
Gene expression in the brain-pituitary adipose

tissue axis and luteinising hormone secretion during


pubertal development in the gilt

C. R. Barb', G.J. Hausman' and R. Rekaya2

'Animal Physiology Research Unit, USDA/ARS, Richard B. Russell Agriculture Research Center, PO Box

5677, Athens, GA 30604, USA; and 'Animal and Dairy Science Department, University of Georgia,


Athens, GA 30602, USA

The occurrence of puberty in the female is due to the interplay of central
and peripheral mechanisms in which the hypothalamic-pituitary-ovarian
axis regulates growth and gonadal function, as well as adipocyte hormone
secretion. Hypothalamic GnRH mRNA expression increased at 3.5 months
of age and declined by 6 months of age. Concomitant with the age related
reduction in the oestrogen negative feedback on LH secretion was a
decline in hypothalamic oestrogen receptor-a (ERa) expression and
increased expression of repressor of ER activity gene (REA) at 210 days
of age. Hypothalamic proopiomelanocortin expression increased at 6
months of age followed by increased expression of progesterone receptor
(PR) membrane compliment-1 and steroid membrane binding protein
gene at 210 days of age. This represents development of the endogenous
opioid peptide-progesterone dependent LH inhibitory pathway. Adipose
tissue leptin and insulin like growth factor —I (IGF-I) gene expression
increased with age and adiposity. Pituitary transcription factors,
steroidogenic factor 1 (SF1) and Lhx3, and LFIfi and FSHfi gene expression
increased with age. These results identify key hypothalamic and pituitary
genes associated with changes in LH secretion and growth during pubertal
development and adipose tissue genes and secreted proteins related to
maturation of the neuroendocrine axis and puberty.

Introduction

The occurrence of puberty in the female is the manifestation of the interplay between central
and peripheral mechanisms in which the hypothalamic-pituitary-ovarian axis regulates growth
and gonadal function, as well as adipocyte hormone secretion. The integral components of this
axis are functional before the normal onset of puberty (Kraeling and Barb, 1990). Little is
known, however, about the mechanisms within the brain which bring these various compo-
nents into the proper temporal relationship to initiate puberty. Induction of oestrus and ovula-
tion in prepubertal gilts with hourly i.v. injections of GnRH demonstrated the importance of
pulsatile GnRH secretion (Lutz et al., 1985). The gonadostat hypothesis is one of the most
widely accepted theories regarding neuroendocrine mechanisms controlling onset of puberty
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and contends that as an animal ages, sensitivity to oestrogen negative feedback on pulsatile LH
secretion declines (Ramirez and McCann, 1963). The pig appears to conform to the gonadostat
hypothesis because onset of puberty is immediately preceded by a significant increase in pul-
satile LH secretion in the face of increasing oestrogen secretion (Lutz et al., 1984; Barb et al.,
2000). In addition, the neuroendocrine axis became less sensitive to the suppressive effects of
exogenous oestrogen on LH secretion as gilts progressed from the prepubertal to peripubertal
state (Barb et al., 2000). This change in sensitivity could be the result of brain maturational
processes which reflect decreased inhibitory inputs and (or) increased stimulatory inputs to
GnRH neurons. Lastly, there is a positive genetic correlation between backfat thickness and
average daily gain with first detectable oestrus and first breeding in the gilt (Mabry et al., 1985;
Tummaruk et al., 2000). Thus, adipose derived factors may play a role in the timing of puberty.
The purpose of this review is: first, to identify hypothalamic and pituitary genes associated with
changes in LH secretion and growth during pubertal development and second, to examine
adipose tissue gene expression related to maturation of the neuroendocrine axis and puberty.

GnRH/ LH pulse generator

In general, in the gilt, mean serum LH concentration and serum LH pulse frequency increased
from 15 days of age to maximum levels between 110 and 125 days of age, then decreased until
150 days of age and remained suppressed (juvenile nadir) until the peripubertal period (Pelletier
et al., 1981; Diekman et al., 1983; Lutz et al., 1984; Camous et al., 1985; Kraeling and Barb,
1990). Further, a reduction in the negative feedback effect of oestrogen on LH secretion oc-
curred during the peripubertal period in the gilt. There is little information regarding mecha-
nisms within the brain that brings the various components of the reproductive axis together in
a proper temporal relationship to initiate puberty (Esbenshade et al., 1982; Prunier et al., 1993;
Clapper et al., 1993a; Clapper et al., 1993b). Hypothalamic GnRH mRNA expression increased
markedly by 3.5 months of age compared to 7 day-old pigs and declined by 6 months of age
(Lin et al., 2001; Table 1). This expression pattern is consistent with the LH secretory pattern
during development; particularly around the time of the juvenile nadir. However, in a subse-
quent study hypothalamic GnRH mRNA expression remained unchanged between 150 and 210
days of age in the prepubertal gilt (C. R. Barb, unpublished). Similarly, in the intact female
primate, hypothalamic GnRH content did not vary during the juvenile to pubertal transition
(Ma et al., 1994). Furthermore, in the intact male monkey, GnRH gene expression was similar
among juvenile and adult animals (Vician et al., 1991). In the female rat, hypothalamic GnRH
mRNA expression increased gradually during development between day 10 and 41 (Gore et
al., 1996) and increased significantly on the day of vaginal opening. This occurred after estab-
lishment of a diurnal pattern of LH secretion (Ojeda and Urbanski, 1994b), suggesting that
level of hypothalamic GnRH gene expression may not be a necessary antecedent for puberty.

Excitatory and inhibitory inputs. Glutamatergic N-methyl-D-aspartate (NMDA) receptor acti-
vation accelerated puberty (Brann and Mahesh, 1997) and NMDA receptor blockade delayed
puberty in the rat (Ojeda and Terasawa, 2002). In juvenile male monkeys, NMDA receptor
activation initiated a pubertal pattern of LH secretion (Gay and Plant, 1988). In agreement with
the studies above, stimulation of NMDA receptor enhanced circulating concentrations of LH in
the prepubertal gilt (Estienne et al., 1995). Furthermore, administration of GnRH antiserum
abolished the ability of NMDA to increase LH secretion (Sesti and Britt, 1992). This is consis-
tent with the idea that activation of the glutamatergic system stimulates GnRH release in the
prepubertal gilt. Several studies have proposed that the pubertal increase in GnRH secretion
may result from a reduction in inhibitory input as well as an increased flow of excitatory input
(Ojeda and Urbanski, 1994; Terasawa and Fernandez, 2001; Plant and Barker-Gibb, 2004).
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Table 1. Hypothalamic expression of 08-rb, preproorexin, corticotropin releasing factor KR9, somatostatin

(SS), gonadotropin releasing hormone (GnRH) and proopiomelanocortin (POMC) mRNA, and adipose tissue
expression of leptin (LS mean ± SE) for 106 day-old foetuses (n-3) and 3.5 month-old (n-3) and 6 month-old
(n-2) gilts.'





Item 106 day-old foetus 7 day-old pig 3.5 month-old pig 6 month-old pig P-yalue

08-rb 0.15 ± 0.05° 0.19± 0.09 0.44 ± 0.060 0.38 ± 0.06' <0.05

Preproorexin 0.70 ± 0.06° 0.59± 006° 0.96 ± 0.060 0.75 ± 0.07° <0.05

CRF 0.81 ± 0.17° 0.44± 0.21 ° 0.10± 0.17° 0.78 ± 0.21° NS"

SS 0.52 ± 0.11° 0.62± all ° 1.32± 0.13° 0.36 ± 0.13° <0.02

CnRH 0.21 ± 0.03° 0.19± 0.03° 0.74 ± 0.04 " 0.38 ± 0.04° <0.02

POMC 0.31 ± 0.05° 0.30± 0.05° 0.26 ± 0•05d 0.73 ± 0.06 0 <0.01

Expressed as a ratio of OB-rb, neuropeptide of leptin mRNA relative to 185 rRNA.
b NIS: Non significant.

ND: Not determined.
" Means in a row with different superscripts differ; P, level of significance.
From Lin et a/., 2001.

The gamma-aminobutyric acid (GABA) neuronal pathway represents a major inhibitory neu-
rotransmitter system that contributes to the inhibitory input to GnRH neurons (Ojeda and Urbanski,
1994; Terasawa and Fernandez, 2001). The pubertal increase in GnRH secretion may result
from a reduction in GABAergic inhibition and a concomitant increase in glutamatergic excita-
tory input (Terasawa and Fernandez, 2001). Other neurosecretory pathways may provide in-
hibitory and excitatory input to the GnRI-1 system during pubertal development such as NPY
and EOP and norepinephrine (for a review, see Kraeling and Barb, 1990; Terasawa and Fernandez,
2001; Ojeda and Terasawa, 2002). Therefore, regulation of hypothalamic GnRH expression
may not play a critical role in onset of puberty, but the summation of increased excitatory and
decreased inhibitory input on GnRH neurons may be the determining factor.

Steroidand agedependent changes

Oestrogen

To determine if there is an age and steroid dependent change in adipose leptin expression
associated with LH secretion, ovariectomised (OVX) prepubertal gilts at 90, 150 and 210 days
of age were implanted with oestrogen and blood and adipose tissue samples were collected 7
days post-implant. Oestrogen-induced leptin mRNA expression in adipose tissue occurred in
the 210 day-old animals (time of expected puberty) but not in younger animals (Qian et al.,
1999). This was associated with a reduction in the negative feedback regulation of pulsatile LH
secretion (Barb et al., 2000; Fig. 1) and an age dependent increase in hypothalamic long form
leptin receptor (OB-rb) expression (Lin et al., 2001; Table 1) and serum leptin concentrations
(Qian et al., 1999). These events coincided with increased hypothalamic expression of repres-
sor of oestrogen receptor activity (REA) between 150 to 210 days of age in the pig (C. R. Barb,
unpublished; Table 2). This gene was reported to suppress oestrogen receptor (ER) transcrip-
tional activity (Montano et al., 1999). Thus, REA may play an important role in determining
sensitivity of oestrogen target neurons during pubertal development.

Maturational change in sensitivity to oestrogen may reflect decreased GnRH neuronal ER
concentration, a reduction in inhibitory inputs and (or) an increase in stimulatory inputs to the
GnRH neuron (Ojeda and Terasawa, 2002; Sisk and Foster, 2004) and (or) a decline in ER
concentrations in an intermediary neuronal pathway that regulates GnRH secretion (Dierschke
et al., 1974; Day et al., 1984). To that extent, Day et al. (1984) observed in the heifer that the
number of ERin the anterior hypothalamus and medial basal hypothalamus declined in associa-



36 CR. Barb et al.

500COestradiol
Oestradiol

c 400


P.) 300


C 200
o. a a
CD

100

a

90 150 210
Age (days)

Fig. 1 (A) Luteinising hormone pulse frequency (mean ± SE)for 90, 150 and 210 day-old gilts
implanted with osmotic pumps containing oestradiol or vehicle control (n a 6 per treatment/
age, except 150 day-old control, n a 5). Bars with different superscripts differ (P < 0.05). (8)
Leptin mRNA expression for 90, 150 and 210 day-old pigs implanted with osmotic pumps
containing oestradiol or vehicle control. Quantification of leptin mRNA expression by laser
densitometry was expressed as a percentage of leptin mRNA relative to 285 ribosomal RNA
and normalized for an mRNA pool run on each gel. Means with different superscripts differ
(P < 0.01). Modified from Qian et al. 1999 and Barb et al., 2000).

Table 2. Microarray analysis of age related changes in hypothalamic gene expression from 90 to 150 (n-5),
150 to 210 (n-5) and 90 to 210 (n-5) days of age in the prepubertal gilt.

Gene Description 90 to 150

days old

150 to 210

days old

90 to 210

days old

P value

Steroid Related





Progesteronereceptor Nc Up Up 2.8 x 1a5
Membrane comp. 1





Steroid membrane BP Nc Up' Up" '2.8 x 104 ;" 0.006
Repressor estrogen


receptor activity Nc Up' Up" *0.0002; '0.002

Oestrogen receptor a Nc Down Nc 0.002
Oestrogen receptor 8 Nc Nc Nc




Appetite Related





MC3-R Nc Up* Up** •0.0003;"0.002
MCI-I precursor Down Up Nc 2.8 x 1CO

- Gli Related





Somatostatin Nc Up Nc 0.0002

MC3R: Melanocortin-3 receptor; MCH precursor: Melanin-concentrating hormone precursor;
MC4R: Melanocortin- 4 receptor: Nc: No change. • P value for 150 to 210 day-old gilts: " P value for 90 to
210 day-old gilts.

a a
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tion with increased LH secretion and onset of puberty. In the prepubertal pig, concentrations of
hypothalamic nuclear ERSwere not different at 4 and 5.5 months of age (Diekman and Ander-
son, 1983). We observed no change in hypothalamic ERS expression between 150 and 210
days of age, but ERa declined during this time (C. R. Barb, unpublished; Table 2). Thus, it is
reasonable to question whether or not a developmental change in hypothalamic ERa mRNA
expression represents a change in sensitivity to steroid negative feedback. Alternatively, the
type of ERexpressed may be of greater importance. Work in the rat demonstrated that 85% of
the GnRH neurons contained ERS (Hrabovszky et al., 2001). In the female mouse, both ERa
and FRS are involved in oestrogen negative feedback of LH secretion in vivo. However, only
ERa appears to be critical for oestrogen-negative feedback suppression of GnRH mRNA expres-
sion (Dorling et al., 2003). Whether or not the pubertal decrease in sensitivity to oestrogen
negative feedback is a result of related changes in GnRH neuronal steroid hormone receptor
expression remains unclear. It is possible that changes in the gonadostat may be mediated by
developmental upstream changes in neuronal regulatory control of GnRH secretion. GnRH
neuronal activity is regulated by multiple synaptic inputs (Ojeda and Urbanski, 1994) that are
subject to regulation by ovarian steroids (Herbison, 1998). Moreover, Herbison (1998) sug-
gested that two potentially independent oestrogen-sensitive neuronal systems exist, an inhibi-
tory and stimulatory pathway for GnRH secretion.

Progesterone

We have previously reported that EOP modulation of LH secretion is progesterone dependent
in the mature gilt (Barb et al., 1985; Barb et al., 1986; Barb et al., 1988). Furthermore, EOP act
at the hypothalamus to modulate GnRH release (Barb et al., 1994). Evidence in the gilt sug-
gests that puberty is initiated in part by a decrease in intrinsic central nervous system (CNS)
inhibitory input and/or a reduction in the sensitivity to the negative feedback action of ovarian
steroids (Kraeling and Barb, 1990; Kraeling et al., 1992). We suggest that the EOP-progesterone
dependent pathway that inhibits LH secretion is the result of a maturational process (Barb et al.,
1988). In this regard direct synaptic contacts between proopiomelanocortin (POMC) and GnRH
containing neurons were found in the arcuate nucleus of the hypothalamus in the rat (Thind and
Goldsmith, 1988; Chen et al., 1989). In the pig, POMC containing neurons are located in the
area within the hypothalamus that is involved in GnRH secretion (Kineman et al., 1988; Kineman
et al., 1989). Moreover, hypothalamic POMC expression increased by 6 months of age, a time
when GnRH gene expression was suppressed in the prepubertal gilt (Lin et al., 2001; Table 1).
These events preceded increased hypothalamic expression of progesterone receptor (PR) mem-
brane compliment-1 and steroid membrane binding protein gene at 210 days of age (C. R. Barb,
unpublished; Table 2). Taken together the above data represent maturational changes in key
components of the EOP-progesterone dependent pathway that inhibits LH secretion in the
mature gilt.

Pituitary

The anterior pituitary gland integrates signals of hypothalamic and peripheral origin. Hor-
mones secreted from the anterior pituitary gland regulate growth, reproduction and energy
homeostasis among other physiological functions. There are a number of regulatory proteins,
steroid hormone receptors and transcription factors that play a role in anterior pituitary develop-
ment (Savage et al., 2003). Regulation of LHS and FSHB subunits is a critical rate limiting step
in the production of biologically active LH and FSH. Thus, factors that control synthesis of these
glycoprotein hormone subunits are necessary for reproductive function (Savage et al., 2003).
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Two candidate genes known to play a critical role in pituitary development and production of

hormones, which are necessary for growth and reproduction in rodents and humans, have been
identified in the pig. Steroidogenic factor 1 (SF1) and Lhx3 LIM homeodomain transcription
factor genes were recently mapped to an area on chromosome 1, which is associated with a

QTL for growth and puberty (Smith et al., 2001). The Lhx3 is required for anterior/intermediate
pituitary development and differentiation of GH, PRL, TSH, LH, FSH cells while SF1, a nuclear

receptor, is required for gonadotrope development (Savage et al., 2003). The absence of these
genes resulted in loss of GH, LH, PRL, FSH and TSH secretion, gonadal agenesis, reduced
growth and failure to reach puberty (Netchine et al., 2000). In the pig, a transient increase in
Lhx3 gene expression occurred during the time of pituitary organogenesis, and pituitary cell

differentiation with a high level of expression in the mature pituitary gland (Smith et al., 2001).
Consistent with these developmental changes in Lhx3 and SF1 expression, we recently ob-
served an increase in pituitary LFIg and FSH13gene expression by 150 days of age in the gilt.
Thus, identification of other pituitary regulatory genes that are developmentally regulated may

provide potential candidate genes for genetic analysis of growth and reproductive traits.

Oestrogen receptor

The biological action of oestrogen on the anterior pituitary gland is manifested through the ER.
Like many other reproductive tissues, the pituitary gland expresses two isoforms, ER-a and- g.
We observed no change in pituitary ERB and PR expression during development in gilts, but
ERa expression increased by 210 days of age compared to 150 days of age (C. R. Barb, unpub-

lished; Table 2). Similarly, pituitary concentrations of cytoplasmic or nuclear ERg and progest-
erone receptor (PR) were similar among 1, 2.5, 4 or 5.5 month-old gilts (Diekman and Ander-
son, 1982). In general, the biological role of ERa is to regulate PRL and gonadotrope gene
expression and lactotrope cell growth, where as ERg stimulates PR expression and is involved
in GnRH self-priming in the gonadotrope (Savage et al., 2003). A recent report by Sanchez-

Criado et al. (2004) utilizing selective receptor agonists for ERa and -g demonstrated that ERa
mediated oestrogen stimulation of PRL secretion and basal and GnRI-1-induced LH and FSH
secretion, whereas oestrogen increased the number of pituitary cells expressing PRvia the ERg
in the rat. Thus, the ERappears to play a critical role in development of the pituitary's capabil-
ity to secret LH and FSH.

Growth and metabolic signals

In addition to developmentally related maturation of the neuroendocrine axis, permissive pe-
ripheral signals associated with attainment of a minimum percentage of body fat (Frisch

1984), which are of adipocyte origin, such as leptin or IGF-I (Barb et al., 1998a; Barb et al.,
2002) may play a role in the timing of puberty. During the prepubertal period, expression of a
number of hypothalamic genes associated with appetite and growth regulation appear to be

developmentally regulated (Table 1 and 2). For example hypothalamic OB-rb mRNA expres-
sion, adipose tissue leptin expression and serum leptin concentrations increased by 3.5 months
of age (Qian et al., 1998; Lin et al., 2001). In addition, hypothalamic melanocortin 3 receptor

(MC3-R), and melanin-concentrating hormone (MCI-I) precursor expression were up-regulated
between 150 and 210 days of age (C. R. Barb, unpublished; Table 2). These genes and their
encoded proteins are well positioned anatomically to interact with GnRI-1 (Kraeling and Barb,

1990) and GHRH (Leshin et al., 1994) neurons and appetite regulating neurons (Lawrence et
al., 1999; Matteri 2001). Consistent with this idea, central administration of leptin increased

GH secretion and suppressed feed intake in the gilt (Barb et al., 1998b). Furthermore, leptin
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stimulated GnRH release from porcine hypothalamic explants (Barb et al., 2004). These changes
in the growth/reproductive axis appear to be in concert with the timing of puberty.

The early growth pattern of the gilt is almost linear. Growth sharply increased from the
postnatal period (Robison 1976). However, serum GH concentrations and pituitary response to
GHRH declined with age in the pig (Dubreuil et al., 1987). Greater hypothalamic somatostatin
mRNA expression at 3.5 months (Lin et al., 2001) and 210 days of age (C. R. Barb, unpub-
lished) compared to 6 month and 150 days of age, respectively, support the idea of an age
related decline in GH secretion due to increased somatostatin secretion. Furthermore, Drisko et
al. (1998) reported a temporal relationship between hypophysial-portal blood concentration of
somatostatin and generation of serum GH pulses in the pig.

In the pig, the pubertal rise in circulating IGF-I concentration (Lee et al., 1991) occurred
concomitantly with increased IGF-I expression in adipose tissue (G. J. Hausman, unpublished;
Table 3), decreased pituitary response to GHRH (Dubreuil et al., 1987) and increased LH secre-
tion (Lutz et al., 1984; Fig. 2). These observations are consistent with the idea that IGF-I may
modulate hypothalamic release of GnRH and factors regulating GH secretion. Spencer et al.
(1991) reported that ICV administration of IGF-I suppressed GH secretion in the foetal pig.
Although the central effect of IGF-I on GH secretion was lost during maturation in the pig (Barb
et al., 2002), pituitary sensitivity to IGF-I modulation of the GFI response to GHRH from
porcine pituitary cells in culture was dependent on age of the pituitary donor (Barb et al., 2002).
Furthermore, IGF-I-induced LH secretion was greater in porcine pituitary cells from follicular
phase gilts compared to luteal phase and OVX gilts (Whitley et al., 1995). Thus, during pubertal
development, endogenous IGF-I may contribute to the regulation of LH and GFI secretion from
the anterior pituitary, and therefore, the timing of puberty in the pig.

Table 3. Microarray analysis of age related changes from 90 to 150 (n — 5), 150 to 210 (n - 5) and 90 to 210

in — 5) days of age in adipose tissue gene expression in the inner subcutaneous layer of the prepubertal gilt.

Gene description 90 to 150

days old

150 to 210
days old

90 to 210

days old

P value

Leptin Up Nc Up 2.8 x 10-5
IGF-2 Nc Nc Up 0.001
IGF-1 Nc Up Nc 0.005
INSL3 Nc Up Up 0.005
IFN1,IL-la Nc Nc Up 0.003

IGF: Insulin-like growth factor; INSL-3: Insulin-like growth factor-3; IL-la: Interleukin-la; INF-y. Interferon-y,
Nc: No change.

Adipose tissue, an endocrine organ

In addition to maturational changes at the CNS, the onset of puberty may be linked to attain-
ment of a critical body weight or a minimum percentage of body fat (Frisch, 1984). Metabolic
mass and food intake and subsequent metabolic rate may play a permissive role in the timing
of puberty (Frisch, 1984; Barb and Kraeling, 2004). Moreover, initiation of puberty may also be
influenced by metabolic factors of peripheral origin. It was postulated that metabolic signals are
important in initiation of puberty in the pig and primate by Cameron et al. (1985) and Barb et al.

(1997), respectively. Identification of such signals has remained elusive, primarily because
there is a large number of peripherally originating substances that can act centrally to modify
neuronal activity. Recent studies demonstrated that adipose tissue plays a dynamic role in
modulating physiological mechanisms and whole-body homeostasis (Ahima and Flier, 2000).
Adipose tissue constitutes the largest amount of stored energy in the body (Loftus, 1999).
Energy homeostasis depends on a balance among several factors, such as feeding behaviour, adi-
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days of age. (B) Serum oestradiol and LH concentrations at day 65, 45, 35, 25, 15 andl 0
before oestrus and the day of oestrus. Modified from Lee et al., 1991; Dubreuil et a/.,
1987; Lutz et al., 1984.

pose tissue mass and activation of catabolic processes, such as reproduction. Alterations in serum

concentrations of many hormones and growth factors that regulate adipocyte function and leptin

secretion are associated with developmental changes in body weight, nutritional status or adipose

tissue mass (Barb et al., 2001). Microarray analysis revealed that 21 secreted protein genes were

expressed 40 fold in neonatal porcine adipose tissue and porcine preadipocyte cultures, such as

agouti-related protein (AGRP), growth differentiation factor-9g (GDF- 9B), and tumour growth

factor-a (TGFcc; G.J. Hausman, unpublished). Moreover, RT-PCR analysis identified the agouti

gene in pig adipose tissue. Proteomic analysis of conditioned media from adipose tissue and

preadipocyte cultures identified several secreted proteins, such as relaxin, interleukin-8 (11-8) and

insulin like growth factor binding protein (IGFBP-5; G. J. Hausman, unpublished). Furthermore,

there was an age related change in gene expression in the inner subcutaneous adipose tissue layer

(G. J. Hausman, unpublished). Leptin expression increased between 150 and 210 days of age

when compared to 90 day-old gilts. In addition, IGF-I and insulin-like factor-3 (INSL-3) gene

expression increased between 150 and 210 days of age (G. J. Hausman unpublished; Table 3).

These studies demonstrate expression of several major secreted proteins in pig adipose tissue,

which may act as autocrine /paracrine factors to regulate adipocyte activity and centrally to influ-

ence the neuroendocrine axis. As cited above, hypothalamic OB-rb mRNA expression increased

by 3.5 months of age and remained elevated at 6 months of age (Lin et al., 2000) and the fact that

leptin stimulated LH secretion from pig pituitary cells and GnRH release from hypothalamic tissue

in vitro (Barb et al., 2004) suggests that leptin acts through the hypothalamic-pituitary axis. Thus,
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these reports support the idea that adipose tissue functions as an endocrine organ and may play a
role in establishing onset of puberty.

Conclusion

Evidence has been presented that suggests puberty, and its associated increase in LH pulse fre-
quency in the pig, is brought about by an integration of adipose tissue derived metabolic signals
along with maturational changes in the hypothalamic-pituitary axis. The proposed sequence of
developmental events involves increased excitatory and reduced inhibitory input on GnRH neu-
rons. A concomitant age related reduction in oestrogen negative feedback on LH secretion and an
associated increase in hypothalamic ERa and REA expression, an age related increase in anterior
pituitary LFISand FSI-113gene expression, and increased expression of adipose derived metabolic
signals, such as leptin and IGF-I play a role in establishing onset of puberty (Fig. 3).

Fig. 3 Proposed hypothalamic and pituitary genes associated with changes in LH secretion
and growth during pubertal development and adipose tissue genes and secreted proteins
related to maturation of the neuroendocrine axis and puberty in the gilt. 1) Hypothalamic
GnRH mRINIAexpression increased at 3.5 months of age and declined by 6 months of age. 2)
Increased excitatory and reduced inhibitory input on GnRH neurons. 3) Concomitant age
related reduction in oestrogen negative feed back on LH secretion and decreased oestrogen
receptor-a (ERa) and increased repressor of oestrogen receptor activity gene (REA) expres-
sion at 210 days of age. 4) Development of the endogenous opioid peptide (EOP)-progester-
one dependent LH inhibitory pathway. Pathway components: increased
proopiornelanocortin (POMC); progesteronereceptor (PR) membrane compliment-1; ste-
roid membrane binding protein (SMBP) gene expression at 210 days of age. 5) Expression of
the long form leptin receptor (OB-rb) in the leptin responsive sites increased at 3.5 months of
age. 6) Pituitary transcription factors, steroidogenic factor 1 (SF1) and Lhx3, and LHg and
FSHg gene expression increased with age. 7) Age and adiposity related increase in leptin and
insulin hke growth factor -I (IGF-I) gene expression. (T, increases; 1, decreases; ?, unknown/
unclear).
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