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Summary

Kisspeptin is a hypothalamic neuropeptide that is critical for fertility. In virtually all species, 
kisspeptin neurons stimulate gonadotrophin-releasing hormone (GnRH) secretion and act 
as transmitters for sex-steroid feedback to GnRH neurons. In sheep, kisspeptin neurons are 
located in the preoptic area and the arcuate nucleus (ARC), with the latter involved in both 
oestradiol positive and negative feedback regulation of GnRH. In addition, sheep are seasonal 
breeders, with an annual cycle controlled by changes in the pulsatile secretion of GnRH. 
Kisspeptin neurons are also important in this phenomenon showing increased expression 
and terminal apposition to GnRH neurons during the breeding season. Reduced kisspeptin 
expression during the non-breeding season can be overcome by administration of kisspeptin, 
which causes ovulation in seasonally acyclic females. On the other hand, kisspeptin neurons 
do not appear to express the melatonin receptor, so the transduction of photoperiod to these 
neurons must be indirect, perhaps involving dopaminergic suppression during the non-breeding 
season. Importantly, kisspeptin neurons of the ARC do not operate in isolation. Autoregulation 
of kisspeptin expression by the neuropeptides neurokinin B and dynorphin is a key contributor 
to the “KNDy neuron” concept and the hypothesis that these neurons comprise the GnRH 
pulse generator. Indeed, the pheromone-induced interruption of seasonal anestrus, known as 
the male effect, appears to be mediated by KNDy signalling. However, the ‘KNDy hypothesis’ 
for GnRH pulse generation is still unproven and, indeed, the precise role of KNDy cells in 
seasonal breeding has yet to be determined.

Introduction

In mammals, the reproductive process is governed through intricate neural and hormonal 
communication between the brain, pituitary gland and gonads. At the top of this hierarchical 
regulatory system is the release of gonadotrophin-releasing hormone (GnRH) pulses from neurons 
in the preoptic-hypothalamic continuum that are obligatory for the secretion of luteinizing 
hormone (LH) pulses from the anterior pituitary gland (Clarke & Pompolo 2005). Changes in 
the frequency or amplitude of GnRH pulses have a profound effect on the reproductive system, 
so it is not surprising that the origin and control of the pulsatile pattern have been the focus 
of research for nearly four decades (Martin 1984, Clarke 2011). One major puzzle has been 
the fact that, in both sexes, sex steroids are major drivers of change in the pulsatile release of 
GnRH, yet GnRH neurons lack the receptors responsible for steroid feedback control. This 
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conundrum led to a prolonged search for cells that could fill this gap in communication between 
the gonads and the brain’s GnRH neurons. Many candidates, focused within the mediobasal 
hypothalamus (Blache et al. 1991, Caraty et al. 1998), with both inhibitory and stimulatory 
effects on GnRH secretion, have been assessed (Clarke & Pompolo 2005), and kisspeptin is 
currently leading the field.

In sheep, there is also an annual pattern in reproduction that is controlled primarily by the 
annual photoperiodic cycle, with modulation by other inputs such as nutrition and socio-sexual 
signals (Scaramuzzi & Martin 2008). The photoperiodic cues are perceived and translated into 
a key physiological signal that is mediated through the secretion of melatonin from the pineal 
gland during periods of darkness. Melatonin cannot act on GnRH neurons directly (Goodman 
et al. 2010) so, as for the sex steroids, melatonin appears to need other cells within the 
mediobasal hypothalamus (Malpaux et al. 1998, Migaud et al. 2005) to exert its influence on 
GnRH secretion. Nevertheless, GnRH and LH pulses appear to be the over-riding determinant 
of seasonal reproductive function. Photoperiod-driven changes in pulsatile GnRH secretion are 
evident in both oestradiol negative feedback independent and dependent mechanisms (Karsch 
et al. 1980, Martin et al. 1983). The former is evidenced by a change in LH pulse frequency in 
ovariectomised (OVX) ewes, the latter by a profound increase in responsiveness to oestradiol 
negative feedback on GnRH/LH during the non-breeding season (Fig. 1). Thus, neuropeptides 
governing the pulsatile release of GnRH/LH, and/or those involved in transmitting oestradiol 
negative feedback signals to GnRH neurons, are likely to be key systems in the control of the 
seasonal reproductive pathway. Again, kisspeptin is currently leading the field.

Fig. 1. Schematic representation of the seasonal change in LH secretion in ewes. LH 
profiles are shown for ovariectomised (OVX) ewes and OVX plus oestradiol (E2) treated 
ewes – demonstrating the oestradiol independent and dependent mechanisms for seasonal 
regulation of GnRH/LH secretion. The figure is derived from Karsch et al. (1980).

Kisspeptin

There is absolutely no doubt that kisspeptin, the product of the Kiss1 gene, and its receptor, 
Kiss1r (previously Gpr54) play a major role in the control of GnRH secretion (Gottsch et al. 
2004, Oakley et al. 2009). In sheep, the evidence for this includes: i) kisspeptin neurons project 
to GnRH neurons (Smith et al. 2008); ii) virtually all GnRH neurons express KISS1R mRNA 
(Smith et al. 2009a); iii) kisspeptin rapidly and robustly stimulates GnRH and gonadotrophin 
secretion (Smith et al. 2011); iv) kisspeptin neurons are located in regions of the hypothalamus 
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involved in sex steroid feedback (including the arcuate nucleus, ARC) in both males and females, 
and express oestrogen, progesterone and androgen receptors (Lehman et al. 2013); and v) in 
turn, sex steroids, particularly oestradiol, regulate kisspeptin neurons in a manner consistent 
with negative and positive feedback effects on GnRH neurons (Smith 2013), vital for tonic 
gonadotrophin secretion and the preovulatory LH surge.

In sheep, kisspeptin neurons are found in the preoptic area (POA) and the ARC, as shown 
with in situ hybridization (Estrada et al. 2006, Smith et al. 2007) and immunohistochemistry 
(Franceschini et al. 2006, Smith et al. 2008) (Fig. 2). Expression of KISS1 mRNA in the ARC 
increases after ovariectomy in ewes, and is normalized in ovariectomized ewes after chronic 
oestradiol replacement (Smith et al. 2007, Smith et al. 2008). Chronic progesterone replacement 
also inhibits KISS1 expression in ovariectomized sheep (Smith et al. 2007). Virtually all kisspeptin 
neurons in the ovine ARC co-express oestrogen receptor alpha (ESR1) and progesterone receptor 
(Franceschini et al. 2006, Smith et al. 2007) and steroid-sensitive neurons projecting from the 
ARC have been implicated for a role in the negative feedback control of GnRH secretion by 
oestradiol (Blache et al. 1991, Caraty et al. 1998, Simerly 2002). In sheep, the ARC is also 
thought to relay oestradiol positive feedback signals to GnRH neurons (Blache et al. 1991, Caraty 
et al. 1998). Again this appears to be mediated by kisspeptin neurons because kisspeptin gene 
expression and peptide production are increased in the ARC, particularly the middle-to-caudal 
areas, during the late-follicular phase of the oestrous cycle (Estrada et al. 2006, Smith et al. 

Fig. 2. The proposed anatomical relationship between kisspeptin and GnRH neurons in 
the ewe. Caudal kisspeptin neurons in the arcuate nucleus (ARC) co-express neurokinin 
B and dynorphin and are thus termed “KNDy” neurons. KNDy neurons appear to project 
to both the GnRH neuron cell body (Lehman et al., 2013) and GnRH terminals in the 
median eminence (Smith et al., 2011) to participate in both GnRH pulsatile secretion and 
the preovulatory LH surge. Rostral kisspeptin neurons located in the preoptic area (POA) 
project directly to GnRH neurons (Backholer et al., 2009) and appear to solely participate 
in the preovulatory LH surge. Both populations express oestrogen receptor alpha (ER) and 
modulate oestradiol feedback.
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2009a). Moreover, kisspeptin neurons in the middle and caudal ARC show robust induction 
of FOS (a marker for neuronal activation) following a surge-inducing oestradiol injection 
(Smith et al. 2009a, Merkley et al. 2012). How this single population of neurons responds to 
oestradiol, but with two opposing outcomes, has puzzled researchers in the kisspeptin field. 
Data from studies with mice suggest alternative intracellular pathways (genomic vs non-genomic) 
post-ESR1 binding (Gottsch et al. 2009) but such observations only provide few clues for the 
ovine model. It is however possible that an indirect, multi-synaptic activation pathway rather 
than direct effect of oestradiol is central to the preovulatory LH surge generation in ewes.  A 
temporal aspect to the oestradiol response has also been proposed (Clarke & Caraty 2013). 
Central to this hypothesis is that the positive feedback event is transient, but negative feedback 
is continuous. Thus, an acute rise in oestradiol temporarily activates the ARC kisspeptin cells 
culminating in the LH surge, while constant levels of oestradiol inhibit the activity of ARC 
kisspeptin neurons (Smith et al., 2009a).  Given the current data in the sheep, this appears to 
be the most feasible explanation.

Kisspeptin neurons in the POA are now also known to play an important role in mediating 
positive feedback in sheep (Smith et al. 2009a, Hoffman et al. 2011, Merkley et al. 2012), 
suggesting a parallel with the rostral population of kisspeptin neurons in rodent species, located 
in the anteroventral periventricular (AVPV) region. In both neuronal populations, oestradiol 
can stimulate the expression of Kiss1 mRNA (Smith et al. 2005, Smith et al. 2006, Smith et 
al. 2008). Importantly, the positive feedback mechanism in ewes does not change between 
breeding seasons. Thus, during seasonal anoestrus, increased oestradiol negative feedback 
prevents the sequence of events leading to positive feedback, but the neuroendocrine ability 
to produce a surge is intact (Clarke 1988).

It is clear that sex steroids are major regulators of kisspeptin neurons in the ARC. Focusing 
on negative feedback, which is pivotal for the pulsatile release of GnRH, a strong case can be 
made for these steroid-responsive kisspeptin neurons playing a central role. The secretion of LH 
pulses in female monkeys and ovariectomized sheep is inhibited by central administration of 
a selective kisspeptin antagonist (Roseweir et al. 2009), suggesting that GnRH pulse frequency 
is dependent on kisspeptin signaling. In goats, indirect evidence suggests the GnRH pulse 
generator is located in the caudal ARC, where kisspeptin cell bodies are located (Ohkura et 
al. 2009). Thus, in primates and ruminants, oestradiol negative feedback signals are sensed by 
kisspeptin neurons in the ARC that, in turn, stimulate GnRH neurons appropriately to control 
the pulsatile secretion of GnRH. However, the exact mechanism through which kisspeptin 
can so profoundly affect GnRH secretion is only now beginning to emerge, primarily with the 
help of the ‘KNDy hypothesis’. 

The KNDy hypothesis

Despite the KNDy hypothesis being the latest chapter in the kisspeptin field, clues of its existence 
date back to the 1990s when neurokinin B (NKB, product of the TAC3 gene) expression in 
the ARC was correlated with LH concentrations in humans and rats (Rance & Young 1991, 
Rance & Bruce 1994). In sheep, these NKB neurons shared a close anatomical distribution 
with dynorphin neurons (Foradori et al. 2006) and all appear to contain ESR1 (Goubillon et al. 
2000) and progesterone receptor (Foradori et al. 2002).  With the discovery of kisspeptin the 
final piece of the puzzle fell into place and it was subsequently shown that a single population 
of neurons contained all three peptides – first demonstrated in sheep (Goodman et al. 2007) 
and then expanded to rodents (Navarro et al. 2009). This specific population of cells, now 
commonly referred to as ‘KNDy neurons’, has moved to the frontline in discussions of the control 
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of GnRH secretion (Lehman et al. 2010, Goodman et al. 2013). KNDy neurons were showed 
to have remarkable reciprocal projections, forming a KNDy-KNDy network (Burke et al. 2006), 
with terminals also projecting predominantly to the median eminence (ME), but also to a lesser 
degree to the POA (Smith et al. 2011) (Fig. 2).  These observations formed the foundation of the 
KNDy hypothesis and were further supported by the knowledge that KNDy neurons contained 
the NKB receptor (TACR3) and GnRH neurons do not (Amstalden et al. 2010). Studies in mice 
showed there is also potential for communication within and between KNDy neurons because 
they express NKB and dynorphin receptors (Navarro et al. 2009). Interestingly, they do not 
express Kiss1r mRNA (Smith et al. 2011) leading to the proposition that kisspeptin was the final 
output signal of the KNDy neuron. The essence of the KNDy hypothesis is that NKB acts as a 
‘pace-setter’ for kisspeptin release, dynorphin acts as a ‘brake’, and kisspeptin acts as the final 
step in communication between the KNDy neurons and GnRH neurons, thus affecting changes 
in the pulsatile pattern of secretion of GnRH (Okamura et al. 2013).

The KNDy neurons and their fibres are well placed to fulfil the role of a ‘pulse generator’ 
that drives GnRH secretion. In the ewe: i) KNDy neurons receive feedback signals from sex 
steroids and express the required receptors (Smith 2013); ii) KNDy neurons express FOS during 
both surge and pulsatile secretion of LH (Smith et al. 2009a, Merkley et al. 2012); iii) LH pulse 
frequency is reduced by administration of NKB receptor antagonists into the ARC, but increased 
by administration of NKB and dynorphin receptor antagonists (Goodman et al. 2013); and iv) 
Kiss1r antagonists blocked the secretion of LH pulses (Roseweir et al. 2009). Furthermore, in 
the monkey, kisspeptin content in the ME correlates with GnRH pulses (Keen et al. 2008). 
Finally, periodic bursts of multiple-unit activity (referred to as ‘MUA volleys’) in the vicinity of 
KNDy neurons in goats are temporally associated with the secretion of LH pulses (Wakabayashi 
et al. 2010, Wakabayashi et al. 2013). Moreover, an icv administration of NKB induces and 
dynorphin inhibits MUA volleys. All of these observations are consistent with the basic tenets 
of the hypothesis that KNDy neurons act as a putative GnRH pulse generator.

Despite this evidence, there is still serious controversy in the literature. For example, there 
is debate about the role of KNDy neurons in inhibition of GnRH secretion by sex steroids, in 
both males and females, and in different species and about the mechanism through which three 
neuropeptides interact and are released with temporal specificity to change the pattern of secretion 
of a single GnRH pulse. There is also controversy surrounding the very existence of a ‘GnRH 
pulse generator’ in the brain – many researchers are of the view that KNDy neurons fulfil this 
role, while others reject the very notion of the existence of a “single” pulse generator arguing 
that is a property of a distributed network that includes GnRH neurons (Goodman et al. 2014). 
Regarding the latter, it should also be noted that the response to a constant infusion of kisspeptin 
– increased LH pulse frequency (George et al. 2011) – suggests that KNDy neuronal output 
(kisspeptin ‘pulses’) may not function as the ‘GnRH pulse generator’, but as a modulator of the 
pulses intrinsic to GnRH neurons (Martinez de la Escalera et al. 1992, Richter et al. 2002). On the 
other hand, data from rats (Roa et al. 2008), sheep (Caraty et al. 2007) and monkeys (Seminara et 
al. 2006) indicate that constant elevation of kisspeptin is unable to maintain sustained elevated 
LH secretion.  Whether kisspeptin neurons truly drive GnRH pulses, or whether kisspeptin is 
simply a permissive signal to allow expression of GnRH pulses, needs to be rigorously tested.

The role of kisspeptin in seasonal breeding

In ovary-intact ewes, KISS1 mRNA expression in the ARC is higher during the breeding season 
than the non-breeding season (Wagner et al. 2008). As previously stated, the seasonal change 
in GnRH pulse frequency is the outcome of interactions between steroid-dependent and 
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steroid-independent mechanisms, both of which appear to be mediated by kisspeptin neurons. 
With regard to the steroid-independent mechanism, the breeding season elevation in KISS1 is 
apparent in the absence of sex steroid feedback in ovariectomized ewes (Smith et al. 2007). 
With regard to the steroid dependent mechanism, KISS1 is also elevated during the breeding 
season in ovariectomized ewes provided with oestradiol replacement (Smith et al. 2008). Most 
importantly, the inhibitory effect of oestradiol on KISS1 expression in the ARC is greater during 
the non-breeding season than the breeding season (Smith et al. 2008), consistent with the view 
that the seasonal change in responsiveness to oestradiol is affected by changes in the response 
of kisspeptin neurons to oestradiol.

Kisspeptin neurons in the POA also appear to be regulated by season. A modest but 
significant increase in the number of POA kisspeptin neurons is apparent in ewes after they 
have been shifted into a short-day photoperiod, although this change was only significant when 
the data were corrected for the total number of neurons in the POA (Chalivoix et al. 2010). 
Importantly, this observation was made in ovariectomized-oestradiol treated ewes, indicating 
a photoperiod-driven change in oestradiol responsiveness in POA kisspeptin neurons, as 
observed in the ARC. However, other studies have led to the conclusion that kisspeptin in the 
POA is not regulated by seasonal status (Smith et al. 2007, Smith et al. 2008) – importantly, 
this work was done by two separate but collaborating laboratory groups, using both in situ 
hybridization and immunohistochemistry, and in ovariectomized ewes in the presence and 
absence of oestradiol (Smith et al. 2008). Our view is, therefore, that the two populations of 
kisspeptin neurons play different roles in the regulation of GnRH secretion in the ewe. In the 
ARC, there are more kisspeptin neurons and these mediate both negative and positive feedback 
regulation of GnRH secretion by oestradiol (Smith 2008, Smith 2009, Merkley et al. 2012), 
with the negative feedback action being key to the regulation of seasonal reproduction. In the 
POA, on the other hand, kisspeptin neurons appear to be involved only in positive feedback 
and therefore the induction of the preovulatory surge of GnRH and LH (Smith et al. 2009a, 
Hoffman et al. 2011, Merkley et al. 2012).

The combination of increases in KISS1 expression, and in the number of kisspeptin 
neurons during the transition from non-breeding to breeding season, suggests an increase in 
neuroanatomical communication between kisspeptin neurons and GnRH neurons. The number 
of GnRH neurons that receive ‘input’ (defined by the close apposition of kisspeptin terminals) 
and the number of kisspeptin appositions on each GnRH neuron, are higher during the breeding 
season than during the anoestrus season (Smith et al. 2008). The origin of these appositions is 
subject to considerable debate. Presumably, this extra kisspeptin input arises from the ARC, 
consistent with the increased KISS1 expression in this region. However, previous data utilizing 
anterograde and retrograde tracers suggests that ARC kisspeptin neurons do not project directly 
to GnRH neurons, in contrast with POA kisspeptin neurons (Backholer et al. 2009). Indeed, 
few projections from the ARC terminate at GnRH neurons (Pompolo et al. 2001), and there are 
similar observations for mice (Wintermantel et al. 2006). It is, however, possible that neuronal 
tracing is not sufficiently sensitive to reveal appositions to specific neurons. In line with this, a 
large percentage of GnRH neurons in the ovine POA and MBH are shown to have appositions 
from kisspeptin terminals, which co-express dynorphin, thus confirming their origin from ARC 
KNDy neuronal population (Lehman et al. 2013).

In ewes, the GnRH/LH response to kisspeptin is greater during the non-breeding season 
than during the breeding season (Smith et al. 2009b, Li et al. 2012). This difference might be a 
consequence of changes in the releasable pool of GnRH accumulating between pulses, which 
would be greater in the anoestrus season. A reduction in GnRH/LH pulse frequency leads to an 
increase in LH pulse amplitude due to effects at the level of the gonadotroph (Clarke & Cummins 
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1985). Despite this, recent evidence shows that the expression of KISS1R on GnRH neurons is 
greater during the non-breeding season than during the breeding season (Li et al. 2012). The 
role of this increase in responsiveness of GnRH neurons to kisspeptin during anoestrus is not 
clear, but one possibility is that it allows for a greater ‘perception’ of the increasing levels of 
ARC kisspeptin expression at the onset of the breeding season (Smith et al. 2007, Smith et al. 
2008), enabling the return of pulsatile GnRH secretion.

Can kisspeptin prevent seasonal anoestrous?

Given the discussion above, a strong case can be made for an increase in kisspeptin signalling 
driving the return of GnRH pulses at the onset of the breeding season. If this were to be true, 
then we would expect exogenous administration of kisspeptin to reactivate the gonadotrophic 
axis and allow ovulation in ewes. This outcome was indeed demonstrated by two collaborating 
research groups using an intravenous infusion of kisspeptin over 48 h (Caraty et al. 2007). In 
anoestrus ewes, kisspeptin transiently restored LH concentrations and induced ovulation in the 
majority of animals (Caraty et al. 2007). It was proposed that the kisspeptin infusion induced a 
follicular phase-like state, culminating in oestradiol-positive feedback and ovulation. This was 
further detailed in a follow-up study, showing elevated oestradiol levels were a prerequisite 
for kisspeptin to induce ovulation (Sebert et al. 2010).

An interesting aspect to both these studies was that a peripheral infusion of kisspeptin was 
adequate for initiating ovulation despite the fact that kisspeptin acts centrally to stimulate GnRH 
neurons. In sheep, kisspeptin neurons extend down through the internal zone of the ME to the 
external zone and are thought to mingle with GnRH terminals outside the blood-brain barrier 
stimulating the release of GnRH (Smith et al. 2011). It is probable that kisspeptin in the periphery 
may cross the fenestrated capillaries to also stimulate the GnRH terminals. Equally, recent data 
(albeit in mice) has shown GnRH neurons extend complex highly branched dendritic trees 
to the organum vasculosum of the lamina terminalis (OVLT) outside the blood-brain barrier 
(Herde et al. 2011). Although a peripheral infusion offers a technological advantage over a 
cerebroventricular infusion, it still offers little for industry where extensive grazing systems are 
not conducive to reproductive technologies (Martin 2014). 

In sheep, the introduction of a novel male stimulates the secretion of GnRH pulses in females 
during the non-breeding season, causing the resumption of follicle maturation and ovulation 
(Hawken et al. 2009). This ‘male effect’ has been well characterized in sheep and is known to 
be effected predominantly by the action of pheromones (Delgadillo et al. 2009) initiated through 
activation of the main and accessory olfactory systems (Hawken & Martin 2012). Moreover, 
this naturally occurring phenomenon affect draws some similarities to the above-mentioned 
response to exogenous kisspeptin treatment. It is therefore not surprising that, in anoestrous 
ewes exposed to rams, there was an increase in the activation of kisspeptin neurons in the ARC, 
as detected by FOS protein expression (De Bond et al. 2013). Moreover, the administration 
of a kisspeptin antagonist completely blocked the response to male exposure, demonstrating 
the requirement of kisspeptin signaling. Given that the ‘male effect’ appears to rely on ARC 
kisspeptin neurons, the question remains as to whether activation of the KNDy network is driving 
the response. While this has not yet been addressed in sheep, a recent study in female goats 
showed that MUA-volleys in the vicinity of KNDy neurons and LH pulses are also stimulated 
acutely by pheromone exposure. Most importantly, this action was blocked by treatment with 
an NKB receptor antagonist (Sakamoto et al. 2013). Although at this stage circumstantial, and 
not immune to the uncertainty continuing to surround the KNDy hypothesis, as noted above, 
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these results implicate the KNDy system in mediating the pheromone effect on GnRH secretion 
seen in anoestrous ewes (Fig. 3).  

Fig. 3. Schematic representation of the possible signalling pathway leading to increased 
gonadotrophin-releasing hormone (GnRH) pulses in ewes exposed to males. Male odor 
(indicated by the male symbol) results in activation of the main and accessory olfactory 
systems (MOB and AOB)(Hawken and Martin, 2012). This signal is transmitted, via the 
amygdala (AMG), to kisspeptin, neurokinin B (NKB), dynorphin (Dyn) neurons (KNDy 
neurons) in the arcuate nucleus (ARC) of the hypothalamus. KNDy neurons receive 
autoregulatory input from NKB and Dyn, forming a local circuit. To increase GnRH 
secretion, kisspeptin release is enhanced through NKB and a reduction in Dyn. The resultant 
increases in oestradiol release initiate the resumption of oestrous cycles.

The pathway from photoperiod to kisspeptin neurons

Photoperiod appears to be the major factor governing seasonal change in kisspeptin expression, 
as evidenced by studies using controlled light/dark cycles in seasonal rodents (Revel et al. 2007, 
Simonneaux et al. 2009) and sheep (Wagner et al. 2008, Chalivoix et al. 2010). When ewes 
were shifted from a short day photoperiod (8:16 h light/dark) to a long day photoperiod (16:8 
h light/dark), KISS1 mRNA expression in the ARC declined (Wagner et al. 2008). Conversely, 
when ewes were shifted from long days (16:8 h light/dark) to short days (8:16 h light/dark), 
the number of identifiable kisspeptin neurons in the ARC increased (Chalivoix et al. 2010). 
Photoperiodic information is transduced into a neuroendocrine signal by the secretion of 
melatonin by the pineal gland at night. In ewes, removal of the pineal gland prevents the 
seasonal breeding response to photoperiod (Malpaux et al. 2002, Biebermann et al. 2006) 
and a similar response in seasonal rodents is linked to kisspeptin neurons (Greives et al. 2007, 
Ansel et al. 2010). In sheep, melatonin acts at the level of the premammillary and mediobasal 
hypothalamic areas (Malpaux et al. 1993, Malpaux et al. 1998), two regions that are near the 
ARC kisspeptin neurons. If such regulation does take place, it must be indirect because ARC 
kisspeptin neurons do not express the signaling form of the melatonin receptor (Li et al. 2011). 

The pathway from photoperiod to kisspeptin neurons remains to be elucidated. One 
possibility is the dopaminergic neurons within the A14/A15 region (Goodman et al. 2010) 
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that are recognised as inhibitors of LH pulse frequency during the non-breeding season (Meyer 
& Goodman 1985, Havern et al. 1994). Moreover, they appear to only exert their influence 
during the non-breeding season and they are oestradiol-dependent (Meyer & Goodman 1986). 
Oestradiol induces FOS protein expression in A14/A15 dopaminergic neurons during the non-
breeding season but not during the breeding season (Lehman et al. 1996). Most importantly, 
these cells send projections to the ARC (Havern et al. 1991) and thus potentially to kisspeptin 
neurons. Recently, ovine kisspeptin neurons were shown to possess the dopamine receptor 
(DRD2) that is responsible for the inhibition of LH secretion in anoestrous ewes (Goodman 
et al. 2012). Moreover, DRD2 antagonist treatment increased LH pulse frequency in ewes 
during the non-breeding season, but the effect was completely blocked by a central infusion 
of a kisspeptin antagonist (Goodman et al. 2012). These observations support a role for A14/
A15 dopaminergic neurons in relaying seasonal information to kisspeptin neurons. Where 
melatonin intervenes is yet to be determined.

Conclusions

Since 2003, kisspeptin has been in the spotlight of neuroendocrine research and remarkable 
advances in our understanding of fertility have been made, many utilising the ovine model. The 
weight of evidence indicates, but is yet to prove conclusively, that kisspeptin neurons, operating 
through the KNDy unit, play the role of a GnRH pulse generator. Equally, kisspeptin neurons are 
well placed to govern the seasonal switch in reproduction that occurs in sheep. Manipulation 
of the breeding season is possible with kisspeptin treatment and also the introduction of novel 
males, a phenomenon that may operate through KNDy neurons. The precise mechanisms and 
neuroanatomical pathway by which this is achieved remain to be determined.
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