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Reproductive failure is the major reason for premature culling of sows (Dagorn & Aumaitre, 1979;
Kroes & Van Male, 1979), which in turn reduces overall reproductive efficiency. A major compo-
nent of this failure is delayed resumption of oestrous activity after weaning (Reese et al., 1982; King
& Williams, 1984; Mullan & Williams, 1989). The losses of both body fat and lean during lactation
(Britt et at, 1988; Mullan & Close, 1989) have been implicated in the interruption of reproductive
function after weaning, but it is not clear what metabolic and endocrine signals connect tissue
loss with reproductive function. It is likely that both the levels of body reserves, relative to some
threshold level, and concentrations of metabolites and metabolic hormones are related to repro-
duction, but these depend upon the nutrient intake of the animal. It follows, therefore, that any
procedure which predicts the effects of nutrient intake on these phenomena will facilitate our
attempts to design feeding strategies to ensure optimal reproductive efficiency.

The objective of this paper is to discuss recent developments in mathematical modelling of the
response of sows to their diet, and how the predictions of these models may be used to anticipate
production responses which may ultimately lead to an improvement in sow performance.

Types of models

There are basically two kinds of models; empirical and mechanistic. An empirical model describes
the response or an animal to a given set of circumstances and usually attempts to develop predic-
tion equations from experimental data sets using biometric procedures. Its usefulness is limited to
the experimental conditions under which it was developed and it should not be extended beyond
the range of conditions under which the original observations were made. Such models usually
operate at the 'whole animal' level and are not dynamic. Empirical models will not be considered
further in this paper.

Mechanistic animal models, on the other hand, deal with the effects of diet and other external
variables on processes within the animal and use these to predict whole-animal responses. Thus,
depending upon the knowledge available and the level of sophistication, the model may operate
at the tissue, cellular or molecular level. Because they operate at a lower level or organization,
these approaches are more flexible and may be expected to predict responses over a wide range of
conditions. This paper describes two such mechanistic models which operate at different levels of
sophistication, and which may be used to predict animal responses to a series of nutritional and
managemental inputs.

A factorial model of the pregnant and lactating sow

This model (the nutrient partitioning model) operates on the factorial principle that dietary

nutrients may be partitioned between the requirements to maintain the animal and to deposit tissue
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(protein and fat) either in the maternal body or products formed but subsequently lost from the

body. For the pregnant animal the initial step is to calculate the rate of protein deposition, and

hence lean tissue growth rate, in relation to daily feed intake for animals of different body weights.

The linear/plateau' or 'bent stick' approach has been adopted in the current model because at

relatively low feed intakes protein deposition is limited by the daily supply of protein and energy
and growth rate therefore responds linearly to feed intake.. As feed intake increases, a point is

reached at which protein deposition is at a maximum, depending upon the genetic potential of the

animal and its stage of development, and beyond which there is no further increase in protein

deposition with increased feed intake. Such an approach has been previously described for pigs and

poultry (ARC, 1981; Morris, 1983).

Once the relationship between feed intake and protein deposition has been described, the

response of the pregnant sow to increasing levels of feeding may be determined. The first priority is

for maintenance, followed by the requirement for protein deposition and hence lean tissue growth.

Once these requirements have been met, any additional nutrients are channelled into fat deposition.

However, when nutrient intake is below the requirement for both maintenance and protein

deposition, as may occur in late pregnancy, then mobilization of fat occurs. The model is iterative
and, since it includes equations to predict the growth of the products of conception (Noblet

er al., 1985), both total and net body weight gain of the sow can be calculated throughout

pregnancy.
During lactation the primary nutrient requirements are for maintenance and milk production,

and any additional nutrients will be available for deposition of protein and fat in the maternal

body. The nutrient requirement for milk production is based on the rate of tissue accretion in

suckling piglets of different body weights, litter sizes and stages of lactation. If the requirements for

maintenance and milk are above the sow's voluntary feed intake, then body tissue is mobilized and

the appropriate change in lean and fat reserves, and hence body weight, can be predicted. Thus, for

any given nutritional, environmental and husbandry situation, changes in body weight and in lean

and fat reserves during both pregnancy and lactation may be calculated. A brief summary of the

principal components of this factorial model is presented in Table I. More detailed information is

provided by Williams er at (1985) and Mullan el al. (1989).

Table I. The principal components of a factorial

model Jo predict the response of the sow during


pregnancy and lactation

Determination of the relation between nitrogen

intake and nitrogen retention

Calculation of the energy and nitrogen

requirements for maintenance

The nutrient requirements for conceptus growth

during pregnancy

Estimation of the nutrient requirements for milk

production based on the rates of tissue accretion

in suckling piglets

Calculation of the net gain or loss of protein and

fat in the maternal body and hence changes in

body weight and in backfat thickness

Estimation of the voluntary feed intake of the sow

during lactation

Assessment of the environmental cost associated

with poor housing
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A model of lactating sow metabolism

The connection between diet and reproduction may be assumed to involve dietary effects on
voluntary food intake, digestion and absorption of nutrients, metabolism of absorbed nutrients
and endocrine function. Thus mathematical modelling has been used to attempt to trace these
dietary effects both systematically and quantitatively. The present metabolic model involves only
that part of the connection between diet and reproduction that deals with the metabolism of
absorbed nutrients. The model is structured to work throughout the reproductive cycle, but to date
the inputs have been developed only for lactation.

The structure of the model is shown in Fig. I. The model is driven by quantities of absorbed
nutrients (IDLy, DAa, etc.). It monitors the sizes of several pools (boxes) of metabolites, body stores
and milk components. It is dynamic, that is, it moves through time, calculating at each time step the
rate of rnovement of material along each arrow in Fig. I and solving a differential equation for each
pool to determine the current size of the pool and thus metabolite concentrations.

Fig. I. Schematic representation of model. The model is driven by continuous inputs of
absorbed nutrients (DLy, etc.). Pools specifically represented include lysine (Ly), other amino
acids (Aa), acetic acid (Ac), fatty acids (Fa), glucose (GO, propionic acid (Pa), acetyl-Co A
(Ay), body protein (Pb), visceral protein (Pv), storage triacylglycerol (Ts) and protein (Pm), fat
(Tm) and lactose (Lm) in milk. Fluxes requiring/yielding ATP indicated by 0 (uses ATP in
transport), 0 (uses ATP in reaction) and • (produces ATP in reaction).
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A key aspect of this type of model is the estimation of the rates of flow of materials among pools
according to 3 kinetic principles. The first is that the rate of each transaction is a function of the
physiological conditions within the animal, especially metabolite concentrations. The second is that
the transactions are saturable with substrate and that the rates can be approximated by mathemat-
ical formulae often applied to saturable systems, as described below. The third principle is that the
rate is expressed per unit tissue mass, allowing scaling for body size.

The mathematical treatment of the kinetics of saturable systems was outlined by Pettigrew et at

(1989a). It is assumed that many of the control systems of the body produce responses that approx-
imate to the following general equation for the rate of utilization of a principal substrate and which
is widely used in biology:

Rate = V./(1 + (K/[S]E)

where V. is the maximum velocity per unit of tissue; K is the affinity constant for the specific
substrate; [S] is the concentration of the substrate; and E is the steepness parameter. Inhibition
constants (1) can also be included in the general equation.

The value of E is usually I. At low substrate concentration, the rate is higher when the value of
the affinity constant (K) is lower. Physiological priorities for one transaction over another can be
simulated in the model by assigning a lower value of K to the higher-priority transaction. Inhibitors
may be simulated and multiple terms may be included in a rate equation to reflect multiple
substrates and/or inhibitors.

The parameters of the rate equations (V., K, E and 1) must be part of the model. There are
limited data from which many of these values can be estimated directly, and so they have been
estimated indirectly in various ways from data in the literature. They are therefore consistent with
those data and with common concepts of physiology, biochemistry and metabolism.

The entire model was tested by simulating a total of 16 experimental treatments reported in 4
publications. The results of the simulations were compared with experimental data reported in the
publications and suggest that the performance of the model is encouraging but imperfect (Pettigrew
et al., I989b, c). Testing continues.

Plans for further development of the model involve current animal studies to provide the
necessary information to extend and validate it. In addition it is planned to include the incorpor-
ation of metabolic hormones, direct estimation of kinetic parameters and extension of the model to
cover pregnancy and the post-weaning period. The connections between model pools (metabolites,
metabolic hormones, body stores) and reproduction should eventually be explored.

Uses of models

The ultimate aim of these models is to improve our understanding of factors influencing the
efficiency of reproduction in sows. They contribute to this goal in several ways.

Design and evaluation of feeding programmes

This is the primary objective of the nutrient partitioning model and a secondary objective of the
metabolic model. Proposed feeding programmes can be evaluated quickly and inexpensively by the
use of a model (Fig. 2) and appropriate feeding programmes can be identified and compared.
Components of the feeding programme which can be evaluated include the energy and protein
(amino acid) supply during various phases or the reproductive cycle.

Understanding the biological system

This is the primary objective of the metabolic model and a secondary objective of the nutrient
partitioning model.
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Fig. 2. Model predictions showing the effects of different feeding regimens during pregnancy on
the change in body weight and in lean and fat deposition in young gilts (120 kg body weight at
mating) during their first parity.

Development of a model necessitates a logical, systematic and quantitative consideration of the
biological system which may sometimes lead to insights unlikely to be obtained without the rigor-
ous and quantitative processes of modelling. Similarly, use of the completed models may lead to
new concepts and hypotheses.

Mathematical modelling requires many different data sets dealing with different subjects and
can thus identify important areas in which information is inadequate or nonexistent. It also helps to
clarify questions to be addressed by animal research.

Experience with the use of mathematical models will allow preliminary evaluation of 'What if?'
scenarios. Results may direct our thinking into novel areas and may lead to hypotheses concerning
the effects of various feeding strategies on animal performance. These strategies should then be
evaluated by animal experimentation.

Research efficiency

Resources available for biological research will continue to be limited. It is therefore imperative
that these resources be used as efficiently as possible. Extensive feeding trials over multiple parities
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require a long time interval and considerable resources, and so such experiments must address the

most important questions and evaluate key strategies. As discussed above, a model can provide

preliminary evaluation of feeding programmes so that the most promising can be selected for

evaluation by feeding trial. Models can also direct animal studies dealing with physiological mech-

anisms to the key questions. Similarly, the contribution which any given data set can make to our

understanding of sow biology and production can be enhanced by including it in a mathematical

model with many other data sets. The entire body of data organized into a mathematical model

contributes more than the sum of its parts.

Summary and conclusions

Nutrition affects reproduction, but the physiological mechanisms are not known. Defining those

mechanisms is a high priority for animal scientists. This paper briefly describes mathematical

models developed to aid in elucidating those mechanisms and which may be applied to predict

animal performance.

Two types of mechanistic mathematical models or sows are described, based respectively on

nutrient partitioning and on metabolic and physiological principles. The nutrient partitioning

model is relatively mature but the metabolic/physiological model is still at an early stage of

development. The use of such models in the design and evaluation of feeding programmes, in

understanding the biological system and in improving research efficiency are outlined.

These two models are now being used as described, and it is anticipated that they, and other

models, will make important contributions to the marked improvements in reproductive

performance in commercial pig production that is anticipated during the next few years.
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