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Androgens have potential actions in almost all the organs of males and
females. In females, most organs contain some tissues with cells that
have androgen receptors. Androgens can regulate cellular functions by
binding to androgen receptors or be converted to other hormones. For
example, testosterone can bind to the androgen receptor or be aromatised
to oestradiol. Treating animals with testosterone, therefore, might elicit
some androgenic and oestrogenic effects. Alternatively, testosterone can
be converted to other androgens, which in turn, have more or less affinity
with the androgen receptor and these new metabolites may or may not
be aromatised to oestrogens. This review will highlight the roles of
androgens in female mammals other than those as a substrate for
oestrogen, with particular emphasis on the actions of the androgen
receptors in uteri and ovaries of pigs. Utilising small dosages of an
androgen receptor agonist, DHT (5a-dihydrotestosterone) we have
observed that some uterine functions were inhibited while ovarian
follicular development was augmented. These inhibitory and stimulatory
effects of androgen therapy on reproductive organs can potentially be
balanced to enhance ovulation rate and litter size in gilts and sows. Perhaps
after future experimentation, new uses of androgens or anti-androgens
could improve additional aspects of sow performance not presently under
consideration.

Introduction

Testosterone and oestradiol are historically aligned with males and females, respectively. Tes-
tosterone, the name sake of the testis, was of primary investigative interest to male physiology
because testicles are the major site of testosterone synthesis and castration of males resulted in
radical alterations of appearance and behaviour. In Females,testosterone was associated with its
role as a substrate in oestradiol synthesis and non-substrate roles of androgens were not inves-
tigated as ambitiously as other more traditional "female" hormones. Typifying this previously
held perception of androgens being a "male" hormone, the term "androgen" was defined as
compounds enhancing male characteristics, hormones causing masculinisation or chemicals
acting like male hormones. No longer gender-orientated in definition, androgens can now be
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considered to be compounds that bind to the androgen receptor (AR). To date, the list of known
endogenous and synthetic androgens is extensive.

Fortunately information is available regarding the roles of oestrogens in males and androgens
in females. Oestradiol is essential for development of the testis and prostate, maintenance of
the skeleton and cardiovascular system, promotion of masculinisation and libido in males (Bakker
et al., 2004). In females, endogenous androgens have a wide array of effects and exogenous
androgens are prescribed for women to meet a diverse range of therapeutic objectives (Table 1).
However, exogenous androgens can have serious consequential effects on many organs and
androgen treatment of food producing animals will continue to be a safety concern to human
health.

Table 1. Various androgen treatments or therapies in females (references not included)

Women
Sexual dysfunction/state of well-being
Skin burns
Wound healing
Sports/body composition
Osteoporosis/bone density
Endomoriosis
Post rnenopausal(with oestrogen)/Hot flushes
Hereditary angioedema
Breast cancer
Leukemia
Addison's Disease/adrenal insufficiency
Hepatic and kidney failure
Low lacrimal function/Sjogren's syndrome
Cachexia/anorexia (with AIDS/cancer)
Chronic obstructive pulmonary disease
Lower cholesterol and HDL
Dialysis (androgens with eryihropoietin)

Cattle and Sheep
Growth promotant (feedlot)
Post natal growth (prenatal treatment)
Reduce fear
Block ovulation
Increase ovulation rate by immunisation

Mice and Rats
Growth of mammary ducts/siroma
Increase synapses in hippocampus
Attenuate seizures
Inhibits non-obese diabetes

Multiple Animal Models
Hypothalamic/behavioural masculinisation

Pigs
See Table 2

The role of androgens in females is a timely subject as androgenic disorders are now consid-
ered the most common endocrinopathy of women, affecting at least 10 to 20 percent of the US
population (Redmond, 1998). Unfortunately, these pathologies remain under reported as women
tend to hide hypo- or hyper-androgenic conditions rather than seek medical attention.

Androgens are essential as substrates for oestrogen synthesis, however, androgens also have
additional functions in females. For example, utilising a new strategy, the cre-lox knock-out
procedure, Yeh et al. (2002) demonstrated that in AR knock-out (ARKO) mice, females are
fertile but litter size is small. Curiously, the reverse scenario also exists in which androgens
have a role only through their conversion to oestrogen. For example, memory in male rats, as
qualified in a water radial maze, is enhanced with testosterone but not with the non-aromatisable
androgens (Bimonte-Nelson et al., 2003).

This review will focus on the effects of androgens in females beyond their role as a substrate
for oestrogen synthesis. The steroid, DHT is an endogenous androgen that is synthesised by the
enzyme 5a-reductase. DHT can not be aromatised to oestrogen (Wilson, 1975) and fortuitously,
experimentation utilising DHT allows androgen's role as a substrate for oestrogen to be distin-
guished from AR-mediated events. Therefore, investigational use of DHT to alter aspects of
female reproduction will be frequently cited in this review. Additionally, inclusion of the
location and activity of 5a-reductase will offer information about sites of DHT action. Informa-
tion specific to swine will be considered noteworthy and at times will supersede earlier discov-
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eries in other species. In the forthcoming paragraphs, the general actions of androgens in fe-
males will be highlighted followed by a more specific discussion of the uterus and ovary. The
last section will summarise known and potential areas of pig reproduction that might be en-
hanced with androgen treatment of females.

General actions of androgens in females

The physiological actions of androgens in females are complex, as androgens induce physi-
ological effects via combinations of a variety of mechanisms and pathways. Androgens can bind
to their cognate nuclear AR (genomic effects). Classical AR belongs to the family of nuclear
receptors, a group of proteins that influence gene transcription. The AR gene is located on the
X chromosome (Seifert et al., 1999) and its associated polymorphisms have been identified in
pigs (Trakooljul et al., 2004). Androgens may also bind to membranous receptors and elicit
non-genomic effects (Revelli et al., 1998). Gorczynska and Handelsman (1995) observed non-
genomic effects when freshly isolated Sertoli cells experienced increased intracellular concen-
trations of calcium within 20 seconds of DHT treatment. A less known pathway is the ligand-
independent pathway (Buchanan et al., 2001). Kim et al. (2005) suggested that enhanced phos-
phorylation and formation of a novel bridging ("enhanceosome cooperation") action of p300/
CBP (CREB-binding protein) between unbound AR and CREB (cAMP responsive element-bind-
ing protein) allowed continued transcription of target genes even in the absence of the ligand
(androgen).

Many androgens can be enzymatically converted to other active androgens, a process called
intracrinology (Labrie et al., 2003). When these additional intracrine pathways for androgen
were evaluated, Labrie et al. (2003) estimated that women synthesise approximately two thirds
the amount of total androgens synthesised by men. Newly converted androgens may have
more or less affinity with the AR. One such pertinent pathway in females is the rather wide-
spread conversion of testosterone to DHT. A forthcoming discussion of the location of 5a-
reductase will support the widespread nature of this pathway. As an AR agonist, DHT has a
greater affinity for the AR than testosterone (Grino et al., 1990) and throughout the body, the
conversion of testosterone to the more potent androgen, DHT, can be considered a mechanism
of "androgen amplification" (Roy and Chatterjee, 1995).

Androgens can also influence oestrogenic responses in gilts, not necessarily through the
oestrogen-substrate role but, by altering amounts of oestrogen receptors (ERa and ERK;Cardenas
and Pope, 2004). Androgens can interact with numerous other receptors and growth factors. For
example, DHT can be reduced by 3a-hydroxysteroid oxidoreductase to 3cc-androstanediol (Martini
et al., 1993). Although 3a-androstanediol has no affinity for the AR (Cunningham et al., 1979)
it does bind to steroid recognition sites of the GABA receptor (Marrow et al., 1990). As another
example of interactions with other receptors and growth factors, androgens can enhance or
attenuate FSH or IGF-1 responses in follicles (deMoura et al., 1997; Vendola et al., 1999).
Finally, androgens can cause differentiation of several organs or responses (i.e. virilism of hair
distrubtion, abnormal oestrous behaviour and liver function) in females but the mechanism(s)
controlling several of these permanent changes remain unclear.

Despite dramatic behavioural differences between the sexes, few anatomical and molecular
markers have been identified to further differentiate between the male and female brain (Cooke
et al., 1998). Shah et al. (2004) modified the AR gene in mice to co-express two reporter
molecules, lacZ and placental alkaline phosphatase (PLAP). Adding K-galactosidase to the tis-
sue sections allowed labelling of AR containing nuclei while the addition of PLAP resulted in
visualisation of neuronal processes. Less than 10 percent of the neurones within the mouse
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brain contained AR. In addition to the three known sexually dimorphic areas of the brain, the
preoptic area of the hypothalamus, the bed nucleus of the stria terminalis and the nucleus of the
bulbocavernosus, new dimorphic "islands" in the basal forebrain were observed to contain AR-

stained neurones (Shah et al., 2004). A closer examination of the three dimorphic areas re-
vealed that the dorsal raphe nucleus, an area of the brain that innervates projections to the
cerebral cortex and limbic system, is devoid of AR in female rats and mice, in contrast to males

with modest-to-abundant amounts of AR (Sheng et al., 2004).
Testosterone exerts many of its effects on the brain of females after conversion to DHT or

oestrogens. Two different genes encode for 5a-reductase-1 and -2 (5a-R-1 and 5a-R-2, respec-

tively; Wilson and Russell, 1994). Both these isoforms reduce androgens and are present through-
out the body, including the major divisions of the brain (Callard et al., 1978). Genes encoding

for 5a-R-1 are positively controlled by DHT while 5a-R-2 genes are negatively regulated by
DHT in the brain (Torres and Ortega, 2003). Neurones and glial cells have 5a-reductase but
neurones apparently have greater activity than glial cells (Celotti et al., 1991). These authors
suggested that neurones also have, but glial cells lack, the ability to convert testosterone to

oestradiol. Finally, the feedback of steroids on GnRH secretion might be through intermediate
GABA neurones, as AR is not found in GnRH neurones (sheep, Herbison et al., 1996). Sullivan

and Moenter (2004) suggested that DHT can affect GnRH release by stimulating release of
GABA and increasing the number of synaptic contacts from GABAergic to GnRH neurones.

Expression of female-type behaviour in female mice is highly dependent on ERactivity and
independent of AR function (Sato et al., 2004) but this dependency is not evident in rhesus

monkeys (Thorton and Goy, 1986). Sato et al. (2004) hypothesise that sexual dimorphism dif-

fers between rodents and primates. In swine, adult sexual activity after treatment of male
foetuses with androgens changed more dramatically than similarly treated females. Treatment
of pregnant sows with testosterone proprionate on days 29 to 50 resulted in a wide range of

effects in female offspring. These post-treatment effects of testosterone proprionate included;
delayed age at puberty, aberrant oestrogen feedback on LH secretion, unchanged tonic LH
secretion, some, but not complete virilised genitalia and only a slight reduction in the extent of

their female-type behaviour (Elsaesser and Parvizi, 1979; Ford and Christenson, 1987; Petric et
al., 2004). It remains unknown if these effects in gilts are via the AR or are the result of
conversion to oestrogens or other hormones.

The presence of hepatic AR was first detected in rabbits (Sheets et al., 1985) and has subse-

quently been identified in the liver of females of a number of mammals. The activity of 5a-
reductase in the liver of adult females is 5- to 10- fold greater than in male rats (Yates et al.,
1958). There are hypothetically two periods or events during development that establish gen-

der differences in hepatic 5a-reductase activity. The first is during the neonatal period when
testicular androgens imprint a masculine potential on an otherwise feminine activity (McEwen,
1976). The second period of hepatic maturation of 5a-reductase activity is at puberty (Pak et al.,

1985), when androgen treatment of males further decreases 5a-reductase activity. The "fe-
male" pattern of GH secretion (more continuous than the typical pulsatile pattern of males)
stimulates 5cc-reductase in the liver (Waxman et al., 1989) perhaps explaining the cause of
gender differences in 5a-reductase activity. A resulting greater 5a-reductase activity in the

female liver as compared to the male, might be a mechanism for females rats to metabolise
more a4-3-keto-steroids (Yates et al., 1958). Alternatively, female rats might increase the regu-
latory impact of androgens on hepatocyte function through androgen amplification, in lieu of

lesser concentrations of androgens in their blood than males. Finally, liver weight is positively
correlated with ovulation rate in gilts (Wise and Ford, 1998), perhaps due to an altered feed-

back system involving differences in metabolic clearance of steroids and subsequent secretion
of gonadotrophins.
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Androgen action(s) in the uterus and ovary

Uterus

The AR is found in the nuclei of many cell types in pig uteri. However, some differences exist
among species in the patterns and proportions of AR within various cell types of the uterus. Utilising
immunohistochemistry techniques, we observed strong AR staining in the luminal and glandular
epithelium with approximately 40% less staining in the myometrium of gilts (Cardenas and Pope,
2003). Androgen receptor staining was also evident in the subepithelial stroma, while AR staining
was less in stromal cells that were located deeper in the endometrium. Neither stage of the
oestrous cycle nor events during early gestation appeared to alter the amount of AR staining
(Cardenasand Pope, 2003).

The potential for endocrine control of AR gene expression in the uterus was examined by
utilising an ovariectomised gilt model followed with replacement therapy of oestradiol or DHT
alone or the combination of oestradiol and DHT. Treatment with DHT alone did not change the
amounts of AR mRNA from those of gilts in the vehicle group. However, oestradiol administration
alone did increase mRNA for AR but this increase was partially blocked with DHT and oestradiol
co-treatment (Cardenas and Pope, 2004).

Considering multi-cell type (whole) cultures of endometrial tissues, 5a-reductase activity has
been known to exist in gilts for a considerable period of time (Henricks and Tindal, 1971; Gadsby,
1978; Fischer et al., 1985) but cell specific localisation has not yet been determined. The enzyme
5a-reductase has been localised in the human endometrium, specifically in epithelial, but not in
stromal (Ito et a/., 2002) nor myometrial (Bulun et al., 1994) cells.

Androgens might antagonise several uterine functions in gilts, perhaps through attenuation of
the ERsand, therefore, inhibition of oestrogen-sensitive genes. Co-treatment of ovariectomised
gilts with oestradiol and DHT reduced amounts of immunoreactive ERa in myometrial and stromal
cells, and tended to decrease the amounts of ER in the luminal epithelium. Curiously, the glandu-
lar epithelia expressed a unique, cell-type, specific response as the amounts of immunoreactive
ERa remained unchanged from those of gilts treated with oestradiol alone (Cardenas and Pope,
2004). The inhibitory actions of androgens, when administered during the preceding follicular
phase, on the ability of the uterus to support early conceptus development are dose and duration of
treatment dependent (Cardenasand Pope, 1997; Cardenas et al., 2002). Other inhibitory actions of
androgens, specifically during the follicular phase of the oestrous cycle, range from marginal
(uterine wet weight and cell proliferation) to significant (amount of complement component C3
message; Cardenas and Pope, 2005). Finally, the effects of androgens in intact, cycling gilts are
possibly modulated differently than those of ovariectomised gilts (Cardenas and Pope, 2005).

As uterine stromal cells are sensitive to androgenic antagonism of oestrogenic effects, under-
standing the nature of this interaction might be valuable. Apparently, AR and ERa can be co-
expressed in the same uterine cell types, but the mechanism(s) influencing their interactions is not
clear. For example, the presence of androgen-response element(s) in the ER gene has not been
reported. Collectively, these observations have led us to suggest that bound AR in endometrial
stromal cells attenuates oestrogenic action(s) in the uterus of gilts. Specifically, stromal cells of the
endometrium down-regulate the ERsin response to androgens, and those down-regulated stromal
cells in turn might alter other factors required by juxtapositional epithelia. This cell-to-cell interac-
tion between stroma and epithelia has been hypothesised to exist in other species (Clark et al.,
1985; Buchanan et al., 1999).

Ovarian synthesis of androgens

Androgens common to females of other species, testosterone, DHT, dehydroepiandrosterone
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(DHEA), DHEA sulphate and androstenedione, have also been observed in gilts (Stone and
Seamark, 1985). Androstenedione is actively synthesised by theca cells of growing follicles, as
concentrations in follicular fluid are several fold greater than testosterone (Evans et al., 1981;
Tsang et al., 1985). Androstenedione exceeds testosterone concentrations in blood from the
utero-ovarian vein by 2- to 20-fold (Ciereszko et al., 1989). Although, porcine gonadal aromatase
converts testosterone into oestrogens slower than androstenedione (Corbin et al., 1999), an-
drostenedione is metabolised through the intermediate oestrone, in the pathway to oestradiol
(Peters and McNatty, 1980). In contrast, testosterone can be directly aromatised to oestradiol
and the AR has more affinity for testosterone than androstenedione (Wilson, 1996). In sum-
mary, androstenedione probably has a major role as a substrate for oestrogen synthesis rather
than as an agonist for the AR. Our laboratory has focused initially on testosterone and DHT
effects in the ovary and, to date, we have done little experimentation with androstenedione.

The pattern of testosterone secretion during the porcine oestrous cycle has been examined
previously (Fitko et al., 1998; Jana et al., 2000; Wise and Ford, 1998; Jana et al., 2004). Con-
centrations of DHT in peripheral blood were lower than testosterone and did not change during
the oestrous cycle (Fig. 1; E.Routman, E. Jimenez, H. Cardenas and W. Pope, unpublished).
Testosterone increased (P<0.05) from oestrus to the luteal phase and then followed a transient
trend of decreasing from the expected time of luteolysis (days 14 to 16; day 0 = first day of
oestrus; gilts averaged a 19.5 day cycle) to increasing again at oestrus. It is possible that the
increase in systemic testosterone during the luteal phase reflects corpora lutea secretion
(Gregoraszczuk and Oblonczy, 1996). Blood samples collected from additional gilts on days 0,
5, 10 and 17 (n = 4) from the jugular and ovarian vein demonstrated that the concentration of
testosterone was less in the jugular compared with the ovarian vein but the concentration of
DHT was not affected by site of venepuncture (data not shown, E.Routman, E. Jimenez, H.
Cardenas and W. Pope, unpublished). These latter observations suggest that the ovary is a
significant source of peripheral testosterone but not DHT.

Concentration

(pg/mI))

30

25

20

15

10

5


0

-0- Testosterone

•DHT

0 2 4 6 8 10 12 14 16 18

Day of oestrous cycle

Fig. 1 Mean concentration of testosterone and dihydrotestosterone in plasma from the
jugular vein of gilts (n - 6) sampled on even numbered days of the oestrous cycle. SEM for
concentrations of testosterone and DHT in plasma were 10 and 2, respectively. Mean
concentrations of testosterone with different superscripts (a, b or c) are different (P< 0.05).
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Through genetic selection, the University of Nebraska has developed a line of pigs with an
increased ovulation rate (Johnsonet al., 1999). Analysis of some physiological differences between
these lines has indicated that more oestrogen-active follicles were present in the larger ovulation-
rate line, two to three days before ovulation, and that these follicles were selected over a longer
period than follicles of control gilts (Yen et al., 2005). Microarray analysis allowed Caetano et al.
(2004) to observe 59 unique genes from follicular tissues that were differentially expressed be-
tween the select and control line. Some of these differentially expressed genes were related to the
transport of cholesterol to follicular cells, other genes were associated with steroidogenic enzymes
(side chain cleavage, 17-a-hydroxylase, aromatase and cytochrome C oxidase), and others with
the steroidogenic acute regulatory (StAR) protein. Noteworthy, is the upregulation of 17-a-hy-
droxylase during the final days of follicular maturation in the high ovulating gilts as this enzyme
catalyses the conversion of progesterone to androgens.

Ovary - AR and 5a-reductase activity

The porcine adrenal, uterus, liver and pituitary gland contain 84, 62, 44 and 10/0,respectively, of
the amounts of AR mRNA in the ovary (Trakooljul et al., 2004). Within the ovary, the AR has been
detected in nuclei of most cell types of follicles (pigs, Garrett and Guthrie, 1996; Cardenas et al.,
2002a; Hickey et al., 2004), corpora lutea (Carrizo et al., 1994), stroma (Otala et al., 2004) and
surface epithelia (Edmonson et al., 2002). Within the porcine follicle, a greater density of AR has
been detected in the granulosa cells of preantral, small and medium sized follicles than larger
follicles (Garrett and Guthrie, 1996; Slomczynnska and Tabarowski, 2001; Cardenas and Pope,
2002a). During late follicular development, the amount of AR remains rather constant in preovula-
tory follicles (Tetsuka et al., 1995; Hillier and Tetsuka, 1997; Cardenas and Pope, 2002a). Re-
cently, we noted that the intensity of staining for the AR protein in cells of pre-antral and small
follicles remained constant during the oestrous cycle and only decreased before the onset of
oestrus (H. Cardenas and W. Pope, unpublished data). Theca cells contain 40 to 60% lessAR than
granulosa cells and, unlike granulosa cells, AR in theca cells are not influenced by day of the
oestrous cycle (H. Cardenas and W. Pope, unpublished data). Although the location and relative
intensities of staining for the AR have been determined within the ovary, to date, the likely
functional activity for these receptors has not been proposed.

In rats, the activity of 5a-reductase peaks in the ovary coincident with CL formation (Lephart et
al., 1992). Perhaps related, within the human ovary, 5a-reductase is more prevalent in the CL than
stroma or follicles (Haning et al., 1996). Luteinising hormone stimulated theca 5a-reductase activ-
ity (Aono et al., 1981), while the relatively smaller amounts of 5a-reductase in granulosa cells
were inhibited by FSH (Payne et al., 1992). In rat granulosa cells, IGF-1 slightly elevated 5a-
reductase activity whereas FSH did not alter the activity of the enzyme (deMoura et al., 1997).

Ovary- Effects of DHT on porcine follicles

Exogenous DHT from days 13 to oestrus increases ovulation rate (Cardenas et al., 2002), and
increasesFSHreceptor mRNA (FSHR;Cardenas and Pope, 2002a), but does not change the amount
of immunostaining of AR in thecal and granulosa cells (Cardenas and Pope, 2005). In vitro, DHT
suppressesFSH induced progesterone production but induces granulosa cell proliferation, particu-
larly in cells in close proximity to the oocyte (Hickey et al., 2004) and inhibits FSH induced
aromatase activity (Chan and Tan, 1986). Continuing this list of DHT effects with observations in
rats includes: augmenting FSH induced progesterone synthesis (Armstrong and Dorrington, 1976),
stimulating growth of follicles primed with PMSG (Daniel and Armstrong, 1980), inhibiting FSH
induced stimulation of LH receptor synthesis (jia et al., 1985) and augmenting FSH-stimulated
utilisation of lipoproteins by granulosa cells (Schreiber et al., 1984).
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Considering the novel effects of DI-IT on ovulation rate, partitioning the treatment with DHT
from days 13 to oestrus into shorter periods of days 13 to 16 or days 17 to oestrus, resulted in similar
increases in ovulation rates to those treated with DHT from days 13 to oestrus (Cardenas et al.,
2002). It is possible that effects of exogenous androgen occur during the first two or three days of
treatment and that smaller, more critical, windows of drug administration may offer an alternative
to the more common, day 13 to oestrus regime.

At the time of this review it remains unknown how DHT increases ovulation rate in gilts. We
have observed that treatment of gilts with DFIT increased the mRNA for FSHR (Cardenas and
Pope, 2002a) and hypothesised that an increase in FSHR might be associated with the increase in
ovulation rate (Cardenas and Pope, 2005). FSH has many positive influences on ovarian follicular
growth which could explain some of the effects of DHT including the stimulation of; granulosa cell
division (Babu et al., 2000), anti-apoptotic factors (Kaipia and Hsueh, 1997), aromatase activity
(Hickey et aL, 1988), progesterone synthesis (Ford and Howard, 1997) and increasing the amounts
of LH receptors (Channing, 1975; LaBarbera and Ryan, 1981). Guthrie et al. (1998) suggested that
FSH functions as a primary element in regulating follicular atresia. Guthrie and Bolt (1990) noted
that selection of ovulatory follicles occurs coincident with decreasing FSH and several laboratories
have suggested that LH might be responsible for initiating final maturation of ovulatory follicles
(Nakano et al., 1977; Foxcroft and Hunter, 1985; Liu et al., 1998). Perhaps increasing the amounts
of FSHR coincident with the normal decrease of FSH (ligand) is a mechanism(s) to delay the loss
of FSH "influence" in follicles.

Potential usesof androgens in female pigs

Treatment of pigs with androgens will continue to be a marketing, and in some cases a health,
concern for consumers. Any favourable use of androgens to improve reproductive performance of
gilts or sows would have to fully address any public concerns. Documented areas for androgen
therapy to improve gilt performance are illustrated at the top of Table 2, while more speculative
uses of exogenous androgens are listed at the bottom. It is probable that few of the therapies listed
in Table 2 are exclusive of androgen's role as a substrate for oestrogens.

Table 2. Potential uses for androgen to improve reproductive performance in female pigs.

Production parameter Observed or theoretical effect Reference

Litter size
Litter size
Neonatal rate of gain
Juvenile rate of gain

Potential or speculative applications

Number of teats
Herd conception rate
Mammary growth
Birth weight
In vitro fertilisation

Oestrous detection

Increased one pig/litter
Increased ovulation rate
One day old al treatment
Androgen and oestradiol implant

Prenatal antiandrogen therapy
Prenatal antiandrogen therapy
Duct and stroma development (rats)
Prenatal androgens, before d104
First attempt failed to improve
Improve boar libido, prenatal

Cardenas and Pope, 2002b
Cardenas and Pope, 1994
Dvorak, 1981
DeWilde and Lauwers, 1984

Drickamer et al., 1999
Drickamer et al., 1997
Zhang et al., 2004
Wise and Christenson, 1992
Herrick and Pope., 2002
Rohde Parfet, et al., 1990

The speculative uses of androgens are based on hypothetical application of some recent obser-




vations and require further elaboration (Table 2, bottom). The number of teats and conception
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rate of gilts is another important trait to swine production but these phenotypes are reduced in

gilts from litters with a greater proportion (> 67 %) of males (Drickamer et al., 1997; Drickamer

et al., 1999). Treatment with anti-androgens at a critical stage of gestation might reverse the

negative affects of androgens or androgen induced factors from neighbouring foetal males.

Likewise, further experimentation perhaps to determine a more precise window of treatment or

to examine a better source or dosage of androgen, could be utilised in a therapy to enhance

birth weights. Finally, many of the androgen therapies listed in Table 2 might have to be

partitioned within a large swine operation to treatment of those pigs (foetuses) dedicated for

growth as compared with replacement females.

Conclusion

Androgens are endogenous to normal female reproduction but their specific functions remain,

for the most part, to be determined. One of the difficulties in investigating the role of andro-

gens is the multiple pathways by which these steroids alter cellular function. In addition to

being a substrate for oestrogen synthesis, androgens can bind to AR, be metabolised to other

hormones, alter amounts and actions of other receptors, interact with growth factors and possi-

bly other pathways still undiscovered. Although investigations have surveyed the body for the

location of the AR and Sa-reductase, and other experimentation has allowed concluding cir-

cumstances that facilitate some changes in these proteins, the science of what androgens do in

the normal physiological events of female reproduction is glaringly absent. This review, even

with its focus on AR actions in the uterus and ovary, can offer little more to this "survey". Under

experimental conditions some aspects of uterine function were attenuated by androgens through

interactions with oestrogenic pathways. Specific to the ovary, recent observations indicate that

the AR exists in various cell types of porcine follicles and binding of androgens to the AR can

have a positive influence on events during final maturation of follicles. The potential exists for

many aspects of pig production to be influenced by androgen treatments. Understanding basic

mechanisms of how androgens directly or indirectly alter reproductive performance in sows and

gilts probably will prove valuable to improving swine production.
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