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In swine and other livestock, the uterine endometrium exhibits dramatic
morphological and secretory changes throughout the oestrous cycle and
during pregnancy. Such physiological changes are a reflection of
extremely complex interactions between gene products (RNA and
protein). The recent development of genomics and proteomics methods,
as well as associated bioinformatics tools, has provided the means to
begin characterising such interactions. Indeed, the analysis of the
transcriptome and proteome of cells and tissues now comprises a new
field of study known as 'systems biology'. Currently, the most powerful
technique available to the systems biologist is the microarray. These
platforms represent oligonucleotide or cDNA fragments spotted in a
specified high-density pattern on a solid support. Hybridisation of
fluorescently-tagged cDNAs from different tissue sources permits the
measurement of thousands of RNAs in parallel. The method permits the
identification of genes that are present at different amounts between the
two tissues and, more importantly, it permits the identification of groups
of genes (clusters) that are expressed in comparable patterns. Results
from a recent expression profiling experiment are described. The goal of
the profiling experiment was to define genes that are differentially
expressed in endometrium during the oestrous cycle. The experiment
used an in-house cDNA microarray with >14,000 distinct cDNAs cloned
from reproductive tissues. Total RNAs from cyclic endometrium (Days
0, 3, 6, 10, 12, 14 and 18 post-oestrus) were reverse transcribed into
cDNAs, labelled with fluorescent dye and hybridised to the arrays along
with cDNAs derived from a reference RNA pool. A total of 4,827 genes
were found to differ significantly at some time during the oestrous cycle.
Clustering methods were able to define numerous groups of similarly
expressed genes. These data will help to define the complex patterns of
endometrial genes acting in concert to create the environments required
for fertilisation, embryo growth and conceptus development in swine.
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Introduction

The uterine endometrium has long fascinated researchers because of the pronounced changes

in morphology and secretory capacity that it undergoes during the oestrous cycle, pregnancy
and in response to experimental hormone treatments (Basha et al., 1979; Bazer and Roberts,

1983; Croy et al., 1988; Fazleabas et al., 1982; Trout et al., 1992; Yu et al., 1993). During the

first three weeks of pregnancy in livestock species, the endometrium nourishes the developing
embryo and, during the 'window of implantation', provides an altered uterine epithelium con-
ducive to the attachment and continued growth of the conceptus (Bazer and Roberts, 1983;

Burghardt et al., 2002; Geisert et al., 1982; Gray et al., 2002; Maclntyre et al., 2002). It is also

known that the endometrium secretes factors that can regulate conceptus development and

gene expression (Ezashi and Roberts, 2004; Imakawa et al., 1997). The coordination of these

developmental events is due to the integration of endocrine, paracrine and autocrine signals
from the ovary, conceptus and the uterus itself. Together, they reflect tightly regulated changes
within the uterine transcriptome (Roberts et al., 1993; Robinson et al., 1999; Spencer and

Bazer, 1995; Spencer et al., 2004).
Many published reports have described expression patterns of specific genes during the

oestrous cycle and pregnancy in the porcine uterus. From these efforts, a myriad of differen-
tially transcribed RNAs have been identified. Examples include spermine/spermidine  Ni-
acetyltransferase (Green et al., 1998), integrins (Burghardt et al., 2002), extracellular matrix

proteins (Johnson et al., 2003; Johnson et al., 2001), growth factors (Geisert et al., 2001; Gupta

et al., 1998; Moussad et al., 2002) and numerous progesterone-responsive genes (Clawitter et

al., 1990; Malathy et al., 1990; Stallings-Mann et al., 1994). Presumably, these gene products

are participating in the establishment and maintenance of pregnancy. However, in studying
uterine physiology on a gene-by-gene basis, it is has become quite clear that the uterine
transcriptome is exceedingly complex. The recent development of genomic and proteomic

methods for large-scale expression analysis, along with associated statistical and bio-informatics
tools, have provided the means to analyse genes and their products on a global scale. Indeed,
if reproductive physiologists are to gain a thorough understanding of uterine physiology, it will
be necessary to identify additional uterus-specific transcripts and to define the global patterns

of uterine gene and protein expression during the oestrous cycle and pregnancy.

Systemsbiology

Each end-product of a gene transcription event (protein or non-coding RNA) does not exist in

isolation. Rather, the change in the expression of a given gene product is generally an outcome
of earlier transcription in other genes as well as numerous concurrent alterations. Together all
these coordinated changes are a reflection of regulatory networks and pathways that control

cellular homeostasis and differentiation. The study of such networks has developed into a
distinct discipline known as 'systems biology' and its goal is to understand how changes in
these genetic networks give rise to cellular and tissue phenotypes (de Bivort et al., 2004;

Hieronymus and Silver, 2004).
As recently as 10-12 years ago, the ability to identify and characterise gene expression

patterns was limited to only a small number of genes at a time. The methods in place at that
time included Northern blotting, reverse-transcription PCR (RT-PCR) and real-time PCR (Hol-
land et al., 1991; Lee et al., 1993; Sambrook et al., 1989). These techniques are still used

routinely, but they do have limitations in the number of expression patterns that can realisti-

cally be characterised. The recent development of several high-throughput technologies has
allowed a more extensive assessment of gene expression.
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Such high-throughput techniques include: increased sequence capabilities for Expressed
Sequence Tags (EST) projects, Serial Analysis of Gene Expression (SAGE), the development of
platforms for monitoring the abundance of thousands of distinct RNAs in parallel (microarrays)
and the ability to identify hundreds of proteins and their modifications via protein separation
and mass spectrometry (Baldwin et al., 2001; Belghazi et al., 2001; Hegde et al., 2000; Tan et
al., 2003; Velculescu et al., 1995). These technologies have begun a revolution in biology.
Biologists are approaching the point at which they will have the means to study biological
phenomena as they really exist —as networks of overlapping and interacting genes, RNAs and
proteins.

Both transcriptome and proteome analysis are linked. However, large-scale proteomic tech-
niques and informatics tools are lagging somewhat behind that for analysis of the transcriptome.
Therefore, only an overview of transcriptional profiling (and an example of an ongoing profil-
ing experiment) will be provided in this short chapter.

Transcriptome analysis

The use of microarrays to measure the presence of thousands of RNAs concurrently represents
one of the first steps toward the ambitious goals of systems biology. Indeed, the power of
microarrays is in two areas. The first is the ability to demonstrate the involvement ot genes in
a biological process in which they had not previously been implicated. The second is in the
ability to group or 'cluster genes based on expression profiles that are closely associated.

The development of a microarray platform by necessity requires a sequence database from
which to draw. Most of the time this database consists of complementary DNA (cDA) se-
quences arising from EST projects. In regard to the use of transcriptional analysis in porcine
reproduction and development, several published reports describe cDNA libraries produced
from reproductive organs and used to generate ESTs to define genes expressed in reproductive
tissues and early embryos of pigs (Caetano et al., 2003; Fahrenkrug et al., 2002; Jiang et al.,
2004; Tuggle el al , 2003; Whitworth et al , 2004). These, and other, publicly available se-
quence resources have been used to create microarrays for expression profiling experiments
(Caetano et al., 2004; Gladney et al., 2004; Whitworth et al., 2005). Such resources have been,
and will continue to be, useful tools for the biologist focused on swine reproduction.

Microarray production (cDNA versus oligonucleotide)

A microarray is generally composed of thousands of distinct DNA strands that are placed in a
defined order on a silicon or glass support. The spotted DNAs are chosen to be specific to a
particular target gene. The principle behind microarray technology is relatively simple. It is
based on the fact that complementary sequences present in the RNA population and immobilised
on the support will be able to bind to each other under the proper hybridisation conditions,
while non-complimentary sequences will not (Kuo et al., 2004). When a sample contains many
copies of a particular mRNA, multiple binding events can take place with the complementary
DNA on the array, producing a strong signal that is reflective of a gene that is highly expressed
(Kuo et a)., 2004).

There are two main types of microarrays: cDNA and oligonucleotide arrays (Churchill, 2002;
Dobbin and Simon, 2002). Oligonucleotide microarrays are comprised of spotted DNA strands
that can vary from as little as ten to as many as 100 nucleotides in length. Often, the oligo-
nucleotides will have been chosen to be similar in regard to hybridisation parameters (e.g.
hybridisation temperature, binding affinity) and are spotted on the array in roughly equimolar
amounts (Emrich et al., 2003). Consequently, oligonucleotide microarrays can be used to mea-
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sure individual samples to provide an absolute measurement for each RNA molecule. How-

ever, rarely does this absolute measurement correspond exactly with the specific concentration

of the RNA in the sample. In contrast, cDNA microarrays are comprised of full-length cDNAs or

cDNA fragments that are typically 500 to 4000 base pairs in length. Because it is generally

impractical to accurately spot cDNAs in an equimolar manner and because each cDNA will

have its own hybridisation characteristics, experiments involving cDNA microarrays are most

typically designed to measure two samples at a time. The resulting data are then used to define

the relative abundance of each RNA molecule in the respective samples rather than to provide

an absolute measurement (Butte, 2002; Churchill, 2002; Yang and Speed, 2002). An example

is illustrated in Fig. 1; it demonstrates the relative RNA abundance of several genes in samples

collected from porcine endometrium on Day 0 and Day 3 of the oestrous cycle.

Green
Cy3
(Day 3)

Red
Cy5
(Day 0)

z
YELL OW Day 3 = Day 0 unch an ged

DA> .1. I.

Pseudo-colour overlay

Fig. 1 An example of the use of cDNA arrays to assess relative RNA abundance between

tissues at different stages The panels on the left are fluorescent signals obtained from Cy3-

and Cy5-labelled cDNAs from Day 3 and Day 0 endometrium, respectively. The pseudo-

coloured overlay of the fluorescent signals is shown in the right panel. Equal fluorescence

from the green and red dyes (representing equal abundance of the particular RNA in each

sample) is shown as a yellow colour. The presence of a red colour in a spot represents an

RNA that is in excess in the Day 0 sample and the presence of a green colour represents an

RNA that is in excess in the Day 3 sample.

On overview of transcription profiling with microarrays

Transcriptional profiling experiments with microarrays begin with the collection of tissues or

organs of interest. Total RNA (and sometimes polyA RNA) is then extracted from these samples

(Sambrook et al., 1989). RNA is unstable and degrades rapidly. Therefore, reverse transcriptase

is used to generate a cDNA copy of the mRNA. The cDNA is much more stable than the

template RNA and can be easily labelled with a fluorescent dye either during synthesis (by

incorporating dye-conjugated nucleotides), after synthesis (by chemical cross-linking) or even

after hybridisation of the cDNAs to the array (Hegde et al., 2000; Manduchi et al., 2002;

Wrobel et al., 2003).
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After hybridisation and washing to remove cDNAs lacking a complementary sequence on
the array, the fluorescent signal intensity at each spot is read by a scanner and recorded as a
numerical value. Those samples containing many copies of cDNA able to bind to the array (as
measured by a strong fluorescent signal) are believed to reflect higher mRNA amounts in the
sample, whereas a weak or absent signal reflects low mRNA abundance for the genes corre-
sponding to those spots.

When performing a microarray analysis, it will quickly become apparent that the most time-
consum ing aspect of such experiments is neither ir the collection and processing of the experi-
mental samples nor in hybridisation and data acquisition. Rather, it is in the data analysis and
follow-up work needed to understand the biological relevance of the gene expression profiles
(Butte, 2002; Quackenbush, 2002).

Reports of microarray data nearly always represent transformed results that have been sub-
jected to some form of pre-processing. Generally, these steps involve 'filtering' to remove
signals for bad spots that possess signal-to-noise ratios that are too low to be useful and
'normalisation' to correct for normal fluctuations in fluorescent intensity due to technical and
experimental variation (Quackenbush, 2002). Such steps improve the ability to monitor differ-
ences in biological samples and permit the comparison of gene expression levels between
experiments. It is not possible to provide an adequate overview of normalisation procedures in
this short chapter. Interested readers are encouraged to refer to some of the numerous excellent
review articles on microarray normalisation and data analysis for additional details (Butte, 2002;
Churchill, 2002; Hegde et al., 2000; Quackenbush, 2002).

Due to differences in array format, data acquisition and data analysis, it is important that
information arising from microarrays be reported in a standardised way. The development of
accepted formats for submission of microarray data was established by the Microarray Gene
Expression Data Society (MGED; www.mged.org), an organisation ot individuals making use
of microarrays for gene expression profiling. The use of standardised reporting procedures al-
lows researchers to share results and make comparisons between microarray experiments. The
goal of the organisation is in the establishment of standards for microarray data release and
publication; the standards are summarised by the acronym "MIAME" to describe the "minimum
information about a microarray experiment" (Stoeckert Jr et a)., 2002).

Expression profiling data from microarrays can typically be found in web-based supplements
to journal articles as well as in a number of recently established public gene expression data-
bases. Examples include the NCBI Gene Expression Omnibus (GEO) (http://
www.nchi.nlm.nih.gov/geon and the European Bioinformatics Institute's ArrayExpress (http://
www.ebi.ac.uk/arrayexpress/). Several university-affiliated websites also provide useful data-
bases and analysis tools for microarray-related research. Some examples include the Yale
Microarray Database (http://info.med.yale.edu/microarray/), the Stanford Microarray Database
thfip://genome-www5.stanford.edu/), the Duke University Center for Applied Genomics and
Technology (http://mgm.duke edu/genome/dna micro/work') and the Ch ipDB database at the
Whitehead Institute (http://staffa.wi.mitedu/chipdb/public/).

The goal of most microarray experiments is the identification of differentially expressed
genes that change in response to a given treatment or developmental state. The identification
of such genes can be obtained by analysing one gene at a time or several genes concurrently.
A gene by gene analysis can be quite useful and is a common approach (Churchill, 2002).
Typically, these methods focus on the analysis of fold-differences between samples, calculat-
ing p values by using approaches similar to t-Tests and by analysis of variance (Kuo et al., 2004).
As was mentioned earlier, most of the time it is a group of genes, acting together, that is
responsible for the biological phenomenon being investigated and not simply a single gene
acting alone. To identify concurrently expressed genes„i multigene analytical approach is
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typically also performed. Such approaches include the use of class discovery, hierarchical cluster-

ing, self-organising maps and other clustering methods (Dobbin and Simon, 2002; Hsu et al., 2003;

Qin et al , 2003). All of these approaches are useful for identifying groups of genes expressed in

similar patterns. However, expanding this information to identify functional relationships between

such clustered genes (and their biological relevance) is difficult, although tools are becoming

available for this problem as well (Hosack et al., 2003).

Due to the statistical and analytical issues surrounding microarray technology, as well as the

complexity in dealing with the vast amount of data generated, it is Important that microarray

results be confirmed by using independent experimental methods. One popular method is quanti-

tative (real time) RT-PCR. Real time (TaqMan) PCR takes advantage ot the 5'-nuclease activity of

Tag DNA polymerase and its ability to act on a gene-specific DNA oligonucleotide probe possess-

ing both quencher and reporter dyes (http://www.appliedbiosystems com)(Wilhelm and Pingoud,

2003). Upon encountering the probe, the polymerase catalyses removal of the reporter dye, thereby

freeing it from suppression by the quencher and allowing reporter fluorescence to be detected. The

advantages of TaqMan PCR are that it is rapid and high-throughput. Judicious choosing of the PCR

oligonucleotides and labelled probe makes the assay highly specific and, as the name suggests, it

permits real-time generation of data without post-PCR manipulation (e.g. gel electrophoresis). The

greatest problem with the technology is in the considerable cost of the dye-conjugated probes.

This expense can be offset dramatically by using the fluorescent dye, SYBR green to measure

amplified products (Wilhelm and Pingoud, 2003). The disadvantage of this approach is the inabil-

ity of SYBR green to distinguish specific amplified products from non-specific ones. Alternative

confirmation methods include ribonuclease protection assays, reverse-transcription PCR or North-

ern blotting. All can be used to confirm microarray results, but these methods do not readily lend

themselves to making quantitative assessments of gene expression data. Finally, in situ hybridisation

and immunohistochemistry (if an antibody is available) can be used to measure gene expression

changes in a cell-specific manner within a heterogeneous tissue. These approaches offer the extra

advantage of showing exactly where particular candidate genes are being expressed. This aspect

can be important because gene expression changes detected by microarrays may reflect alterations

in gene expression arising from only a small proportion of cells in a tissue.

Expression profiling by using porcine cDNA microarrays

Researchers at the University of Missouri-Columbia (UMC) have developed a cDNA microarray

for use in expression profiling work (Whitworth et al., 2005). The array is an outcome of two

porcine EST projects and consists of 19,968 spotted cDNAs within which are represented 14,129

distinct genes. A list of all the genes on the array can be found on the MU Swine Genome Project

website (http://genome.rnet.missouri.edu/Swinen. The cDNAs on the array represent multiple

copies of some of the unigene members as well as control spots that can be used for background

correction and signal normalisation. The research emphasis within the UMC porcine reproductive

biology group is mainly in three areas: ovarian physiology, uterine physiology, and oocyte/em-

bryo maturation and development. Initial expression profiling results arising from the ovary and

embryo work have been published or are in preparation (Whitworth et al., 2005). Some of the most

recent efforts have been on expression profiling of the uterine transcriptome. Selected results from

those experiments are described here.

Ickntification of differentially expressed transcripts in the porcine uterus

One goal of the porcine reproductive physiology group is to define those genes that are differ-




entially expressed in normal non-pregnant (NP) endometrium. These data will help to define
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the complex patterns of gene expression responsible for creating an environment conducive to
sperm transport, early embryonic growth and embryo attachment.

The assayed samples consisted of uterine endometrium that was collected from cycling gilts
on days 0, 3, 6, 10, 12, 14 and 18 post-oestrus (n =3 animals per stage). The total RNA was
reverse transcribed and labelled with Cy5. In this work, a reference design was used to permit
comparisons across experiments performed at UMC. The reference RNA (labelled with Cy3)
was composed of a mixture of RNAs from reproductive (foetus, uterus, ovary and placenta) and
non-reproductive (liver, brain, skeletal muscle, heart, kidney, liver and spleen) organs. Each
RNA sample was reverse transcribed, labelled and hybridised two times to duplicate array
slides to generate two technical replicates of each biological sample The microarrays were
scanned by using a Genepix 4000B scanner and files were loaded into Genespring 6.2.1 for
analysis. Spot quality was assessed and 'bad' spots eliminated; LOWESS normalisation was
then performed on all good spots. 'Bad' spots are those that are smeared, have irregular signals
or whose fluorescent signal is saturating. Typically, bad spots represent only a small proportion
of the spots on an array. However, it is worth noting that there can be a subjective aspect to
spot-quality assessment and this subjectivity may be a source of experimental variation be-
tween research groups.

Comparisons were then made between each of the time points. Gene transcripts that changed
in abundance throughout the oestrous cycle were identified by analysis of variance (ANOVA)
(p <0.05) The Benjamini and Hochberg False Discovery Rate multiple correction test was
performed on each comparison. A total of 4,827 m RNAs were found to differ significantly over
the course of the oestrous cycle. To limit the number of genes analysed, only those that were
abundant (twice the expression level of the reference RNA signal in at least one of the seven
time points) were characterised further. Even with this limitation, numerous genes were found
to be up-regulated at each timepoint (Day 0, 118; Day 3, 226; Day 6, 243; Day 10, 508; Day
12, 542; Day 14, 518; and Day 18, 297 genes). Examples ot some of the differentially ex-
pressed genes are listed in Table 1. Most of those listed have been described previously as
being differentially expressed in ungulate endometrium and the relative changes in transcript
abundance are consistent with those previous reports.

Identitication of genes with similar exprescion patterns

K-means clustering (standard correlation) of the differentially expressed spots revealed groups
of genes possessing similar expression patterns. The clustering (Fig. 2) showed that there were
a large number of transcripts that changed in abundance across the developmental stages in a
consistent manner. Six distinct clustering patterns are illustrated in Fig. 2. These gene clusters
represented transcripts whose abundance increased: A. on Day 0 ot the oestrous cycle; B. on
Days 0 and 18; C. on Days 3-6; D. on Days 3-14; E. on Days 10-12; F. on Days 10-14. These
stages represent periods in which a uterine environment is being established that is conducive
to biological phenomena such as sperm maturation and transport (Day 0), blastocyst growth and
intra-uterine positioning (Days 3-6), and conceptus growth, apposition and attachment (Days
10-14).

Identification of functionally - Related Genes by EASE

Expression Analysis Systemic Explorer (EASE; version 2.0) is a software program that helps
interpret gene lists from microarray results (http://david.niaid.nih. gov/david/ease.htm) by iden-
tifying genes in the data known to be functionally related (e.g components in a multi-subunit
complex; involvement in a signal transduction or developmental pathway; etc.). Genbank
accession numbers from all significantly up regulated cDNAs from each cluster group were
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Table 1. Examples of differentially expressed genes in cyclic porcine endometriurn

Day of oestrous cycle 0 3 6 10 12 14 18

Systematic P-value Ratio* Ratio Ratio Ratio Ratio Ratio Ratio Description

0.09 0_08 0_10 0.28 0.51 9.64 4.04 Mus musculus tripartite mo

containing 44...

1.56 0.20 0.38 4.76 7_75 44.17 32.97 Sus scrota tartrate-resistant acid

phosphatase...

0.03 0.04 0.03 0.17 0.30 6.08 2_64 Homo sapiens retinol binding

protein 4, plasma IRBP4),

mRNA...

0.16 0.03 0.23 0.19 0.67 37.18 107.86 Homo sapiens START domain

containing 3 ISTARD3), mIRNA

31.89 1.02 1.14 0.37 0.39 1.89 71.38 Homo sapiens Imatrilysin,

uterine) (MMP7)...

0.67 0.60 0.67 17.77 19.89 7.53 2.31 Homo sapiens ATPase, H -

transporting, 13sosomal

42kDa...

0.12 0_06 0_58 4.72 5.00 9.88 1.90 Pig plasmin trypsin inhibitor

mRNA, complete cds

0.22 0.95 2.06 7.93 5.07 1.21 0.61 Homo sapiens alpha 1,4-

galacrosyltransferase IA4GALT),

orRNA

0.63 0.67 0.39 2.81 3.03 5.33 1.61 Homo sapiens connective tissue

gutwth iactr )1- (CTG121, rnRNA

1.09 0.88 2.03 3.26 4.98 4.63 1.97 kerannocyte growth factor

receptor...

1.47 1.48 1.62 6.79 9_17 25.34 7.60 Homo sapiens solute carrier

family 39 (zinc transporter)...

1.20 0.72 1.37 5.98 6.90 5.26 2.60 Homo sapiens endothelial PAS

domain protein 1 (EPAS1),

mRNA„.

0.27 1.03 2.67 10.52 7 47 1.74 0.68 Homo sapiens rerritin, heavy

polypepticle 1 1ETH1), mRNA

0.11 0.11 0.07 7.47 2.36 0.36 0.06 Homo sapiens calcium and
integrin binding tamily

member 2....

0.71 1.16 3.11 5.76 7.56 6.29 3.20 Homo sapiens cadherin 13, H-

cadherin (heart) (CDH131,

mRNA

0.74 1.26 2.17 5.58 4.55 0.86 0.67 Homo sapiens Nedd-4-like

ubiquitin-protein ligase

(WWP2)...

0.12 0_15 0_98 25.08 23.85 16.39 2.06 Homo sapiens neuromedin

(NMU), rnRNA

0.03 0.03 0.02 0.20 0.68 6.54 5_28 Homo sapiens integrin, beta 5

IITGB51, mRNA

BC039979 3_01E-12

M98553 3.74E-09

NM_ 006744 4.36E-09

NM_006804 4.72E-09


NM11)02423 4.72E-09


NM _144583 5.25E-09

L14282 5 41F-09

NM_017436 8.66E-09

NM_ 001 901 9.05E-09

NM_022973 9.14E-09

NM_014579 9.14E-09

NM_001430 9.14E-09

NM_002032 1.426-08


NM_006383 1.58E-08

NM _001257 1.75E-08


NM_007014 2.76E-08

NM_006681 5 66E-08


NM_002213 6.10E-08

h Ratio represents flooresent signal relative he reference RNA signal For each spot.

loaded into the EASE software program and analysed. The program generated an annotation table

for each gene list and provided an EASE score (essentially a P-value) to identify the most signifi-

cant biological themes (Table 2).

By using the EASE scores and program, it was possible to quickly identify functionally re-

lated genes that changed throughout the oestrous cycle. It was determined that a high propor-



Fig. 2 Gene expression pattern; obtained by using K-means cluster ing. The clustered
genes repre.,ent those transcr ipts that were iound 18 Fluctuate in a similar palter n atthe
seven limepoints examined dsrring the oeslrous le. A. Transcrmts maximally ex-
pressed on day IT B. Maximally expressr.,d on days C and 18; C. Maximally expressed on
(Jar, I and 6; D. Maximally expressed on days 3-14; E. Maximally expressed on days 1(1)-
12; F. Maximally expressed on ddys 18- 14.

hon of the differentially expressed genes at Day 0 acid 18 ot the oestrous cycle are involved in

immune functions as reflected by changes in the frequency of immune cell markers and cytokine

populations. On Days 3-6 and 3-14, biological priorities were focused on oxidative phosphory-

lation, fatty acid metabolism and sterol biosynthes.is. Frlifitionally related genes on Days 10-14

were associated with signal transduction, particularly signalling associated with receptor ty-

rosine kinase activity (Table 2).

Real-onse R  conc-d000 of n»R rocirmy re<till>

Microarray results were validated by using quantitative gene expression by real-time reverse

transcription (RT)-PC.R. Seven genes including laminin (LAMC2), vanin 2 (VNN2), ornithine

decarboxylase (ODC1), neuromedin LI (NMU), uterine plasm in-trypsi n inhibitor (UPTli retinol

binding protein IRBP4) and uteroferrin ILE) were selected for validation based on their pres-

ence in ditferent clusters and the EASE results (1able 1 I. Real-time PCR was performed on 0.05

ng/reaction by using the QuantiTect SYBR Green PCR Kit (www.Qiagen.com) (Man ABI Prism

7500 system (Applied Biosystems) by rol lowing standard protocols. Tyrosine 3-monooxygenase/

tryptophan 5-mon oxygenase activation protein, gamma polypeptide (NM012479; YWHAG)

was chosen as a housekeeping gene. Upon adjusting the exPression level relative to the refer-

ence RNA sample, il was found that the expression patterns of these transcripts were consistent

with the rnicroarray results (Table 31.
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Table 2. Gene Ontology EASE comparisons between abundantly expressed genes reflected in Ihe six clustering

profiles described here.

Fxprescion pattern Sy gem ' Gene category EASE. score tf Gene name examples

Peak al D iv 0 BP Immune response 2.95(-06 Caffiepsin S (CMS); MHC I and II HI A-




DR A, HI A-DRB 1, HI A-A. 1--ILA-DNIA,

HI..A-DMBJ; Protea5ome IPSMB8.




PSMB% Complement (C1QB, Cl QG, IF)


 BP Immune esp011se 6.1 7E-07 same as in A.

Peak al Days 1)&18 BP Cell Adlie5ion 1.14E-O-I Cadherm 11 (CDH111; Collagen




(COD 2A I I;Fibronec tin (EN II,Integrin

beta 5 fITGB-0; l.aminin hi AMC2);




Lepin (LGALSI); Osteopwlin (SPP1




DK( oidm rec eptor (DDR I  




CC Proleasome 195E-04 Proteacome IRSMA I, PSMA6, PSMB





PSNIB8, PSMBO, P5MB101








Peak al Days 1 -




Oxidalk.e

phosphrylation

3.94L-04 ATe Synthase IA I PIE 1,AT P3G1);


bbiquinol-Cvtochrnme c redurtase





UQCRH); NADH dekdroge-





[lase INDUI 61, NUDI C2, NUDFSEI  




BP Fatty acid metabolism 1.76E-02 stearoyl-CoA desaturase MCD SCD41;





DCI; ACSI

 

Peak at Day, 1-14

BP Steml Biownthesis 2.44E-03 Cyl-rx brume P450  CIPI I A I ';

kopentenyl-diphopliale isonlerase

d1)111: 1-1MGCR: SORD

Peak at D

NIF A-Pass/tar-membrane

mo  ernenl or ions

1.00E-01 ATPaw trancporteis ATP1A I,

ATP6V IC1, ATPHA, ATP8A I, ATP-20,

A TP6VIC2)




Mr TranslIMMIllane receptor


Ivrosine killace signaling

5.70E-01 ancdocer ERBB JOB I, 21; Nuclear

receptor binding protein INIRBITh





Docking protein DOIC4); RUSCI




BP D,,,,,,lopmeni 3.10E-03 Quaking IQKI: Spectrin repeat
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NEUGRIN; PDXIPI; I-C,FR2




BP Signal Transduction 7 B9E-0 -{ CREM; (TGE; EPAS1; FGER2; P7K2B;

Peak at Days 10-14





Inhibin alpha IINHA); AK,AP12:

Neurompdin U

System reflects Gene Ontology categories: BP (Biological Process); ME (Molecular Function); and CC (Cell LI lar

(1omponent).

A the column labelled 'EASE score( provides the significance of the comparison. Only comparisons with scores

less than 0.02 are listed.

Conclusion

The female reproductive tract is the site of the final steps of gamete maturation, oocyte fertilisation,
embryo positioning and placental attachment (Bazer and Roberts, 1983; Roberts et al., 1993).
The endometrium secr tes an array of proteins that are known to change over the course of the
oestrous cycle and pregnancy. Such changes are a reflection of how the uterine endometrium is
altered to facilitate the ever-changing needs of the growing conceptus. The preliminary expres-
sion profiling experiment described in this chapter illustrated the broad changes in mRNA

abundance taking place in the endometrium and has provided a wealth of profiling data that
will aid in understanding embryo development and the environment required for its success.
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Table 3. Expression of selected genes throughout the oestrous cycle

Genes

LAMC2

(NM_005562)

VNN2
INM_004665)

ODC1
(N10_0025391

NMU
(NM 006681)

UPT1
(1114282)

REIP4
(NM_006744)

Uterferrin


(1098553)

Analysis Day 0 Day 3 Day 6

Microarray 2.15j 0.46 0.53 ± 0.21 0.62* 0.15

RT-PCR 32.91 ± 3.95 4.43 ± 0.89 2.45 ± 0.33

Miaoarray 4.42} 0.33 0.19 ± 0.10 0.18 ± 0.10

RT-PCR 14.53 ±1.11 I 0.39 ± 0.03 0.37 ± 0.04

Miaoarray 0.08 ± 0.05 5.31 ± 1.86 9.50 ± 2.38

RT-PCR 1.32 ± 0.28 R1.91 ± 1.44 11.64 ±1.53

Miaoarray 0.12 ± 004 0.15 ± 0.09 0.8±1.92

RT-PCR 0.33 ± 0.08 110± 0.19 24.09 ± 4.49

Miaoaray 0.12 ± 0.05 0.06 ± 0.02 0.58 ± 0.89
RT-PCR 0.04 ± 0.01 0.01 ± 0.00 1.66 ± 0.22

Miaoarray 0.03 ± 0.02 0.04 ± 0.02 0.05 ± 0.02

RT-PCR 0.05 ± 0.01 0.08 ± 0.01 0.07 ± 0.01

Miaoarray 1.56 ± 0.15 0.20 ± 0.05 0.58 ± 0.23
RT-PCR 3.13 ± 0.14 0.45 ± 0.21 1.45 ±0.11

Day 10 Day 12 Day 14 Day 18

0.77*0.08 0.60 ±0.16 1.46*0.63 3.62




2.41 ±0.48 1.42 ±0.16 9.91 ± 0.74 17.80 ±1.1e

0.10 ±0.08 0.19 ± au) 4.74 ±1.81 13.68

± 0.684


± 2.4

0.09 ±0.01 0.53 ±0.07 14.77 ±2.04 9.32 ± taso

1.35 ±0.19 0.98 ±0.14 0.70 ±0.09 0.90 * 0.07

2.93 ±0.37 1.15 ±0.11 1.23 ±0.11 1.69 ± 0.20

25 08 ±6.86 25.85 ±3.02 16.39 ±3.28 2.06 ±2.59

177.68 ± 32.56 67.59 ± 11.22 84.57 ± 16.26 29.18 ± 6.09

4.72 ±0.22 5.01 ±0.65 9.88 ±2.76 1.90 ±0.73

8.97 ±0.50 3.86 ±0.57 6.62 ±0.39j 1.24 ± 0.18

0.17 ±0.03 0.30 ±0.28 6.08 ±0.76 2.64 ±1.10,

0.39 ±0.05 0.88 ±0.10 14.68 ±1.9310.27 ±1.23

4.76 ±0.49 7.75 ±1.22 44.17 ±3.9132.97 ± 13.81

8.63 ±0.57 51.19 + 16.45 97.56 ±4.29 86.92 + 8.09

*Microarray values were normalised to all spots on the microarray by using LOWESS, and Real-time PCR

values were normalised to a housekeeping gene. The shaded cells indicate times during the oestrous cycle in

which the genes targeted for Real-time PCR analysis exhibited maximal expresssion

A major goal of production animal agriculture is in improving reproductive efficiency. Such
efforts can take the form of improved nutrition, heat detection, synchronisation schemes etc.
Unfortunately, traditional research approaches into these areas are likely to provide only mar-

ginal improvements in reproductive success in livestock. If major improvements are to take
place, one area of research likely to be key to such improvements is in manipulating gene
expression in the conceptus, uterus or ovary by transgenics and/or somatic cell nuclear transfer.
However, knowing how to improve a biological process requires an intimate knowledge of the

genetic and protein milieu driving the process. The techniques and tools to define gene- and
protein-expression patterns in parallel between experimental treatments and during develop-

ment have opened up the world of systems biology to the reproductive biologist. In the near
term, these approaches will illuminate the mechanics of reproductive physiology in ways un-
dreamt of 15 years ago. A more important outcome, however, will be the opportunity to apply

this information to improve reproductive efficiency in swine - a species that is so very impor-
tant as a world-wide source of nutritional protein.
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