due to the
presence of androgen-active ovarian cells that support mesonephric duct development (Kobayashi
and Behringer, 2003). Consistently, a woman with symptoms ot Mayer-Rokitansky-Kuster-Hauser
syndrome, who lacked a uterus and displayed clinical signs of androgen excess,was found to have
a loss-of-function mutation in Wnt4 (Biason-Lauber et al., 2004; Hughes, 2004). Thus, Wnt4 is
required for Millerian duct development and ovarian programming.

Xlorphoregulatory genes and uferine patieming

Patterning events required for differentiation of the uterine segment of the FRT occur in both
anteroposterior and radial axes (Fig 1). Anteroposterior patterning establishes histologically dis-
tinct boundaries between the oviducts, uterus and cervix. Radial patterning establishes uterine
histoarchitecture. Temporospatial coordination of these processes is governed locally by a group of
highly conserved morphoregulatory genes, including members of both Hox and Wm gene fami-
lies,expression of which may be affected by up-streamregulatory factors that could include Hedgehog
gene products.

MUllerianDuct

Hoxa9 - HoxalO - Hoxall- Hoxal3

Anterior 	 Posterior

Fig. 1 Patterning of the temale reproductive tract (FRI) and uterine differentiation. Prior to

differentiation ot FRT tissues, genes in the abdominal-0 Nova cluster, including Hoxa9, Hoxa10,

Hoxall and Hova IS are expressed uniformly along the anteroposterior axis of the develop-

ing Mtillerian duct (top). Segmentation of the Nffillerian duct, leading to differentiation of

stromal (St) and epithelial (Ep) tissues and histoarchitectural relationships unique to the ovi-

duct, uterus, cervix and anterior vagina, requires that I loxa expression domains develop

along this axis, establishing a 'I lox code specitic to each tissue segment (bottom). Radial

patterning and programming of FRT tissues, including the uterus, requires stromal-epithelial

interactions supported by the local actions of both Hoxa and Wnt gene products (not shown).

Oviduct Uterus
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Homeobox genes

Homeobox or Hox genes encode nuclear proteins that act as transcription factors (Mark et al.,

1997; Cillo et al., 2001). Hox genes share a common sequence, the homeobox, which codes

for the DNA-binding homeodomain. Hox gene products affect gene expression events re-
quired to establish positional identity of cells along anteroposterior axes in developing tissues
(Cillo et al., 2001). Human and murine Class I Hox genes are organised into four genomic

clusters on different chromosomes (Mark et al., 1997). Displaying col inear expression, the 3'-

5' chromosomal arrangement of these genes defines the relative timing and order in which

they are expressed along the anteroposterior body axis. Thus, 5' vertebrate Hox genes control

development of the lumbo-sacral region, including the genitalia (Taylor et al., 1997; Cillo et

al., 2001). Products of the reproductive homeobox (RHox) gene cluster have yet to be associ-
ated with uterine organisational mechanisms (Maclean et al., 2005).

Prior to differentiation, Hox genes in the abdominal-B Hoxa cluster, including Hoxa9, -10, -
11 and -13, are expressed uniformly along the anteroposterior axis of the Müllerian ducts
(Taylor et al., 1997; Kitajewski and Sassoon, 2000). Segmentation of the Miillerian ducts along

this axis requires restricted, overlapping expression of these genes (Fig. 1) such that Hoxa9 is

expressed in oviduct, Hoxal0 and -11 are expressed in the uterine segment, and Hoxall and -
13 are expressed in the cervix and anterior vagina (Taylor et al., 1997; Kitajewski and Sassoon,

2000). Spatially restricted expression of these genes is required to define and stabilise tissue

boundaries along the anteroposterior axis of the FRT. Thus, a segment-specific Hox code
(Krumlauf, 1994) must be established and maintained to insure FRT patterning success.

Uterine segmentation requires stable expression of Hoxal0 and -11, which define the uter-

ine Hox code (Mark et al., 1997). Both functional redundancies and interactions were de-

scribed for these two uterine Hox genes (Brantord et al., 2000). However, disruption of the

uterine Hox code can produce homeotic transformations in which boundaries between the
uterus and adjoining tissue segments are poorly defined. For example, targeted disruption of
Hoxal 0 expression produced a murine FRT phenotype characterised by dissolution of histologi-
cal and functional boundaries between the oviducts and uterus (Benson et al., 1996). In con-

trast, disruption of Hoxa11 expression affects radial patterning in the uterine segment due to
dysregulation of an organisationally critical Hox/Wnt expression axis described below (Gendron

et al., 1997; Mericskay et al., 2004).
Functional redundancies and overlapping expression domains documented for Hox genes

governing FRT patterning may explain how mutations in genes not strictly associated with the
uterine Hox code can affect uterine phenotype. Uterine anomalies in women with the hand-
foot-genital syndrome, in which a nonsense mutation of Hoxal 3 truncates the homeodomain
and inhibits DNA binding, involve defects in Mullerian duct fusion such that the normal sim-

plex human uterus is absent, and partially (bicornuate) or completely (didelphic) divided uter-
ine morphologies are seen (Mortlock and Innis, 1997). Observations reinforce the importance
of Hox genes in uterine patterning and indicate a role for Hoxal3 in orchestration of Mullerian

duct fusion, a process central to the genesis of diversity in uterine forms found in nature.

Wnt genes

Vertebrate Wnt genes encode secreted glycoproteins related to wingless, the Drosophila seg-

ment polarity gene (DasGupta et al., 2005). Mammalian Wnt gene products regulate pattern-

ing events associated with establishment of cell boundaries, mediate cell-cell interactions that
determine cell fate, and contribute to adult tissue homeostasis (Carta and Sassoon, 2004; Logan
and Nusse, 2004; Wang and Wynshaw-Boris, 2004). Three Writ genes; Wnt4, Wntsa and

Wnt7a are coordinately expressed during FRT development and continue to be expressed in
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adult uterine tissues where they may affect cyclical endometrial patterning (Vainio et al., 1999;
Tulac et al., 2003; Carta and Sassoon, 2004; Mericskay et al., 2004). Classically, Wnt proteins
act via a canonical signalling pathway involving frizzled receptors (Wodarz and Nusse, 1998;
Nusse, 2003; Logan and Nusse, 2004). Non-canonical Wnt signalling systems are also recognised
(Veeman et al., 2003) and may be more important in normal Wnt-dependent uterine develop-
ment (Miller et al., 1999; Topol et al., 2003; Mericskay et al., 2004). However, canonical Wnt
signalling was implicated in oestrogen-induced uterine growth (Hou et al., 2004) and may
facilitate disruption of oestrogen-sensitive uterine organisational events.

Coordinated expression of Wnt5a and Wnt7a is also essential for FRT development (Carta
and Sassoon, 2004; Mericskay et al., 2004). Murine Wnt5a mutants have short uterine horns of
normal diameter, but lack defined cervical and vaginal structures (Mericskay et al., 2004).
Similarities between this phenotype and the FRT phenotype noted for Hoxa13/d13 mutants
(Warot et al., 1997) indicated that these gene products act through a common pathway to
support posteriorisation of the FRT (Mericskay et al., 2004). In contrast, the FRT in Wnt7a
mutants displays normal posterior development, but atrophic uterine horns (Miller and Sassoon,
1998). Epithelial Wnt7a expression is required to maintain, but not to induce uterine stromal
expression of Hoxal0 and -11 (Miller and Sassoon, 1998). Loss of Wnt 7a expression results in
loss of uterine Hoxal0 and Hoxal1 expression in adult mice, and produces a homeotic transfor-
mation characterised by posteriorisation of uterine tissues (Kitajewski and Sassoon, 2000). Thus,
Wnt5a and Wnt7a act to support complete anteroposterior development of the FRT, and Wnt7a
influences organisationally critical cellular interactions in the uterine wall by enforcing posi-
tional signals dictated hy Hoya10 and Hoxal 1 (Miller and Sassoon, 1998).

While basic histological elements of the uterine wall are present at birth (postnatal day =
PND 0), substantial radial patterning occurs after birth in most mammals, including the pig
(Bartol et al., 1993; Gray et al., 2001a). Postnatal endometrial development is marked by
differentiation of glandular epithelium (GE) from luminal epithelium (LE) and rapid prolifera-
tion of nascent GE (Gray et al., 2001a). In pigs and other mammals, initiation of uterine gland
genesis is ovary-independent and occurs in the absence of substantial levels of circulating
steroid hormones (Bartol et al., 1993; Bartol et al., 1999). Consistently, murine endometrial
gland genesis was retarded when aglandular neonatal uterine tissue grafts were placed into
intact adult female hosts, but proceeded when hosts were ovariectomised two weeks prior to
grafting (Mericskay et al., 2004). These observations reinforce the importance of paracrine
mechanisms supporting the evolution of organisationally critical microenvironmental condi-
tions in developing epithelial-mesenchymal organs such as the uterus.

Tissue recombination experiments showed that epithelial expression of Wnt7a and stromal
expression of Wnt5a are required for uterine gland genesis (Mericskay et al., 2004). Persistent
stromal expression of Wnt5a is required for GE differentiation, which requires down regulation
of Wnt7a expression in invaginating LE from which nascent GE arises. Additionally, down
regulation of Wnt7a in LErequires stromal expression of Wnt5a (Mericskay et al., 2004). Thus,
Wnt-mediated interactions determine the fate of luminal epithelial cells, allowing them to
invaginate, differentiate and form glands.

Uteri of neonatal Wot7a mutants appear normal and effects of the xenoestrogen diethylstil-
bestrol (DES) on uterine cell proliferation were similar in wild-type and Wnt7a mutants, indi-
cating that Wnt7a does not mediate the proliferative response to DES (Carta and Sassoon,
2004). However, DES-exposed uteri in Wnt7a-null mice displayed high levels of apoptosis not
observed in wild-type animals. Thus, Wnt7a may function as a negative regulator of apoptosis
and contribute to stability of LE(Carta and Sassoon, 2004). Lossof uterine HoxalO and Hoxal1
expression after ablation or oestrogen-induced suppression of Wnt7a expression, precedes loss
of Wnt4 and liVnt5a expression in murine uterine stroma (Miller and Sassoon, 1998; Kitajewski
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and Sassoon, 2000). Oestrogen-induced suppression of Wnt7a expression is both ERa.- and

Wntsa-dependent (Couse et al., 2001; Mericskay et al., 2004). Loss of perinatal Wnt7a expres-

sion sufficient to alter the uterine Hox/Wnt expression axis produced adult murine uteri that

were hypoplastic and displayed disorganised, glandless histoarchitecture (Miller and Sassoon

1998; Kitajewski and Sassoon, 2000). Wntsa mutants maintain columnar uterine epithelium

but fail to form endometrial glands (Mericskay et al., 2004), indicating that Wnt7a is necessary

to maintain normal uterine epithelial phenotype.

Recently, Msx2, an epithelial morphoregulatory factor, was implicated as an upstream regu-

lator of Wnt gene expression in the neonatal uterus (Huang et al., 2005). In Msx2-null mutants

patterns of Wnt5a expression changed from stromal to epithelial, a condition also induced by

DES exposure in normal mice. Additionally, uterine epithehal Wnt7a expression was elevated

in the Msx2-null uterus (Huang et al., 2005). Thus, epithelial Msx2 expression appears to

stabilise spatial patterns of Wnt5a expression and to control levels of epithelial Wnt 7a expres-

sion necessary to insure a normal developmental trajectory for the endometrium.

Collectively, current data suggest a mechanism whereby epithelial Wnt7a acts to stabilise stro-

mal expression of HoxalO and Hoxal 1 which, in turn, insures stromal expression of Wnt4 and

Wnt5a in the developing uterine wall. These factors cooperate as primary elements of a tempo-

rally and spatially dynamic morphoregulatory programme governing uterine developmental events

that determine the functional potential of uterine tissues. Evidence that a Hoxa/Wnt expression

axis develops in neonatal porcine uterine tissues supports this concept (Figs. 2 and 3).

Hoxal 0 Hoxall

PND 0

PND 14

PND 14

EV

Fig. 2 Effects of age and administration of oestradiol yalerate (EV; 50pg/kg bw/d) for 14

days from birth (postnatal day = PND 0) on patterns of Hoxal (left) and Hoxall (right)

expression in neonatal porcine uterine tissues. Uteri obtained from 4-6 gilts on each day and
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Fig. 2 Contd. after treatment with EV on PND 14, were fixed in 4% (w/v) paraformaldehyde,
embedded in paraplast-plus, sectioned (5 pm), and processed together under identical con-
ditions for hybridisation of cRNA probes. Anhsense (riz-H)UTP-labehed cRNA probes, gen-
erated by in vitro transcription from linearised porcine (-DNA templates tor Hoxa10 (Nall
accession number: AF281156) and Hoxal 1 (AF453292), were used to localise targeted
transcripts in situ. Darkfield photomicrographs show signal (white grains) above background,
determined by subtraction of negative control images generated using corresponding (o.-
"S)UTP-labelled sense cRNA probes (not shown). Signal indicative of expression of both
genes was detected in tissues trom PND 0 (top), increased to PND 14 (middle) and was
predominantly stromal. Effects of EV administered front birth were inost pronounced for
Hoxa10 (PND 14 vs PND 14EV). [Original magnitication = IOX; GE = glandular epithelium,
LE -10 mi ia epithelium, St = stromal

Fig. 3 Effects of age and administration of oestradiol valerate (EV; 50pg1kg hw/d) for 14 days
from birth (postnatal day - PND 0) on patterns of 31/nt4 (left), WntSa (middle) and Wnt7a
expression in neonatal porcine uterine tissues. Uteri obtained from 4-6 gilts on each day and
after treatment with EV on PND 14, were tixed in 4% (w/v) paratormaldehyde, embedded in
paraplast-pl us, sectioned (5 pm), and processed together under identical conditions for
hybridisation of cRNA probes. Antisense (o-"S)UTP-label led cRNA probes, generated by in
vitro transcription from linearised porcine cDNA templates for Wnt4 (NCB! accession num-
ber: CA997682), WillSa (CA997683), and Wut7a (CA997684) were used to localise tar-
geted transcripts in shit. Darkfield photomicrographs show signal (white grains) above back-
ground, determined by subtraction of negative control images generated using correspond-
ing (u-')S)UTP-labelled sense cRNA probes (not shown). Signal indicative of expression of all
Wilt genes was detected in uterine stroma on PND 0 (top). Stromal signals were most
pronounced for Wnt‘l and IVitt:5a and both increased by PND 14 (middle). Signal indicative
of l'Uni7a expression (right) was absent in Iuminal epithelium (LE)at birth, but pronounced in
LEby PND 14. Administration ot EV from birth reduced signal for all genes (PND 14 vs PND
14EV). [Original magnification = 10X; LE = low inal epithelium, St = stroma]

Wnt4 Wnt5a Wnt7a

PND 0

PND 14

PND 14

EV
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Hedgehog genes

Genes encoding the vertebrate hedgehog (-111)proteins, including Sonic (Shh), Desert (Dhh) and

Indian hedgehog (lhh), are homologues of the Hh gene discovered in Drosophila (Cohen, 2003).

Secreted vertebrate Hh proteins display inductive properties at epithelial-mesenchymal bound-

aries (Walterhouse et al., 2003) and affect cellular differentiation, proliferation and survival via a

complex signalling network initiated by direct interaction with the Patched (Ptchl) receptor (Cohen,

2003). Downstream targets of Hh signading include Wnt genes.

A progesterone-inducible gene, lhh mRNA and protein, as well as Ptchl were localised in

murine endometrial LE and GE (Takamoto et al., 2002), suggesting potential for autocrine signal-

ling. Additionally, epithelial lhh was proposed to act as a paracrine mediator of stromal prolifera-

tion in the endometrium, where it may also induce expression of Ptchl (Goodrich 1997; Matsumoto

et al., 2002). Established roles for Hh proteins in mediation of organisationally critical epithelial-

mesenchymal interactions (Chuang et al., 2003; McMahon et al., 2003) and documentation of Ihh

and Ptchl expression in the neonatal porcine endometrium (Fig. 4) suggest a potential role for Ihh

in perinatal uterine development.

PNO 0 PNO 14 PND 14EV

••••

51

A.

B.

Fig. 4 Effects of age and admin is ration of oestradiol valerate (EV; 50pWkg bw/d) for 14 cays

from birth (postnatal day = PND 0) on patterns of Indian Hedgehog (lhh) expression (A), and

immunlocalisation of Ihh and the Ihh receptor Patched (Ptch) in PND 14 endometrium (B). In
A - Uteri obtained from 4-6 gilts on each day and after treatment with EV on PND 14, were
fixed in 42ii (w/v) paraformaldehyde, embedded in paraplast-plus, sectioned 15pm), and
processed together under identical conditions tor hybridisation of cRNA probes. An antisense
(u-itS)JTP-labelled cRNA probe, generated by in vitro transcription from a linearised por-
cine cDNA template tor lhh (NCB! accession numben CK172438), was used to localise the
targeted transcript in situ. Darkfield photomicrographs show signal (white grains) above
background, determined by subtraction of negative control images generated using corre-
sponding (cc-nS)UTP-labelled sense cRNA probes (not shown). Signal indicative ot lhh ex-
pression was detected in both stroma and developing epithelium on PND 0 (left) and PND 14
(middle). Administration of EV from birth reduced the Ihh signal (PND 14 vs PND 14EV). In
B — Immunolocalisation of lhh protein and Ptch1 in neonatal porcine uterine tissues (PND
14 shown). Tissues were subjected to heat-induced epitope retrieval in boiling citrate butter
(10mM, pH 6.0 tor 20 min). Antibodies directed against the c-terminus of lhh (SC-1196) and
the n-terminus ot Ptchl (SC-6149) were obtained from Santa Cruz Biotechnolgoy (CAL Nega-

tive control sections (Neg, left) received irrelevant IgG for the primary antibody. Both lhh
(middle) and Ptch1 (right) proteins were detected in stromal and epithelial compartments.
Signal for both was most pronounced tor epithelium. [Original magnification = 20X; GE =
glandular epithelium, LE = luminal epithelium, St = stroma hematoxylin counterstain]
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Tissue programming and developmental disruption

It is well known that aberrant stimuli encountered during critical periods of development can
affect organisational programmes, alter normal developmental trajectories and induce perma-
nent changes in the structure and function of tissues and organs. Recently, the term program-
ming has been adopted to describe long-term effects of exposure to environmental, nutritional
or xenohiotic factors that affect the course of development with lasting consequences (Godtrey
and Barker, 2001; Rhind et al., 2001). Tissues of the FRT are potential targets for such factors.

Prenatal exposure of human foetuses to DES alters the organisational programme of FRT
tissues and sets the stage for cervicovaginal cancer and other complications (Herbst et al., 1979;
Cunha et al., 1999; Iguchi and Sato, 2000). These observations provided important insights into
the roles of the steroid hormone superfamily of receptors and related ligands in normal and
aberrant FRT programming. Loss-of-function studies showed that oestrogen receptor-a (ER)
expression is required for normal uterine growth, while both the progesterone receptor (PR)and
ERare required for normal uterine function (Conneely et al., 2001; Emmen and Korach, 2003).
Neither ER nor PR expression is necessary to support primary uterine patterning events in pre-
and/or perinatal life. However, aberrant activation of these and related receptor systems during
critical organisational periods can affect the developmental programme with significant conse-
quences for uterine function (Bartol et al., 1999; Cunha et al., 1999; Gray et al., 2000a; Iguchi
and Sato, 2000; Taylor et al., 2001; Hendry et al., 2002; Huang et al., 2005).

Risks of exposure to compounds with the potential to disrupt steroid-sensitive uterine pro-
gramming events are real. Categories of developmentally disruptive environmental chemicals
likely to he encountered by animals include: (1) pharmaceuticals designed for therapeutic
purposes, such as growth promotants or agents used to control timing of ovulation; (2) bioactive
dietary factors and endocrine modulating chemicals found in feedstuffs; and (3) industrial
xenochemicals that act as hormonal mimics or selective steroid receptor modulators (SSRMs).

In laboratory animals, perinatal oestrogen exposure produced lesions in adult uteri that in-
cluded altered steroid receptor concentration and responsiveness; changes in oestrogen me-
tabolism and protein synthesis; persistent induction or de-regulation of gene expression; de-
regulation of protooncogene expression affecting uterine epithelial cell proliferation and
apoptosis; and structural lesions including cystic endornetrial hyperplasia, squamous metapla-
sia, adenomyosis, myometrial hypoplasia and general uterine hypoplasia (Bartol et al., 1999;
Newbold, 1999; Iguchi and Sato, 2000; Huang et al., 2005). Complementary data involving
ungulate models clearly indicate that adult uterine phenotype can he programmed by targeted
disruption of hormone-sensitive postnatal organisational events (Bartol et al., 1999; Gray et al.,
2000b; Gray et al., 2000a; Gray et al., 2001h; Carpenter et al., 2003; Tarleton et al., 2003a).

Porcine uterine development and endometrial programming

In the pig, as in other mammals, radial patterning of the uterine wall is incomplete at birth
(Bartol et al., 1993). Uterine morphogenetic events characteristic of the first 60 days of postna-
tal life in the pig, including appearance and proliferation of uterine glands (Fig. 5), develop-
ment of endometrial folds, and differentiation and growth of myometrial smooth muscle layers,
occur normally following bilateral ovariectomy at birth, whereas ovaries are required for nor-
mal uterine growth past PND 60 (Bartol et al., 1993). Thus, as reported for other species (Gray
et al., 2001a), early postnatal events associated with radial patterning of the porcine uterine
wall are ovary- and, most likely, steroid hormone-independent. Consistently, oestrogen and
progestin sensitivities develop postnatally in these tissues (Vallet et al., 1995; Groothuis et al.,
1997; Tarleton et al., 1998).
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Fig. 5 Endometrial histogenesis (A) and oestrogen receptor-a (ER) expression (13) in the

neonatal porcine uterus. Brightfield photomicrographs depicting normal endometrial

histology for uterine tissues obtained from gilts at hirth (postnatal day = PND 0) and on

PND 13 (A, hematoxylint. During this period luminal epithelium (LH ultimately gives rise

to glandular epithelium (CE). Differentiation of GE from LE is associated with onset of ER

expression in nascent GE (B). Immunohistochemical localisation of ER protein in porcine

endometrium from PND 14, as described elsewhere (Tarleton et al., 1998), using the

H222 monoclona( antibody (left) reveals clear nuclear staining in GE and stroma (St), but

not in LE Irrelevant IgG was used in place of H222 in negative control sections.

The porcine uterus is ER-negative at birth (Tarleton et al., 1998). Onset of ER expression

between PND 0 and 15 in uterine stroma and glandular epithelium (GE), but not in luminal

epithelium (LE; Fig. 5), is associated with appearance and proliferation of endometrial glands

(Tarleton et al., 1998). The ER antagonist ICI 182,780 retards endometrial development and

inhibits gland genesis during this period when administered from birth (Tarleton et al., 1999).

Thus, the ER is both a marker and mediator of GE differentiation and radial patterning of the

neonatal porcine uterine wall.
Temporally aberrant activation of the ERsystem by administration of oestradiol valerate (EV)to

gilts from PND 0-13, while acutely uterotrophic (Spencer et al., 1993), is ultimately both anti-

uterotrophic and anti-embryotrophic (Bartol et al., 1993; Tarleton et al., 2001; Tarleton et al.,

20036). The hypoplastic, neonatally EV-exposed adult porcine uterus does not respond normally to

signals associated with the periattachment stage of early pregnancy. Numbers of corpora lutea and

uterine luminal fluid (ULF) oestrogen content were similar in control and neonatally EV-exposed

pregnant adult gilts on day 12 post-mating (gestational day = GD 12), suggesting similar levels of

maternal and conceptus signalling in both groups. However, ULF protein content was reduced,

uterine growth responses to early pregnancy were inhibited, and endometrial gene expression

patterns were altered in neonatally EV-exposed gilts on GD 12 (Tarleton et al., 2003b). Treatment

B.
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effects on the endometrial proteorne for GD 12 (Crean et al., 2004) were also pronounced (Fig. 6),

and embryo survival in neonatally EV-exposed gilts was reduced by 22% when assessed on GD 45

(Bartol et al., 1993). Thus, transient, oestrogen-induced disruption of the neonatal uterine

organisational programme has marked and lasting effects on uterine form and function in the pig.

Fig. 6 Effects of administration of oestradiol valerate (EV; 50pg/kg bw/d, i.m.) for 14 days from

birth (postnatal day = PND 0) on adult endometrial histology (lett) and relative quantitative

changes in a subset of conserved peptides representative of the endometrial tissue proteome

on day 12 postmating in pregnant adult gilts (gestational day = GD 12). Pregnant gilts (n —

4/group), treated with either EV or corn oil vehicle alone (CO) for 14 days from birth, were

hysterectomised on GD 12. Tissue from individual uteri were fixed in 4% (w/v) paraformal-

dehyde, embedded in paraplast, sectioned (5pm), stained (hematoxylin) and processed for

histology (left) and histomorphometric analyses. Endometrium from each gilt was son icated

in reagent 3 of the Bio-Rad (Hercules, CA) ReadyPrep Sequential Extraction kit. Equal amounts

(70 pg) of total endometrial tissue protein from each sample were applied to ReadyStrip

immobilised pH gradient strips (11cm, pH 4-7; Bio-Rad) for separation in the first dimension,

followed by separation in the second dimension by SDS-PAGE using Criterion Pre-cast, 11

cm gels (10% total monomer; Bio-Rad). Duplicate two-dimensional (2DE) gels were run for

each animal. A master reference gel mage top right) was prepared by combining proteins

from all gilts (CO and EV). Individual samples representing the master mix and proteins from

the eight gilts were electrophoresed on separate gels run simultaneously using a Criterion

Dodeca cel I (Bio-Rad). Gels were stained with SYPROT Ruby (Bio-Rad), images were gener-

ated using a Typhoon 9410 (Amersham, NJ), and image analyses were performed using

PDQuest software (Bio-Rad). A subset of 717 spots determined to be consistent elements of

the GD 12 endometrial tissue proteome was identified and PDQuest analyses were per-

formed to determine if spot intensity for EV tissues was: (1) at least twice (2X; upper limit

analysis); (2) less than half (0.5X; lower limit analysis); or (3) approximately equal to (between

limits analysis) that observed tor CO tissues. Endometrial histoarchitecture and glandularity

were similar for CO (top left) and EV (bottom lett) tissues. Image analyses (bottom right)

revealed that, while the majority of proteins in the subset ot conserved peptide spots were

present in approximately equal abundance, 201 peptide spots were present in greater

abundance and 99 were present in relatively lower abundance in adult, neonatally oestro-

gen-exposed tissues.
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Given that the first two weeks of neonatal life represent a critical period for ER-dependent,

oestrogen-sensitive programming ot porcine uterine tissues, it follows that factors affecting ER

activation during this period can alter critical utenne programming events. Recent data indicate

that long-term effects of neonatal oestrogen exposure on uterine phenotype reflect dysregulation

of primary morphoregulatory gene expression events in developing porcine endometrium similar

to that observed in m urine systems described above.

In situ hybridisation (ISH) studies indicate that a Hoxa/Wnt expression axis develops in the

porcine uterine wall between birth and PND 14 (Figs. 2 and 3). Normally, stromal expression of

Hoxal 0 and Hoxal 1 (Fig. 2), as well as Wnt4, Wnt5a and Wnt7a (Fig. 3), is detectable at birth and

increases by PND 14. Epithelial expression of Wnt7a, undetectable at birth, is clearly evident by

PND 14 in LE, but not in GE (Fig. 3). Up-regulation of Wnt7a expression in LE coincides with

differentiation of Wnt7a-negative GE. Thus, in the pig, Wnt7a expression marks LE differentiation

just as ER expression marks GE differentiation. Observations are consistent with those reviewed

above for the mouse and support the idea that down-regulation of th/nt7a is necessary for differen-

tiation of GE (Mericskay et al., 2004). Treatment of gifts with EV from birth reduced the signal for

Writ 7a in LE and Wnt4 in stroma, altered stromal Wnt5a expression patterns, and increased stromal

Hoxal 0 signal by PND 14 (Figs. 2 and 3). Collectively, data reintorce the idea that dysregulation

of the organisationally critical neonatal uterine Hoxa/Wot expression axis can alter the develop-

mental trajectory of these tissues with negative reproductive consequences.

Expression of Ihh in porcine uterine tissues at birth that persisted on PND 14 was recently

documented by ISH (Fig. 4). Expression of lhh was pronounced in LE on PND 0 (Fig. 4), in

advance of detectable Wot7a expression (Fig. 3). Immunohistochemical localisation of Ihh and

Ptch 1 (Fig. 4) revealed the ligand and its primary receptor to be associated with endometrial

epithelium and stroma. Thus, essential elements of the Hh signalling system are in place at or

shortly after birth. In gilts exposed to EV for 14 days from birth, Ihh expression was reduced on

PND 14 (Fig. 4), following a pattern similar to that observed for epithelial Wnt7a (Fig. 3). Thus,

Ihh may be another up-stream regulator of epithelial Wnt7a expression, as well as an element of

the primary organisational palette of factors governing development and stabilisation of the uter-

ine Hoxa/Wnt axis.

Postnatal uterine patterning and peptide signalling

The uterine gland knock-out (U GKO) phenotype (Bartol et al., 1999) provides definitive evidence

of the consequences of SSRM-induced disruption of the neonatal uterine developmental programme

in ungulates. In sheep, induction ot the UGKO phenotype is associated with loss of uterine

epithelial ER expression and changes in expression patterns for paracrine-acting growth factors and/

or their receptors, including uterine hepatocyte growth factor and fibroblast growth factor receptor

2111b, now implicated in postnatal uterine patterning events (Gray et al., 2000a; Taylor et al.,

2001). In addition, ovine uterine gland genesis was inhibited by neonatal administration of

bromocryptine and stimulated by administration of prolactin (Carpenter et al., 2003). Data provide

evidence that peptide growth factor signalling can affect ungulate uterine patterning and tissue

programming.

Relaxin ancl neonatal uterbie development

Peptide hormone signalling can affect uterine development directly and indirectly, via crosstalk

with steroid hormone signalling systems (Smith 1998). Supportive evidence in the pig comes

from studies ot relaxin (RLX), a member of the insulin-like growth factor family. Like oestrogen,

uterotrophic effects of RLX in the neonatal pig are age-specific (Spencer et al., 1993; Bagnell et al.,

2005). Administered tor two days from birth, prior to onset of endometrial ER expression, RLX
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increased uterine LE height, but not uterine weight on PND 2 (Bagnell et al., 2005; Van et al.,

2005a). However, when administered for two days from PND 12, after onset of endometrial ER

expression, RLX increased both uterine LEheight and uterine weight on PND 14, effects that were
inhibited with ICI 182,780 (Bagnell et al., 2005). Thus, effects of RLX in the neonatal pig are

determined, in part, by the relative presence of uterine ERand may involve crosstalk with the ER
signalling system (Pillai et al., 1999; Bagnell et al., 2005).

Posniatal Age (days)
7 14

Fig. 7 Relaxin receptor (LGR7) expression in the neonatal porcine uterus detected by RT-

PCR (A), in situ hybridisation (B) and immunohistochemistry (C). Uteri (n = 4-6/day) were

obtained from neonatal gilts at birth (postnatal day = PND 0) and on PND 7 and 14.

Primers designed based on human sequence data for LGR7 were used to generate a 431

bp porcine cDNA amplicon by RT-PCR, identified in tissues from all days (A). The amplicon

from PND 14 was cloned, sequenced (NCBI accession number: CA994862) and deter-

mined to have 88% similarity with the human sequence for LGR7. An antisense (a-bS)UTP-

labelled cRNA probe, generated by in vitro transcription from the linearised porcine cDNA

template for LGR7, was used to localise the targeted transcript in situ (B). Darkfield photomi-

crographs show signal (white grains) above background, determined by subtraction of nega-

tive control images generated using corresponding (u-hS)UTP-labelled sense cRNA probes

(not shown). Signal indicative ot LCR7 expression was detected primarily in the endometrial

stroma and increased from PND 0 to PND 14. Immunohistochemical localisation of LGR7 in

uterine tissues (C; PND 14 shown), using the L7 antibody provided as a gift by Dr. Richard

Ivell (University of Adelaide, Adelaide, Australia), revealed some signal above background

(left; IgG substituted for L7) in epithelium, but corroborated the stromal expression signal

observed by in situ hybridisation.

400bp—o

C.

St



126 1-.1- Ratio/ el

The RLX receptor, LGR7, and a related RLX-sensitive receptor, LGR8 (Hsu et al., 2002), are

expressed by porcine uterine tissues from birth (Bagnell et al., 2005). Stromal LGR7 expression

increases from PND 0 to PND 14 (Fig. 7). Immunolocalisation studies (Fig. 7) corroborated ISH

results, revealing LGR7 staining similar to that reported for adult primate and human endometrium

(Iven et al., 2003). Because endometrial LGR7/8 expression precedes ER expression in the neona-

tal pig, subtle uterotrophic effects observed for RLX administered from birth could be LGR7/8-

specific, while pronounced effects seen in week two could reflect amplification of the RLX signal

through crosstalk with ER. Given that RLX can augment oestrogen-stimulated uterine Hoxa 10

expression (Gui et al., 1999), RLX signalling could affect ER-dependent events governing

morphoregulatory gene expression in the neonatal uterus.

Given evidence of a functional RLX signalling system in porcine uterine tissues from birth, a

source of RLX in the neonatal pig was sought. Not withstanding the potential for an endogenous

source, milk is a recognised source of peptide growth factors in young animals (Donovan el al.,

1994). Because the immature GI tract is permeable to macromolecules for 24-36 h prior to gut

closure, bioactive milk-borne agents may enter the neonatal circulation to influence growth and

development of peripheral organs (Burrin et al., 1997). Lactational exposure is also a well recognised

route for delivery of xenobiotic compounds with the potential to affect development of reproduc-

tive tissues (Hughes et al., 2004).

Both human (Eddie et al., 1989) and canine (Goldsmith et al., 1994) colostrum and milk contain

RLX, which can be absorbed into the neonatal circulation through the gut (Goldsmith et al., 1994).

In sows, RLX is present at highest levels in colostrum within 48 h of parturition, before gut closure,

and is transmitted into the circulation of nursing pigs (Yan et al., 2005b). Thus, milk-borne RLX has

the potential to play a role in programming of uterine tissues during the early neonatal period.

Conclusions

The uterus, an epithelial-mesenchymal organ, develops through processes involving increasingly

complex and specific cellular interactions that are accompanied by and support the evolution of

organisationally critical, temporally and spatially unique patterns of primary and secondary

morphoregulatory gene expression domains. Structural patterning and functional programming of

uterine tissues are coupled processes. Elements of the primary organisational palette of factors

required for, and mechanisms governing the success of, these processes have only lust begun to be

defined precisely.

Temporospatial expression patterns for factors implicated in porcine endometrial development

between birth and PND 14 are summarised in Fig. 8. Evidence of the evolution of a Hoxa/Wnt axis

in the neonatal porcine endometrium shortly after birth, including stromal Wnt4 and Wntsa expres-

sion preceding up-regulation of Wnt7a in LE and the associated up-regulation of ER expression in

nascent Wnt7a-negative GE, supports murine data and reinforces the idea that these events are

fundamental to uterine developmental success. The fact that expression patterns for uterine Hoxa,

Wnt and Hh genes can be altered by factors that affect ER activation during a critical period for

porcine uterine development emphasises the importance of these genes, as well as their yet-to-be-

defined up-stream regulators and down-stream targets, in both normal and aberrant organisational

processes. Evidence that RLX can not only affect uterine development in the neonatal pig directly,

through LGR7/8, and indirectly via crosstalk with the ER, but can be presented to this system

normally via colostrum, indicates that maternal factors governing FRT development extend into

the postnatal period and should not be ignored. Clearly, factors affecting signalling events in

uterine tissues which produce changes in morphoregulatory gene expression patterns during criti-

cal organisational periods can alter the developmental trajectory of the uterus with lasting conse-

quences. Thus, uterine tissues can be programmed epigenetically for success or failure during

perinatal life.
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Fig. 8 Temporospatial patterns of morphoregulatory gene expression in the porcine en-

dometrium from birth to week two of postnatal life associated with onset of uterine gland

genesis. At birth (top; postnatal day = PND 01 the endometrium consists principally of a

simple lurninal epithelium (II) supported by uterine stroma aSta Indian hedgehog (I hh)

expression is detectable in LE and, to a lesser extent, in St on PND 0. Similarly, expression

of Hoxa10 and Hoxall, Wnt4, lAint5a and Mit 7a, as well as LGR7, the relaxin receptor,

is detectable. Differentiation of nascent glandular epithelium (GE) from LE is marked and

possibly medidted by the onset dnd increased expression of Wnt7a in LE and oestrogen

receptor-a (ER) in GE, in which Writ7a expression is not detected.
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