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Histological and immunohistochemical events

during placentation in pigs
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The early morphological events in pig placental development are summarized

and related to the known data on differences in placental vascular efficiency

between Meishan and US breeds. The activation and localization of a number

of factors, the ligands and their receptors, such as insulin-like growth factor

(IGF), transforming growth factor 13 (TG93), platelet-derived growth factor

(PDGF) and vascular endothelial growth factor (VEGF), as well as retinoids

and calcium, is described. The comparison between these factors gives a

strong impression of their complex interactions and hormonal relationships

during placentation and vascular development in pigs. This review also

emphasizes that retinoids are of great importance for placental function and

that the transport of vitamin A appears to take place in the areolar gland

complex only, whereas based on histochemistry and electron energy

dispersive analysis, the calcium transport may be confined to the interareolar

route across the interhaemal barrier.

Introduction

The placenta develops as a temporary organ to provide a highly regulated transfer of nutrients and

waste products from mother to fetus and vice versa, including facilitation of the exchange of

oxygen and carbon dioxide. Placenta is composed of a very close apposition between the uterine

mucous membrane and the genetically different fetal allogenetic membrane, the allantochorion,

which, in some species, may invade the endometrium in a highly regulated manner as seen

during placentation in cows, horses, mustellids, mice and humans (Wooding and Flint, 1994).
However, pig placenta is non-invasive and, in addition, it is classified morphologically as

diffuse, folded, epitheliochorial and indeciduate, with subunits composed by the interareolar

part for haemothrophic exchange and the areolar gland complexes for transfer of large

molecules called histiotroph (Wooding and Flint, 1994; Dantzer, 1999). Neovascularization

of this 'new developing organ' very early in gestation is essential for cell growth and as an

efficient transport route for gaseous and nutrient exchange between mother and embryo.

Morphological events during initial placentation

The morphological events preceding and during initial placentation in pigs have been


described in detail (Dantzer, 1985; Keys and King, 1990; Stroband and Van der Lende, 1990).
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In brief, at day 13 after coitus, conceptus elongation has almost ceased; conceptus migration
within the uterine horns has taken place and the elongated conceptus (1.0-1.5 m) is now
apposed closely to the elaborated circular folds of the endometrium. Anchoring of the
conceptus to the uterine luminal surface occurs through newly developed epithelial
proliferations in the endometrium that are initiated at the mesometrial side. These events are
followed closely by adherence, close apposition and formation of interdigitating microvilli
between maternal epithelium and developing trophoblast at days 15-16 after coitus.

At the same time, from day 15 after coitus, the vasculature of the subepithelial capillary
network at the mesometrial side becomes distended, denser in its network and positioned very
close to the base of the uterine epithelium (Keys and King, 1990; Dantzer et al., 1991; Dantzer
and Leiser, 1994; Leiser and Dantzer, 1994). With continued development, the maternal
subepithelial capillary network appears to create the basis for the architecture of complex
microscopic folding leading to the formation of maternal-fetal complementary ridges and
furrows (Dantzer and Leiser, 1994). At day 32 after coitus, the vasculature develops a counter-
to crosscurrent maternal-fetal interrelationship that maintains this basic architecture,
although it is elaborated continually throughout gestation (Leiser and Dantzer, 1988).

Neovascularization in the fetal membranes is delayed by about 2 days compared with that of
the maternal endometrium. Both are initiated close to the embryonic disc, progressing from the
mesometria I side to the anti-mesometria I side as the blastocyst expands along the length of the
uterine horn and continues along the elongated blastocyst towards its two tips (Dantzer et al.,
1991).

The uterine epithelium undergoes further changes in the composition of cell organelles and
secretory activity as the materno-fetal contact becomes more and more close and indented.
The endometrium undergoes mutual microscopic folding and under this process there must
be an intimate interaction between the uterine epithelial cells, the stroma of the lamina
propria, the vascular endothelial cells and developmental processes in the complementary
allantochorion.

Signalling substances in the pig placental interhaemal barrier

Studies of Chinese Meishan pigs, which farrow 3-5 more viable piglets than do US or
European breeds, have indicated that Meishan pigs remain relatively small compared with
commercial breeds. Embryonic survival after day 30 after coitus is higher in Meishan pigs.
Although Meishan fetuses in the later stages of gestation have smaller placentae compared
with US breeds, placental efficiency is increased by a markedly increased growth of placental
blood vessels at the fetal-maternal interface. Further experiments have indicated that uterine
type modulates conceptus size and that the genotype of the conceptus controls placental
vascular efficiency (Ford, 1997; Biensen et at, 1999). In gilts evaluated for the different
genotypes of oestrogen receptor, the B allele was associated with larger litter size and
significantly longer placentae compared with AA genotype gilts. Hearts of AA x BA fetuses
were significantly heavier compared with BBxA8 and BB x BB fetuses, and the fetuses of
AA xAA genotype were the lightest. Differences in heart weight would suggest that there is a
relationship with placental vascularity; however, further investigations are required (Van Rens
and Van der Lende, 2000; Van Rens et at, 2000).

Insulin-like growth factor

Insulin-like growth factors (IGFs) are important mitogenic peptides that stimulate cell
division and differentiation during fetal and placental growth (DeChiara et al., 1990; Liu et al.,
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19934 In a recent paper on expression of IGF and ICE binding proteins (IGEBPs) in guinea-pig

placenta, Han et al. (1999) emphasized the importance of comparative studies between

species, as there are significant differences in the spatial distributions of IGF-II and IGFBPs

between the placentae of various species such as rhesus monkeys, sheep and rats. In a

summary of the pig IGE system, Simmen et al. (1998) indicated that there is a relationship

between nutrition and systemic/local IGF and that IGF is involved in the regulation of

placental cellular responses to protein energy restriction to retain sufficient placental

efficiency during gestation.

During the initial stages of placentation up to day 30 of gestation, IGE-I is immunoloca Iized

in the uterine luminal and glandular epithelium, and in the endothelium and vascular smooth

muscle cells, and there is weak activity in the trophoblast and fetal mesenchymal cells of the

placenta (Persson and Rodriguez-Martinez, 1997; Persson et aL, 1997). In pregnant

endometrium, expression of the oestrogen receptor gene is correlated with IGF-I gene

expression, which is indicative of a common regulator, probably conceptus-derived

oestrogens. Expression of IGF-I gene in the endometrium is consistent with variations in IGE-1

immunoreactivity in the uterine glands and their secretory activity. The consistent strong

immunostaining in the vascular smooth muscle cells indicates that IGE-1 may be active in

endometrial vascular development and function together with a number of other factors.

IGF-II gene expression in the interhaemal placental barrier was studied from day 8 to clay

40 after coitus. IGE-11 appears in the pig conceptus during early pregnancy, as it is activated in

the extra-embryonic blood vessels between day 16 and day 24 after coitus, and at day 30 after

coitus in the trophoblast, whereas IGF-II transcripts were not detected in pig endometrium.

IGFBP-2 gene expression was present in both trophoblast and uterine epithelium at day 30

after coitus, and was very strong in the latter, whereas IGFBP-2 was not expressed in blood

vessels (Fig. 1) (Persson, 1996). These results indicate an activation of IGF-II in the

epitheliochorial placenta, in which IGF-Il is first expressed in the trophoblast, thereby

indicating that IGE-11 interacts in the developmental pathways of pig placentation.

On the basis of in vitro experiments it was shown that an IGF-II analogue with selected

affinity for IGE-11 (type II) receptor increased thymidine uptake in pig uterine glandular cells

two-fold compared with untreated cells. In addition, it was shown that a combination of IGE-1

and IGE-11 or IGF-Ilalone stimulated thymidine incorporation to a greater extent than did IGF-I

alone. Therefore, it was suggested that IGFBP modulation of uterine gland cell growth may

involve both IGE-dependent and -independent pathways in a complex interplay of IGF system

components in regulation of uterine endometrial growth in pigs (Badinga et al., 1999).

Transforming growth factor 1)(1-GFb)

Gupta et al. (1998a,b) demonstrated that, in the peri-implantation period (day 10 to day 14

after coitus), uterine expression of TGE13-1, -2 and -3 genes, as well as immunocytochemical

localization of TGEri receptors, is pregnancy-specific and that bioactive TGFI3s are present at

the conceptus—maternal interlace. TGFE3s may be involved in autocrine—paracrine

interactions between these two genetically different tissues in a period during which marked

uterine remodelling and conceptus differentiation take place by affecting cellular

communication, proliferation, differentiation, extracellular matrix protein and integrin

modification, tissue repair, angiogenesis and immunosuppression (Lawrence, 1996).

However, the presence of TGE13s and, thus, suggested functional interaction with other factors

during placentation, still needs to be investigated. Changes in glycan composition during

gestation in pigs might be an important base for further studies (Jones et al., 19954
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Fig. 1. The insulin-like growth lactor binding protein 2 (161:1w-l) gene was expressed in both the
maternal and embryonic parts ot the placenta and compared with the expression ot the ICE-11gene_ia,Li
Bright-field and ib,th dark-tiold images or in situ h).('Ipridizationol ICE-11and IGEBP-2 gene expression in
the endometrium and placenta, ta,bi ICE-II transcripts are visible in the allantoic endoderm
trophohlast IT) and blood vessels lWi , but not in the uterine epithelium (LlEi. ic,d) IGEIIP-2 transcripts are
abundant in the surface epithelium oi the endometrium (LIE1and can also he detected in the trophoblast
IR but not in allantoic epithelium (Ai or blood vessels WV). Scale bar represents 100 tam. Reproduced
from Persson 1199ffi, with permission.

Retinoids In pig placentation

Retinoids, including vitamin A (retinoh and its active metabolite, retinoic acid, are unstable

hydrophobic compounds that are indispensable for cellular differentiation and growth in

general (Blomhoff, 19941, and for placental and embryonic development in particular (Soprano

el al., 1986; Baavik et al , 1996). Transport mechanisms and metabolism are regulated tightly

by the retinoid-binding proteins consisting of the 21 kDa plasma retinol-binding protein (RBP),

the cellular RBPs (CRBP I and II) and cellular retinoic acid binding protein ICRABP I and lb ot

approximately 16 kDa. The RBPs are involved in cellular transport of retinol, whereas CRBPI

participates in cellular transport of retinol and its metabolism into retinoic acid. In addition, the

(1RABPs are involved in the retinoic acid signalling pathways, regulation of the availability of

retinoic acid to the nuclear receptors and modulation of retinoic acid metabolism (Chambon,

1996; Gustatson et aL, 1996; Li and Norris, 1996; Napoli, 1996). The relative amounts of RBP

transcripts and the immunohistochemical location of RBP have been studied in pig placenta

and uterus (Harney et al., 1990, 1994a,b; Trout et iL, 1992; Schweigert et al., 1999). However,

Iohansson et al. (2001) investigated the localization of RBP, CRBP-I and CRABP-I within the

interareolar region and the areolar gland complex bv immunohistochemistry and revealed the

transepithelial route across the pig interhaemal barrier throughout gestation (Fig. 2). The results

reveal that staining intensity 01 the RBPs in the pig placenta far exceeds the reactivity observed
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Fig. 2. Localization of retinol-binding protein (RBI') and cellular retinoid-hinding protein

(CR1311 in pig uterus and placenta during the tirst third of gestation. tat In the interareolar

region on day 20 after coitus, immunoreactivity of RBP is restricted to the uterine epithelium

(LJD and uterine glands trim shown), whereas the trophohlast IT) is non-reactive. The control

is shown in the inset. Lb) At day 25 after coitus, the imnlunoreactivity tor CRBP shows very

strong reactivity in the trophohlass of the areola ID and none in the areolar uterine

epithelium WEI. The areola is marked by arrows_ The low reactivity in the interareolar

region and uterine gland (upper lett sidm is just visible at this low magnilication with both

regions included. 1M Detail from the interareolar region at clay 25 after coitus showing the

cellular rehnoid acid hinding protein WRABM, which is located exclusively to the

trophohlast 1-1),whereas the uterine epithelium TL)lo rs non-reactive. Scale bars represent Ito

IOU pm, nat inset and ibn 250 pm and Lc 50 pro. I-rom Johansson ci al. (2001,, with

permission-
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in mouse and human placentae dohansson ci aL, 1997, 1999; Sapin, 1998). The RBP
immunoactivity was located to the uterine and glandular epithelium but not to the maternal
epithelium lining the areolar cavity, whereas at the fetal side only the trophoblast of the areolae
showed immunostaining. The CRBP irnmunostaining was co-localized with RBP in maternal
endometrium, but appears as fine granularities within the cytoplasm. At the fetal side, strong
staining was located in the trophohlast of areolae and there was less and finer granular staining
in the trophoblast of the interareolar region. In contrast, CRABP immunostaining was located
exclusively to the trophohlast of the interareolar regions of the placentae. These results were
consistent with previous investigations in human and mouse placentae (Johansson et aL, 1997,
1999), but revealed that the areolar gland complex is the transport route for vitamin A to the
conceptus, and that RBPs are needled in the development and growth of pig placenta.

Vascular endothelial growth factors (VEGFs)

Recent reviews on angiogenesis in placentation and during implantation summarized
different factors of importance for vascular growth, and inhibition during early placental
growth and embryonic development (Reynolds and Redmer, 2001; Sherer and Abulafia,
2001). One of the most important growth factors involved with angiogenesis is vascular
endothelial growth factor (VEGF). VFGF is a potent mitogen, morphogen and chemoattractant
for endothelial cells, and is stimulated by hypoxia, cytokines and various hormones (Neufeld
et al., 1994). In vitro experiments with endometrial carcinoma cell lines indicate that
oestradiol and progesterone increase the expression of VEGF mRNA (Charnock-lones et al.,
1993). In pigs, embryonic production of oestrogens modulates the secretion of uterine
proteins (Simmen and Simmen, 1990), secures the maternal recognition of pregnancy (Geisert
et al., 1990; Bazer et aL, 1998) and affects myometrial contractility (Pope et al., 1982;
Scheerboom et al., 1987). The increase in angiogenesis observed at the mesometrial side ot
the uterus, where the first contact is established close to the embryonic disk (Keys and King,
1988; Dantzer and Leiser, 1994), may be stimulated by a paracrine effect of oestrogen
secretion by the blastocyst, which may stimulate VEGF release (Charnock-Jones et al., 1993).

Neovascularization of pig placenta has been investigated recently with some surprising
results (Winther et aL, 1999). Immunohistochemical studies of VEGF and two of its receptors,
Flt 1 (VEGFR-1) and KDR (VEGFR-2), revealed a high correlation in spatiotemporal
distribution between the ligand and its receptors. Immunoreactivity of VEGF and VEGA:
receptors increased markedly in the capillary endothelium from day 13 after coitus through
the first half of early pregnancy and remained almost constant until term compared with non-
pregnant endometrial capillaries. In late stages of gestation there was a slight decrease in
VFGF and KDR, whereas Flt-1 remained high. Vascular smooth muscle cells also showed a
positive immunoreactivity for VEGE and its receptors. In addition, VFGF and its receptors
were related to several non-endothelial cells such as uterine luminal and glandular
epithelium, and trophohlast. The luminal epithelium shows a decrease in activity in the first
half of early placentation (days 13-21), whereas in the trophoblast a decrease in
immunostaining was observed in the second half of early gestation (days 21-31). Thereafter,
the immunostaining increased and remained high to term with a slight decrease for KDR in
late gestation (days 71-1(15 after coitus; Fig. 3a,b). Uterine glands also showed a marked
increase in KDR staining from the late luteal phase of the oestrous cycle to days 13-21 after
coitus and remained high in the late stage ot gestation. These observations are in accordance
with studies of human placenta concerning VEGF activity in uterine smooth muscle cells
(Brown et 4., 1997) and trophoblast (Clark et al., 1996). Furthermore, KDR is needed during
the initial increase in angiogenesis, vasculogenesis and blood island formation (Shalahy et al.,
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Fig. 3. Immunohistochemistry ot vascular endothelial growth lactor VEGF) from the last

third of gestation in pigs• tat VEGF shows a strong reactivity in uterine epithelium WL),

trophoblast tlt and in endothelium and smooth muscle cells of ietal vessels il - VL tht

Localization of KDK IVEGI- receptor 2) in the same cells ds the ligand, namely uterine

epithelium, trophoblast and in endothelial cells and smooth mw,cle cells of fetal

vasculature. Scale bar represents 50 piw I ronl Winlher et al. i 19091, with permission.

19951, whereas Eli- I plays a role in mediation ot calcium-dependent nitric oxide release and

regulation of human trophoblost activity (Ahmed et 4., 1997). These results Imply that, during

placentation in pigs, the VFGF ligand--receptor system may not only participate in the

regulation ot angiogenesis but also influences cellular differentiation and transport

capabilities in the maternal-fetal interface, including the uterine glandular epithelium.
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Fig. 4. Localization of calcium, seen as electron-dense antimonate precipitates, in the interhaema I barrier and

mesenchyme of pig placenta from day 48 of gestation. Electron spectroscopic imaging (ESI) of the marked area

in (b) is shown in the right-hand column (I, II, Ill, IV) and electron energy loss spectroscopy (EELS) is shown in

(V). (a) Basal part of the trophoblast (T) and underlaying mesenchyme with fetal capillaries (FC) and prominent

antimonate precipitates in the spherite-like inclusions (arrows). Notice also the precipitates at the luminal side

of the fetal endothelium. Inset: a higher magnification view of the precipitate in the mesenchyme showing the

concentric substructure. (b) Low magnification, of a 40 nm unstained Gauss image model, ESI at 250 eV, used

for ESI (see panels I—IV)and EELS analysis (see panel V) in the marked area, showing the base of the trophoblast

and the antimonate precipitates related closely to the lateral plasma membranes and in cytoplasmic vesicles.

(c) Detail of the interdigitated microvilli between the uterine epithelium (LIE) and the trophoblast, with

antimonate precipitates related to the interdigitating microvilli. (d) The basal part of the uterine epithelium

close to a maternal capillary (MC). Antimonate precipitates are visible in relation to the folded basal plasma

membrane, in vesicles (arrows) as well as in a few stacks of the Golgi complex (GC). Glycogen: Gl. Scale bars

represent (a) 10 pm, (inset to (a) and (c)) 500 nm, (b) 2 pm and (d) 1 pm. (I) Calcium distribution, pixel-wise,

calculated from the other three images, II—IV, and here freed from background and reinforced to be clearly

visible. (II) Electron spectroscopic image at 355 eV, containing a calcium-absorptive edge, the primary picture.

(III) First background image for calcium at 355 eV. (IV) Second background image for calcium at 325 eV. (V)

EELS analysis of the marked area in (b), showing the element distribution and demonstrating the content of

calcium (Ca) and antimonate (Sb). Background for calcium at 320 eV and calcium edge, background for Sb-1-0

at 500 eV and Sb-0 edge at 600 eV.

Platelet-derived growth factor (PDGF)

PDGF is a mitogen that exerts pleiotrophic effects on growth and motility of mesenchymal-
derived cells. The PDGF-A ligand and receptors were immunolocalized in vascular smooth
muscle cells. The PDGF receptors are expressed strongly in the endothelial and perivascular
areas of the subepithelial layer, whereas PDGF is present in epithelial cell layers of the

placenta (Persson and Rodriguez-Martinez, 1997). These findings indicate that PDGF

interacts in an autocrine as well as a paracrine manner in the modulation of angiogenesis
within the pig placenta.

Calcium
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Calcium is important during fertilization (Lane and Bavister 1998) and during embryonic and

fetal development, as intracellular calcium concentrations regulate many important cellular
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Fig. 5. Diagram showing the content of calcium in fetal
pig membranes: allantochorion (--), amniochorion
(----) and in the blind, non-vascularized paraplacental
ends (  It can be seen that calcium, measured as
percentage of the protein content, accumulates mainly
in the allantochorion, peaking between day 36 and day
55 of gestation.

functions such as cell division, membrane fusion, exocytosis, cell—cell communication and
metabolism, as well as playing a role in many second messenger systems (Campbell, 1983).
However, during gestation the increases in ossification and growth of the skeletal system will
increase the demand for transfer of calcium from the dam to the fetus. During the 114 days of
gestation in pigs, primary ossification centres appear at about day 34 after coitus, with a
second period of ossification at day 100 (Patten, 1948; Hodges, 1953). There is a marked
increase in fetal growth rate from day 60 of gestation to term (Marrable, 1971). After day 80 of
gestation there is a three-fold increase in the deposition of fetal calcium: in ten fetuses
evaluated on days 80 and 100 after coitus, 1.2 g and 4.0 g of calcium, respectively, were
deposited daily (Moustgaard, 1971). In classical studies (Brambel, 1933; Wislocky and
Dempsey, 1946) and studies with electron microscopy (Dantzer et al., 1989), large masses of
lime infiltrations have been described in the mesenchyme between the chorionic and
allantoic epithelium, which are seen as a temporal storage related to the interareolar regions.

Calcium deposits in placenta from 17 pregnant sows collected between day 25 and day 112
after coitus were investigated by measurement of calcium content and by using different methods
for light and electron microscopy. Minor infiltrations, observed as spherite-like bodies, were
localized in the mesenchyme just beneath the base of the interareolar trophoblast and related
closely to vessels (Fig. 4a), particularly from day 33 to day 60 after coitus. However, calcium
could not be measured by X-ray energy dispersive microanalysis after conventional processing for
electronmicroscopy at pH 7.4, but could be measured in fresh cryofixed and ultrathin
cryosectioned tissues (performed by Dr M. H. Nielsen and Dr L. Bastholm, University of
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Copenhagen, Denmark) (data not shown). These results indicate that at this pH calcium may be
bound loosely.

A histochemical method for calcium localization described by Borgers et al. (1983) was
modified using 1% (w/v) potassium pyroantimonate in 7% (w/v) sucrose, 0.1 mol potassium
phosphate buffer I-' (> pH 8.5) in all preparatory steps from perfusion fixation in
glutaraldehyde to embedding for electron microscopy to investigate the presence of calcium
in the spherite-like inclusions in the mesenchyme and to locate and follow calcium
intracellularly in the interhaemal barrier. For a negative control, the tissue was pretreated with
EGTA, a calcium binder, before being processed by the calcium-binding potassium
pyrantimonate solution. The presence of calcium in the antimonate precipitates was
confirmed subsequently by electron spectroscopic imaging (ESI) (Fig. 41); I—IV) taken at
the specific element (calcium) edge and for estimation of the net calcium distribution by
electron energy loss spectroscopy (EELS)(Fig. 4b; V) (analysis provided by Dr W. Probst, Zeiss,
Oberkochen, Germany).

The antimonate precipitates indicate the presence of Ca2+, Na+ and Mg2+, but in this study
the precipitate was predominantly calcium as shown by the three different types of analysis.
The precipitates, here described from the maternal to the fetal side, were scattered at the
maternal endothelial plasma membrane and in the maternal uterine epithelium along the
basal plasma membrane. Intracellularly, the precipitates were observed in large vesicles
located basally and in the large membranous lysosomes typical of the maternal epithelium in
pigs (Dantzer, 1984) and as fine precipitates in some of the inner stacks of the Golgi
complexes (Fig. 4d). At the interdigitating microvilli between maternal and fetal epithelium,
precipitates are mainly observed at the maternal side and at the inner side of vesicles opening
to the narrow intercellular space between these two compartments (Fig. 4c). At the fetal side,
calcium precipitates are visible apically in the trophoblast, in endocytic tubules and in large
apical vesicles, as well as at the lateral plasma membranes and to some extent at the basal cell
border (Fig. 4b,c). In both epithelia of the materno—fetal interface, fine precipitates were also
detected in mitochondria. Precipitates are also clearly visible in the large spherite-like
inclusions in the mesenchyme and at the luminal side of the fetal endothelium (Fig. 4a). The
confirmation of calcium in these precipitates was done by electron spectroscopy imaging HI
(Fig. 4b; I—IV)and by electron energy loss spectroscopy EELS(Fig. 4b; V), using antimonate
precipitates at the folded lateral plasma membranes of the trophoblast for demonstration (Fig.
4b). The localization of calcium to the basolateral plasma membranes of the trophoblast
indicates that these membranes are linked to membrane bound Ca2+-ATPaseactivity, which is
one of the largest of the calcium transporters assisting in calcium extrusion (Carafoli et at,
1990; Bronner, 1991).

The content of calcium was determined in fetal membranes collected between day 25 and
day 112 after coitus. The fetal membranes were separated from the maternal endometrium
and dissected into allantochorion, amniochorion and the blind nonvascularized ends of the
conceptus (calcium analysis was done by Dr S. Boisen, Danish Agricultural Reseach Centre,
Foulum, Denmark). The results (Fig. 5) indicate a rapid increase in calcium content from day
25 to day 36 after coitus and a rapid decrease from day 50 to day 65 after coitus in the
allantochorionic membrane, with only a slight increase in the two other compartments of the
fetal membranes. These findings, together with the observation that there were no apparent
calcium antimonate precipitations in the areolar gland subunit, give a clear indication of
transplacental transport of calcium across the interareolar compartment of pig placenta. This
finding is in contrast to the supposed route for transepithelial placental transport in other
species with an epitheliochorial placenta, such as sheep, cows and horses (Wooding et at,
1996; Morgan et at, 1997; Nikitenko et at, 1998; Wooding et at, 2000), determined by
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9 kDa calcium binding protein, an apparent valid marker for epithelial-mediated active
transcellular transporter protein (Kumar, 1995). These studies found that placental calcium
transport in cow, sheep and mare placenta takes place over the areolar gland subunit only.
Although the morphological methods differ, it appears that another pathway, the interareolar
region, is used in pigs, which is also in accordance with the temporary storage of loosely
bound calcium at the fetal side in the mesenchyme close to the fetal vessels of the interareolar
regions described above.

Furthermore, these results also give a clear indication of the allantochorion as a reservoir for
loosely bound calcium, preceding the rapid increase in growth and ossification of the skeleton.
In a comparative study of carbonic anhydrase in six different types of placenta (RidderstrMe et

al., 1997), the highest activity in maternal capillaries, uterine epithelium and trophoblast was
observed in pigs, in contrast to low activities in cows and horses. Therefore, it is possible that
the high carbonic anhydrase activity in pig placenta is needed in placental transport and
metabolism of calcium, as suggested for human placenta by Aliakbar etal. (1990).

Conclusion

This description of the activation and localization of a variety of important ligands and their
receptors, including IGFs, TGFI3, VEGF and PDGF, during pig placentation gives a strong
impression of the complex interactions between these factors and hormones during pig
placentation and vascular development. However, it should also be emphasized that more
studies combining analysis of genotypes, molecular biology, gene activation and a variety of
histological techniques are required to achieve a better understanding of regulatory
mechanisms during pig placentation. In addition, it is recognized that retinoids are of great
importance for placental functions and that the transport of vitamin A from the maternal to the
fetal side appears to take place in the areolar gland complex only, whereas calcium transport
in pigs may be confined to the interareolar route across the interhaemal barrier.

The authors would like to thank W. Probst, M. H. Nielsen, L. Bastholm and S. Boisen for all their help, and
H. Holm for excellent technical assislance.
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