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In contrast to nuclear inheritance, cytoplasmic inheritance in mammals is derived
mostly, if not exclusively, from the maternal line. Mitochondria, and their DNA
molecules (mtDNA), are the genetic units of this method of inheritance. Mammalian
mtDNA codes for 13 enzymes used in the mitochondrial energy-generating path-
way, oxidative phosphorylation, 22 tRNAs and two rRNAs. Although all tran-
scripts of mtDNA and their translational products remain in the mitochondria,
most proteins used in mitochondria are from nuciear DNA and are imported after
synthesis on cytoplasmic ribosomes. Spermatozoa introduce a small number of
mitochondria into the cytoplasm of the egg at fertilization, which appear to be
digested soon after penetration. Although the paternal contribution of mtDNA to
the offspring is not believed to occur in mammals, some interspecific crosses have
suggested that it does occur. Experiments with animals derived from reconstituted
embryos, using nuclear or cytoplasmic transplantations, suggest that nuclear—
mitochondrial interactions are important but not essential in the survival and repli-
cation of exogenous mitochondria introduced into the egg. As the levels of hetero-
plasmy varied in several tissues of animals derived from reconstituted embryos, it is
suggested that differential partitioning of mitochondria occurs during embryogenesis.
Mitochondrial morphology changes substantially during oogenesis and throughout
early cleavage stages. Somatic morphology and normal replication patterns are
regained at the blastocyst stage. In pig oocytes and embryos, mitochondria aggre-
gate and are closely associated with endoplasmic reticulum, lipid granules and large
vesicles. Although the direct correlation of mitochondrial genes with reproductive
traits is still unclear, some human degenerative diseases and performance traits in
cattle can be related directly to specific mtDNA polymorphisms. In pigs, reciprocal-
cross comparisons have indicated greater offspring parent similarity with dam than sire
for lean:fat ratio. A difference was also observed for oxygen consumption and
oxidative phosphorylation, but not for anaerobic energy metabolism, in a pig
reciprocal-cross experiment. Information on the transmission of mtDNA and its
-effects on performance will have many implications not only for our understanding
of mitochondrial genetics but also for the increased productivity of animals. There
are aiso potential ramifications to the animal cloning industry.

Introduction

Traditional genetics assumes that, at fertilization, male and female gametes contribute an equal amount of
genetic material to the offspring. Although development and performance of the offspring is generally
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Fig. 1. Organization of pig mitochondrial DNA. mtDNA encodes seven subunits of
the NADH-CoQ reductase complex (ND1, ND2, ND3, ND4L, ND4, ND5, ND#6)
ATPase subunits 6 and 8 (ATPase6 and 8), cytochrome ¢ oxidase subunits 1, 2 and 3
{COI, COIL, COHI), and cytochrome b {CytB). It also encodes for a small (125 RNA)
and a large (165 RNA) ribosomal RNAs and 22 transfer RNAs (inner circle). No mam-
malian mtDNA genes contain introns. Restriction endonucleases in parentheses show
the different polymorphic sites among breeds {based on data from Bibb et al., 1981;
restriction map adapted from Watanabe ef al., 1986).

believed to be due to additive, dominance or epistatic effects of genes contributed by both parents, other
effects due to the differential imprinting of parental genes and the maternal effects on the pre- and peri-
natal environment in mammals further confound the contribution of each parent. These, however, are
genetic effects derived from genes contained within the nucleus and transmitted via sexual reproduction.
Mitochondria, cytoplasmic organelles which reproduce asexually, are the only known source of genetic
material in the cytoplasm of mammalian cells and, therefore, provide an opportunity for an unbalanced
contribution from each parent {maternal or cytoplasmic inheritance). We review herein the mechanisms of
gene transmission by the mitochondrion and describe some of the experimental evidence for its effect on
early development and performance in mammals. When available, specific references are made to work
performed in pigs.

The Mitochondrial Genome

DNA is present in eukaryotes not only in the chromatin within the nucleus but also in some cytoplasmic
organelles. Mammalian mitochondria, like the mitochondria of other kinds of eukaryotes, contain their
own genome (Fig. 1). The mitochondrial DNA {mtDNA} is a closed circular molecule of approximately
16 500 nucleotides which is located within the inner mitochondrial membrane (Shoffner and Wallace,
1990). Most somatic cells have hundreds of mitochondria and each carries thousands of mtDNAs (Shuster
et al., 1988). The evolution of mitochondria has been the subject of continuing interest and considerable



Cytoplasmic inheritance in mammals 33

speculation since they were first recognized as cellular entities. Current molecular data strongly support
an endosymbiotic origin of the mitochondrial genome from a direct common ancestor with purple
bacteria (Gray, 1992), because the mitochondrion has an independent replication, transcription and
translation system, which combines the features of prokaryotic and eukaryotic cells.

The mitochondrial energy-generating pathway, oxidative phosphorylation is composed of five
enzyme complexes (Complexes | te V) assembled from subunits derived from both mtDNA and nuclear
DNA {nDNA). However, whereas most mtDNA genes encode subunits of the mitochondrial energy-
generating pathway, the majority of these subunits are encoded by nDNA, translated in the cytosol and
selectively imported into the mitochondrion (Shoffner and Wallace, 1990). Complex I of oxidative
phosphorylation consists of approximately 39 polypeptides, seven (ND1, ND2, ND3, ND4L, ND4, NDs,
ND®6) encoded by mtDNA; complex Il consists of four polypeptides, all nuclear; complex I1I consists of
nine polypeptides, one (cytochrome b) encoded by the mtDNA; complex IV consists of 13 polypeptides,
three (COI, COIl and COIIl) encoded by mtDNA; and complex V consists of 12 polypeptides, two
{ATPase6 and -8) encoded by the mtDNA. Apart from these 13 polypeptides, mtDNA encodes for
the 12S and 165 ribosomal RNAs (rRNAs) and 22 transfer RNAs (tRNAs) involved in mitochondrial
protein synthesis (Anderson et al., 1981; Shoffner and Wallace, 1990). Complete mitochondrial nuclectide
sequences and gene contents have been determined for several mammals including humans, cows, mice
and rats (Anderson et al., 1981, 1982a, b; Bibb et al., 1981; Gadaleta ef al., 1989).

Partial sequence information has been obtained by restriction site mapping of mtDNA obtained from
the kidney of several breeds of European and Asian pigs (Watanabe et al., 1985; Watanabe et al.. 1986).
Authors reported a restriction endonuclease cleavage map using 18 enzymes which recognize six nucleo-
tides and one four-nucleotide-recognizing enzyme (Fig. 1). Detailed sequence information is also available
for a 237 nucleotide pair (np) region enclosing part of the genes for ATPase8, ATPase6 and COIlll
{Watanabe et al,, 1986). Within this region there was a 19.8%, 25.7%, 19.4% and 21.5% sequence differ-
ence with the same regions of cow, human, mouse and rat mtDNA, respectively. A comparison was also
performed among several breeds of pig and Japanese wild boars based on their restriction endonuclease
cleavage patterns (Watanabe ef al,, 1985). Some mtDNA polymorphisms were observed in the cleavage
patterns with Bglll, EcoRY, Sacl, Stul and Taql. Two distinct types of restriction pattern were observed.
First, the restriction patterns of Landrace, Hampshire, Duroc, Pitman—Moore and one Large White group
were similar and were classified as European type. Second, the patterns of another Large White group, the
miniature pigs Chmini and Gottingen, Taiwan native breeds, and Japanese wild boars were similar, and
were grouped as the Asian type. The estimated percentage difference between the European and Asian
breeds is 1.75%, which according to evolutionary theory translates into a separation of parent stocks of
about 0.8-0.9 million years ago (Watanabe et al., 1986). Analysis of mtDNA with Hinfl and Haelll
showed that samples derived from pigs of the Hampshire breed exhibited patterns similar to the Asian
(Gottingen minipig) type (Hecht, 1990). These results suggest that both the Gottingen minipig and the
Large White breed represent maternal lineages both of European and Asian origin. Moreover, among the
European pig breeds, two variable sites have been detected: one in a Duroc and ancther in the Belgian
Landrace, using EcoRV and Hincll enzymes, respectively (Hecht, 1990).

Mitochondrial Inheritance

For many years, it has been assumed that mitochondrial genes, in contrast to genes in the nucleus, have an
exclusively maternal mode of inheritance in mammals (Hutchinson ef al., 1974; Giles et al, 1980; Hayashi
et al, 1983; Gyllensten ef al, 1985). The predominance of mitochondria of maternal origin in the offspring
can be partially explained by the fact that at fertilization the spermatozoon conlains approximately 75
mitochondria (Bahr and Engler, 1970; DeMartino et al., 1979; Hecht et al., 1984) compared with approxi-
mately 100 000 mitochondria in the ooplasm in mice and cows (Piko and Matsumoto, 1976; Michaels
et al, 1982; Gyllensten ef al., 1985). Thus there is a 1:1000 ratio between paternal and maternal mtDNA
molecules. However, use of a more sensitive test of paternal contribution, an interspecific backeross study
between Mus spretus and Mus domesticus showed paternal transmission of mtDNA at a ratio of approxi-
mately 1:50 000 per generation (Gyllensten et al., 1991) which is 50 times lower than expected if paternal
and maternal mitochondria had equal abilities to survive and replicate throughout development. This
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contrasts with a more recent finding involving intra- and interspecific crosses of the marine mussel
Mytilus, showing a paternal mtDNA contribution of 1:10 (Zouros et al., 1992). It is unclear whether
paternal transmission of mtDNA occurs at any level in mammals, and the mechanism by which most or all
sperm mitochondria become inactive is unknown.

Mitochondria from the sperm tail constituents have been shown by ultrastructural studies to be
carried into the cocyte at fertilization (Szollsi, 1965; Hiraoka and Hirao, 1988). One possible mechanism
for maternal inheritance of mEDNA is the capacity of the oocyte to recognize paternal mitochondria and
eliminate them as foreign organelles. This view is supported by studies in hamsters showing that
sperm mitochondria are enclosed by multivesicular bodies after fertilization and later digested into small
molecular elements during the two-cell stage of development (Hiracka and Hirao, 1988). Other studies of
sea urchin eggs and embryos have shown that the structure and metabolic activity of the patemal
mitochondrion begins to degenerate soon after the first cell cycle division of the zygote (Anderson and
Perotti, 1975).

Maternal inheritance of chloroplast DNA in higher plants is believed to be governed by methylation
of specific DNA sites on the maternal organelle, which protects it from degradation in the zygote (Sager
and Grabowy, 1983). Mitochondrial morphology varies during spermiogenesis (DeMartino et al., 1979)
and it has been proposed that mitochondria may also be altered and possibly debilitated during spermio-
genesis (Vaughn et al,, 1980). However, an extensive study in CD1 mice showed no difference in the state
of methylation of mtDNA among cocytes, spermatozoa and earlier testicular cell types (Hecht et al.
1984) and between germinal and somatic cells of rats (Alcivar et al, 1992). Moreover, no loss, ampli-
fication, or translocation of sizeable regions of the mitochondrial genome could be detected at differ-
ent stages of spermiogenesis, suggesting that maternal inheritance is not mediated by alteration of the
paternal mtDNA (Hecht et al., 1984). The mtDNA present in spermatozoa is also known to transcribe
mitochondrial ribosomal and messenger RNAs, suggesting that, at least at the time of fertilization, the
patemal mitochondria are likely to be translationally competent (Alcivar et al., 1989).

Mitochondria in Animals Derived from Reconstituted Embryos

Direct microinjection of mitochondria isolated from testis or liver into the cytoplasm of mouse zygotes
has been performed to assess their ability to survive and proliferate in the developing embryo (Ebert ef al.,
1989). Although microinjection caused no apparent detriment to the survival and viability of the embryos,
no exogenous mtDNA could be detected in fetal samples or tissues from the mature progeny suggesting
that the ‘foreign’ mitochondria have the same fate during early embryogenesis as the mitochondria of the
spermatozoon. This result contrasts with the findings of low levels of paternal mtDNA in mouse inter-
specific crosses (Gyllensten et al, 1991). Moreover, recent data indicate that there are high levels of
mitochondrial heteroplasmy in progeny derived from reconstituted embryos of mice and cows (Smith
et al, 1991; Plante ef al, 1992). In mice, both karyoplast (nucleus and cytoplasm} and cytoplast (cyto-
plasm) transplantations have been performed between strains carrying Mus domesticus (Md) and Mus
molossinus (Mm) mitochondria. Embryos containing Mm mitochondria were obtained after four gener-
ations of backcrossing pure Mm females to C57B1/6 (Md) males. Although 97% of the nuclear genes were
of Md origin, they contained exclusively Mm mitochondria, as detected by our Southern and PCR
protocols for mtDNA. A 1.6 kb segment of mtDNA containing restriction fragment iength polymorphism
(RFLP) for Md and Mm was amplified from total tail DNA samples of the reconstituted progeny. PCR
primers were based on sequences reported by Bibb et al. (1981). Although only one kind of mtDNA was
detected in all animals derived from embryos with reconstituted cytoplast, animals derived from embryos
with reconstituted karyoplast showed various degrees of mtDNA heteroplasmy (Fig. 2). Since at least
twice the amount of ‘foreign’ mitochondria is transferred to the host zygote during cytoplast reconstitu-
tion compared with that in karyoplasts, these results suggest that nuclei preferentially replicate mito-
chondria of their own species. This result can be interpreted as an explanation for the high levels of
heteroplasmy in the karyoplast group.

Other experimental approaches have been used for introducing mitochondrial genes into mice. Terato-
carcinoma stem cells were successfully used to introduce mtDNA mutants into mouse blastocysts to
create mosaic animals (Watanabe et al., 1978). Some degree of mtDNA sequence variation has been
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{Dzapo and Wassmuth, 1983). Oxygen consumption and oxidative phosphorylation differed significantly
between reciprocal crossbreeds in some cases, tending towards the dam breed rather than the sire breed. [t
was suggested that mitochondrial energy metabolism can act as a metabolic indicator of the interaction
of nuclear and mitochondrial genes which result from the crossbreeding and its consequent heterosis. It
is proposed that heterosis in mitochondrial energy metabolism may stimulate additional heterosis
for carcass fat and reproductive traits (Dzapo and Wassmuth, 1983). Finally, reciprocal crosses showed
small to medium heterosis for aerobic enzyme activity in liver mitochondria and large heterosis in
enzyme activity in scrotal mitochondria. No heterosis was found for anaerobic energy metabolism. The
results clearly showed that oxidative energy metabolism in the mitochondria is one of the most
important manifestations of heterosis in cell physiology and that interactions between chromosomal and
mitochondrial genes play an important role in the expression of this heterosis (Dzapo and Wassmuth,
1984).

Since the mtDNA genes are either subunits of oxidative phosphorylation enzymes or the structural
RNAs necessary for their expression, deleterious mtDNA mutations invariably result in deficiencies in
mitochondrial energy metabolism. Several mtDNA mutations that cause human degenerative diseases
have been identified in recent years. The mtDNA disease mutations that have been described to date fall
into four groups: missense mutations, protein synthesis mutations, insertion—deletion mutations and copy
number mutations (Wallace, 1992). These mutations are associated with a broad spectrum of clinical
manifestations, including blindness, deafness, dementia, movement disorders, weakness, cardiac failure,
diabetes, renal dysfunction and liver disease. Organs and tissues rely differently on oxidative phosphory-
lation and, therefore, as mitochondrial ATP production declines, it successively falls below the minimum
energetic levels necessary for each organ to function normally. This results in a progressive increase in the
number and severity of clinical symptoms, and the visual pathway, the central nervous system, muscle,
heart, pancreatic islets, kidney and liver are preferentially affected.

More research is needed to determine clearly the role of cytoplasmic genetic systems in humans and
domestic animals. With regard to oxidative phosphorylation, detailed molecular studies are needed to
understand the regulation of expression of both nuclear and mitochondrial genes involved in this
pathway. Specifically, research should be aimed at understanding mitochondrial biogenesis, the fate of
paternal mtDNA in early embryos and the segregation, replication and expression of mtDNA during
development and growth of livestock animals. This information will have important implications not only
for our understanding of mitochondrial genetics and diseases in humans (Shoffner and Wallace, 1990) but
for the increased productivity of animals (Schultz et al, 1993). There will also be ramifications to the
animal cloning industry. In the latter case, those undertaking the production of female cloned families
should be particularly attentive to the source of cocytes used in the protocal, since mtDNA of the oocyte
will be permanently incorporated and transmitted to all female progeny. This may be used as a tool to
create ‘new’ breeds of livestock carrying the best of both nuclear and mitochondrial genes or, as a result of
inappropriate crossing, the introduction of mutations or undesirable traits. Moreover, after the identifi-
cation of mtDNA polymorphisms correlated with performance traits, the appropriate sequences could be
transfected into mitochondria. Introduction of these mitochondria into embryos will result in transgenic
animals at the mtDNA level which would be useful for pharmaceutical or production purposes.

The authors would like to thank L. Moquin for technical help and acknowledge the financial support of NSERC,
Canada.
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