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Cloning pigs:advances and applications
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Although mouse embryonic stem cells have been used widely for over a
decade as an important tool for introducing precise genetic modification into
the genome, demonstrating the great value of this technology in a range of
biomedical applications, similar technology does not exist for domestic
animals. However, the development of somatic cell nuclear transfer has
bypassed the need for embryonic stem cells from livestock. The production of
offspring from differentiated cell nuclei provides information and opportunities
in a number of areas including cellular differentiation, early development and
ageing. However, the primary significance of cloning is probably in the
opportunities that this technology brings to genetic manipulation. Potential
applications of gene targeting in livestock species are described with particular
emphasis on the generation of pigs that can be used for xenotransplantation,
and the production of improved models for human physiology and disease. The
development of techniques for somatic cell nuclear transfer in pigs and the
challenges associated with this technology are also reviewed.

Why clone pigs?

The continuously expanding gap between availability of organs and the number of patients
awaiting an organ transplant is the major driving force behind most efforts to clone pigs.
Between 1990 and 1999 the number of patients in the US waiting for organ transplants more
than tripled from 21 914 in 1990 to 72 110 in 1999 (Transplant Patient Data Source, 2000).
The organ donation programme initiated by the US Department of Health and Human
Services was not able to reduce this gap. Annual cadaveric and living donor transplants over
the same period increased at a far slower rate, from 15 009 in 1990 to 21 715 in 1999 (Fig. 1).
This critical shortage of human organs for allotransplantation has forced researchers to look
for alternative sources, one of which is xenotransplantation. Pig organs are the most
compatible in terms of size and biology, and are ethically less controversial than alternative
species (primates). However, pig organs must be genetically modified to overcome the natural
destruction of pig organs by the human immune system. Gene targeting is likely to play a
major role in preventing hyperacute rejection in organ xenotransplantation. Hyperacute
rejection is the initial and most marked response to vascularized pig organs and is triggered by
pre-formed antibodies binding to the endothelium lining of blood vessels in the pig organ. The
bound human antibodies rapidly activate the complement cascade, as well as activating the
endothelium and inducing a response causing it to become pro-coagulatory. The result of this
process is total destruction of the graft within minutes to hours of transplantation.
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Fig. 1. Expanding gap between the number of patients waiting for

organ transplantation (0) and the number of available donor

transplants (•).Transplant Patient Data Source (2000).

Evidence has emerged that hyperacute rejection is due primarily to a carbohydrate epitope,
galactose, linked via an a (1--->3) linkage to a second molecule of galactose (cc-1,3 gal), to
which about 1% of human immunoglobulins crossreact (Sandrin et at, 1993). The high
concentration of circulating antibodies to this epitope is thought to form a first line of defence
against pathogens that express a-1,3 gal. The most direct method of preventing the adverse
immunological response involves the production of a-1,3 galactosyl transferase gene
knockout donor animals. Removal of this enzyme activity would lead to the total lack of
expression of the a-1,3 gal epitope on the cell surface, which should reduce hyperacute
rejection markedly. It should also prevent acute vascular rejection, which is anti-a-1,3 gal
antibody-mediated, and which occurs approximately 5 days after transplantation. It has been
reported that a homozygous knockout of a-1,3 galactosyl transferase is not lethal in mice
(Thall et at, 1995; Tearle et at, 1996). Knockout mice have normal organ development and
although tissues of a-1,3 galactosyl transferase knockout mice show a reduction in activation
of human complement, they still retain binding capacity for human xenogenic antibodies
(Tanemura et at, 2000). Gene targeting in murine embryonic stem cells has been used widely
for over a decade as a powerful tool for introducing modifications of the germ line (Moreadith
and Radford, 1997). However, embryonic stem cells that contribute to the germ line are not
available for any other species. Nuclear transfer using targeted somatic cells offers a method
for producing precise genetic modification in a range of livestock species. Unfortunately,
recombination frequencies in somatic immortal cells are on average much lower than in
embryonic stem cells (Arbones et at, 1994). Furthermore, homologous recombination events
are even less frequent in primary cells than in immortalized cell lines (Finn et at, 1989).
Another problem is that primary cultures have a limited lifespan and many of the clonal
populations reach proliferative senescence. Nevertheless, two reports indicate that gene
targeting insertion (McCreath et at, 2000) and deletions (Denning et at, 2001) can occur in
primary sheep fibroblasts and that animals can be generated from targeted primary cells using
nuclear transfer. Production of a-1,3 galactosyl transferase knockout pigs has not yet been
accomplished, but the recent achievement of cloning pigs (Betthauser et at, 2000; Onishi
et at, 2000; Polejaeva et at, 2000) gives rise to increased expectation that it will be possible
to produce knockout pigs.

In addition to their roles in xenotransplantation, pigs are often better models for human
physiology and disease than rodents because of similarities in anatomy, physiology and size
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(Petters, 1994). For example, pigs have a multipyramidal kidney with an undivided cortex; this
occurs in only two other species, humans and dwarf water buffalo (Terris, 1986). Similarities
in coronary anatomy make the pig an ideal model for ischaemic heart disease and
atherosclerosis (Armstrong and Heistad, 1990). Pigs could also be a model for human eye
diseases such as retinitis pigmentosa, because of the similarity in eye size and retinal anatomy
(Adams, 1988). However, due to the previous low efficiency of transgenic livestock
production and a lack of availability of homologous recombination techniques, these
applications have been very limited. Somatic cell cloning could also be used as an alternative
to microinjection for generating heteroplasmic animal models of mitochondria! DNA
diseases. Genetic modifications in pigs also have a number of agricultural applications. A few
examples of potential future benefits include: enhancement of resistance to disease and
parasites, increased feed efficiency and modification of growth characteristics.

Techniques for nuclear transfer

The technique of nuclear transfer was proposed originally more than 60 years ago by
Spemann (1938) as a method to study cellular differentiation. However, it was limited almost
entirely to amphibians until McGrath and Soker (1983) demonstrated the possibilities of
mammalian cloning. Robl and First (1985) were the first to describe nuclear transfer in pig
embryos using a method for pronuclear exchange between zygotes as well as transfer of
nuclei between two-cell stage embryos. Prather et al. (1988) demonstrated that metaphase II-
arrested oocytes could be enucleated, activated and used as recipients for transferred nuclei.
The nuclei of two- to eight-cell stage embryos were used as nuclear donors and after nuclear
transfer they directed development to mid-gestation.

Techniques for nuclear transplantation involve a number of key factors, each of which
potentially has a significant effect on cloning efficiency. These include: (i) removal of
metaphase chromosomes from a metaphase II-arrested oocyte (enucleation); (ii) transfer of
donor cell nuclei, in which a donor cell is either placed next to an 'enucleated' oocyte and
fused using a precise electrical pulse, or the donor cell can be injected directly into the
cytoplasm of the enucleated oocyte; (iii) activation of the reconstructed oocytes; (iv) embryo
culture; and (v) transfer of the cloned embryos into a synchronized recipient.

Some of these factors have been addressed successfully and others require further
investigation. Enucleation of recipient metaphase II oocytes using DNA-specific dyes to verify
enucleation and transfer of donor cells are both highly efficient processes (near 100%
efficiency).

Oocyte activation has been the most difficult technical component of the nuclear transfer
procedure to refine. In all species, when metaphase II oocytes are used as recipients, the
method of activation is crucial for subsequent development. Under normal conditions
the fertilizing spermatozoon induces oocyte activation by generating a transient increase in
the intracellular free Ca2+concentration (LCa2-11).Activation of oocytes can be induced artificially
by a variety of physical and chemical agents (for reviews see Whittingham, 1980; Prather et al.,

1999). Activation can be achieved either by a calcium-dependent mechanism or by a
pathway downstream of the calcium signal through inhibition of protein synthesis or kinase
inhibition. An increase in [Ca2+li can be generated by the entry of external Ca2+ through the
oocyte plasma membrane, by exposing the oocytes to electric field pulses resulting in the
formation of plasma membrane pores (Zimmermann and Vienken, 1982). This method of
oocyte activation resulted in the production of viable offspring after transfer of a nucleus from
a four-cell stage embryo (Prather et al., 1989). Another method to increase ICa2+11is by
stimulating the release of Ca2+ from the smooth endoplasmic reticulum stores through Ca2+



296 I. A. Polejaeva

release channels using inisitol 1,4,5-triphosphate (IP3) agonists. Ca2+, Mg2+ ionophore is able

to increase [Ca2-11.Presicce and Yang (1994) reported that a combination of an increase in
[Ca2-1; and inhibition of protein synthesis or protein kinase resulted in higher rates of
pronuclear formation.

Methods of embryo culture, which are not as advanced in pigs as in cows, may also play a

crucial role in cloning. The results presented by Machaty et al. (1998) indicate that cultured
embryos are developmentally competent (formed conceptuses), even though in vitro culture
is not able to provide an environment comparable to in vivo conditions (lower cell number). A

detailed study conducted by Wang et al. (1999) showed that abnormal embryonic division
begins with the first cell cycle under in vitro culture conditions. Morphological abnormalities

include fragmentation and binucleation. These morphological abnormalities were not
observed in in vivo-derived embryos. Day 6 pig blastocysts produced in vitro have more than
four times fewer cells than do in vivo-derived embryos (37.3 ± 11.7 versus 164.5 ± 51.9

nuclei per blastocyst, respectively). Wang et al. (1999) also observed an abnormal distribution
of actin filaments in the in vitro-cultured embryos, which is a possible explanation for
abnormal embryo cleavage. A combination of low efficiency of activation with suboptimal
culture conditions can be detrimental to the success rates of nuclear transfer procedures.

The relative stage of the cell cycle of the donor and recipient cell is also crucial to the

success of nuclear transfer and the production of live offspring. In mammalian species,
enucleated metaphase II oocytes are the preferred recipient, owing to the lack of development
obtained using enucleated zygotes (Robl et aL, 1987; Prather et al., 1989). The use of a diploid

donor cell allows the cycles of the donor and recipient to be co-ordinated, while the use of
metaphase II oocytes as recipients maximizes the number of mitotic events that the donor
chromatin undergoes before initiation of zygotic transcription. The importance of co-
ordination of the cell cycle between the recipient cytoplasm and the incoming nuclear

component has been discussed in great detail elsewhere (Collas et al., 1992; Campbell et al.,
1993; Cheong et 1993).

Somatic cell nuclear transfer

Successful somatic cell nuclear transfer using an embryo-derived differentiated cell
population was first demonstated in sheep by Campbell et at (1996). The technique was
repeated and extended subsequently using cell populations derived from fetal and adult
donors in sheep (Wilmut et at, 1997). The technique has been developed successfully for

cattle (Cibelli et al., 1998), goats (Baguisi et al., 1999), mice (Wakayama et al., 1998) and pigs
(Polejaeva et al., 2000). The somatic cell nuclear transfer system has an advantage compared
with embryonic stem cell technology for producing transgenic animals, because the entire
animal is derived from a single transgenic donor nucleus, thereby eliminating the need for

generation of an intermediate chimaera before the effect of genetic modification can be
assessed (Polejaeva and Campbell, 2000).

At the time of writing, three groups have reported the birth of cloned pigs (Table 1). In the

first published report of cloned pigs, Polejaeva et at (2000) used in vivo-matured oocytes and
a double nuclear transfer procedure. Granulosa cell nuclei were transferred into enucleated
recipient oocytes by electrofusion. Oocytes were activated at the time of fusion and an

additional electrical activation pulse was applied 30-60 min later to induce a second wave of
calcium. The fused embryos were placed into culture. The following day, a second round of
nuclear transfer was performed by removing karyoplasts from 1-day-old nuclear transfer

embryos, and transferring them into in vivo-derived zygotes from which the two pronuclei
had been removed. Couplets were fused using an electrical pulse and transferred into



Cloning of pigs 297

Table 1. Live births resulting from somatic cell nuclear transfer in pigs




Donor cell




Embryo

stageat the

Live births/

number




Cell culture Oocyte Oocyte time of transferred




Cell type donor conditions maturation activation transfer (%)* Reference

Granulosa Adult Confluent
0-2 days

In vivo Electrical One-cell 5/72 (6.9) Polejaeva
et at (2000)

Fibroblast Fetal Confluent
16 days

In vivo Electrical Two- to
eight-cell

1/36 (2.8) Onishi et al.

(2000)
Fibroblast Fetal Confluent

0-4 days
In vitro lonomycin

and DMAP

One-cell . 2/143 (1.4) Betthauser
et at (2000)

Genital ridge Fetal Confluent
0-4 days

In vitro lonomycin
and DMAP

Four-cell
stageor later

2/164 (1.2) Betthauser
et at (2000)

'This figure does not include the trials that have resulted in no offspring.

synchronized recipient gilts within 2 h after fusion. Five cloned piglets were produced. This
system, which uses fertilized oocytes as cytoplast recipients, bypasses the inefficiencies of
artificial activation procedures and may promote more successful development. However, it is
very labour intensive and time-consuming. With the recent success in cloning pigs using a
standard (single round) nuclear transfer (Betthauser et al., 2000; Onishi et at, 2000), coupled
with the further optimization of activation and embryo culture conditions, the double nuclear
transfer approach may be replaced by single nuclear transfer techniques.

Onishi et at (2000) produced one cloned piglet by microinjection of somatic cell nuclei
into enucleated oocytes, similar to a technique used previously to produce cloned mice
(Wakayama et at, 1998). Onishi et at used in vivo-matured oocytes as recipients, as did
Polejaeva et at (2000), and fetal fibroblast cells were used as nuclear donors. Oocytes were
activated by an electrical pulse applied 3-4 h after nuclear microinjection. After immersion in
a short-term culture, 110 cloned embryos (two- to eight-cell stage) were transferred to four
recipients, resulting in one pregnancy, which yielded one live offspring. It has been suggested
that mitochondria! DNA heteroplasmy, resulting from the fusion of donor and recipient cells,
could result in high rates of death and abnormal development in fused nuclear transfer
embryos. Factors contained within the cytoplasm of a donor cell such as protein and mRNA
transcripts could theoretically interfere with reprogramming and development of cloned
embryos. This would favour the technique of nuclear transfer by microinjection, which
removes much of the donor cell cytoplasm selectively. However, Steinborn et at (2000)
demonstrated that mitochondria! DNA heteroplasmy in cloned animals does not necessarily
impede normal development.

Betthauser et al. (2000) applied techniques similar to those used in bovine cloning. In vitro-
matured oocytes were used for nuclear transfer and electrofusion was applied to deliver the
cell nucleus into an enucleated oocyte. The activation procedure involved increasing calcium
concentrations using calcium ionophore (ionomycin) and inhibition of the activity of
maturation-promoting factors using the kinase inhibitor, 6-dimethylaminopurine (DMAP).
Two types of cell were used in this study: cells from the genital ridge and a population of cells
derived from 47- to 51-day-old pig fetuses. Cloned embryos were cultured for up to 3 days
and transferred into recipients, resulting in four cloned male pigs.

Many factors contribute to the development of reconstructed embryos. These factors
include the quality of the recipient oocyte, method and timing of activation, and culture
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methodology. Similarly, induction and maintenance of pregnancy are dependent upon a
range of factors, influenced by the quality of the transferred embryos, in combination with the
age and hormonal status of the recipient. At the present time it is difficult to determine to what
extent each factor or combination of factors has contributed to making pig cloning successful.

We have observed, as have a number of other scientists, significant pre- and post-natal
mortality in both ovine and bovine nuclear transfer programmes. Placental (hydroallantois,
reduced number of placentomes) and fetal (kidney defects, liver and brain pathology,
metabolic and cardiovascular problems) developmental abnormalities associated with
somatic cell nuclear transfer have been reported by several research groups (Cibelli et at,
1998; Kato et at, 1998; Wells et at, 1999; Hill et at, 2000). However, problems with
developmental abnormalities and death at birth or soon after birth have not been observed in
the cloned pigs (Polejaeva et at, 2000; Betthauser et at, 2001). In addition, no fetal losses
have been observed after day 40 of gestation. Two factors that may contribute to the low rate
of fetal loss are the very different type of placentation in pigs and the limited duration of
embryo culture in vitro.

Conclusion

The use of nuclear transplantation for livestock species promises to provide enormous
benefits. The impact of nuclear transfer on the fields of biotechnology, biomedicine and
agriculture looks increasingly promising as new technology and scientific research continue
to refine the process of nuclear transfer. However, the efficiency of this procedure is still low in
relation to pregnancy and development-to-term rates. Significantly more research is needed to
determine how cloning by somatic cell nuclear transfer is achieved. The mechanism of
somatic cell nuclear reprogramming, the effect of karyoplast source and its differentiation on
reprogramming, the effect of mismatches between nuclear and mitochondrial genes on
development, as well as potential species-specific differences, are still unknown. For applied
research, somatic cell nuclear transfer offers a new method for transgenesis and allows the
production of disease models in species that are physiologically more similar to humans,
thereby allowing the progression of disease and the benefits of any potential new therapies to
be assessed more effectively. The successful development of nuclear transfer in pigs provides
opportunities for multiple applications of gene targeting technology, allowing very precise
genetic modifications, including gene knockouts, to be made.

The author would like to acknowledge the staff at PPL Therapeutic Inc. who have contributed to the nuclear
transfer experiments: 5-H. Chen, T. Vaught, R. Page, P. Jobst, S. Walker, B. Gragg and S. Ball. In addition, the

support and helpful advice of D. Ayares, R. Greene and ). Robl in preparation of this manuscript are greatly
appreciated.
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