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Abstract

During the last decade, transcriptome profiling has emerged as an 
efficient approach to describe and study cellular functions. The potential 
to survey transcript abundance for all genes offers promise to shed light 
on mammalian early embryogenesis. Furthermore, the report of aberrant 
phenotypes following the application of reproductive technologies also 
fueled the need to understand how embryos react, cope and adapt to 
their surrounding microenvironment. So far, the atypical nature of early 
blastomeres and the drastic transitions through which embryogenesis 
progresses posed and still pose numerous technical challenges such as 
to correctly interpret the natural fluctuation in total RNA and proteins 
contents. Although tedious, these technical considerations are important 
for data soundness and interpretation. In this review, we examine a number 
of transcriptomic surveys performed on blastocysts and demonstrate that 
several consistent observations have transpired that alter the conceptual 
issues regarding the definition of embryonic normalcy. Moreover, the need 
to complement the study of gene expression with profiling epigenomic 
marks is opening new perspectives that will also be discussed.

Introduction

Regulation and modification of gene expression are what allow every living being to respond 
to varying cellular needs and to adapt to a changing environment. Modification is observable 
mainly in terms of gene transcription products (i.e. messenger RNA) and translation products 
(i.e. proteins). It is therefore expected that the study of gene product expression level will be 
indicative of physiological state. The roles of transcriptional regulators including factors acting 
on gene promoters and their complement of gene enhancer and silencer elements in driving 
expression have been known for decades. An additional level of complexity identified more 
recently is known as epigenetics: modification of gene expression driven by dynamic chromatin 
configurations and a multitude of nuclear phenomena. Gene expression and its regulation 
have become the focus of many studies, and are at the core of our efforts to understand early 
development, that is, the makeup, physiology and outcome of the early embryo.   
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In the early 2000s, advances in genomics and bioinformatics provided the opportunity to apply 
a more comprehensive methodology than conventional gene candidate approaches. The term 
¨transcriptomics¨ was coined as a reference to methodologies capable to surveying the transcript 
population with a scope well superior than what is offered by RT-qPCR. The current definition of 
transcriptomics does not reach consensus where a restrictive view is limiting the term to samples 
processed on Next Generation Sequencing platforms that surveys most transcripts (a selection 
of transcripts based on size and/or presence of poly(A) tail is generally performed during library 
preparation) while a more lenient acceptance in term usage includes large but partial surveys.   
Here transcriptomics refers to the study of total or partial set of transcripts from a tissue or a cell 
population. In fact, the development of high-throughput platforms for the measurement of gene 
expression has caused a paradigm shift in the enunciation of initial hypotheses, broadening the 
initial premises to include the concept that differences in physiological state among experimental 
specimens are reflected in gene product abundance (primarily mRNA) and ultimately the molecular 
pathways being regulated through gene expression. In other words, by observing deviations in RNA 
abundance, we can identify the physiological processes underlying phenotype or developmental 
outcome.

The first high-throughput platforms dedicated to the survey of mRNA were cDNA microarrays 
developed and used successfully to estimate the transcriptional contents of early embryos (Ko 
et al. 2000, Tanaka et al. 2000, Carter et al. 2003, Sirard et al. 2005, Misirlioglu et al. 2006, 
Somers et al. 2006). The study of early mammalian development always has been and remains 
technically challenging, since embryos are a scant source of biological material. However, unlike 
protein profiles, the transcriptome can be amplified starting from minute amounts of material, and 
this approach has gained wide popularity and is now routine practice. The challenges of limited 
sample size have thus been met for transcriptome profiling and science is now turning its attention 
to single-cell transcriptome analysis (Tang et al. 2011, Katayama et al. 2013).    

It is becoming clear that as technical challenges are overcome and the more we analyse cellular 
gene expression, the more complex developmental physiology seems to be. For instance, while 
microarrays have provided means of interrogating all known genes in a sample, thus raising the 
possibility of unexpected findings such as the involvement of gene pathways, not previously known 
to be active during early development, they are now criticized for their limitation of addressing only 
the transcript fragments corresponding to the oligo/probe set. This criticism has been addressed 
with the advent of next-generation sequencing (RNA-seq), which facilitates RNA sequencing, thus 
broadening the scope of the survey to include populations such as mRNA, miRNA, tRNA, LncRNA 
andrRNA (Wilhelm et al. 2008) Marioni et al. 2008.

Through Next-Generation RNA sequencing (RNA-seq), the complexity of the transcriptome 
has become obvious, since in addition to differential gene expression intensities, higher level of 
complex features such as multiple splicing variants within or outside the protein-coding region 
and an entire population of novel transcripts with yet unknown functions have emerged. We have 
only begun to scratch the surface of the potential implications of alternative splicing for protein 
diversity, of the stabilization and destabilization of RNA, or of these uncharacterized transcripts 
as modulators of embryonic phenotypes.  

The aim of this review is to provide a current perspective on the strides that have been made 
in transcriptomic studies of mammalian embryos. The challenge to integrate transcriptomics 
information into a physiological context will also be discussed.   

RNA abundance in early development and its correlation with physiological functions

One of the first observations made when studying RNA management in early blastomeres is 
that gene regulation falls outside of the textbook model in which expression relies on synthesis 
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of pre-mRNA transcripts that are spliced, capped and polyadenylated before transport from the 
nucleus to the rough endoplasmic reticulum, where ribosomes translate the functional mRNA 
to polypeptides that are subsequently processed in the cytoplasm. Based on this standard 
chain of events, protein production is expected to reflect cell mRNA content. However, 
oocytes and the blastomeres rely on maternal RNA reserves accumulated during oogenesis to 
sustain protein synthesis, especially during the first cell divisions, which occur while nuclear 
transcription is minimal, if not absent (Plante et al. 1994, Memili et al. 1998, Lodde et al. 
2008). This initial period of transcriptional silence is species-specific (Braude et al. 1988, 
Poueymirou & Schultz 1989, Memili et al. 1998). It is believed that a large proportion of the 
maternal RNA reserves are never translated and is instead simply decomposed (Bachvarova & 
De Leon 1980, Su et al. 2007, Ma et al. 2013). The explanation for such apparent wastage of 
a major expenditure of energy and immobilization of material resources is unknown. In mice, 
destruction of maternal RNA is a an essential prelude to embryonic genome activation (Ma et 
al. 2013). In non-mammalian model organisms, degradation of maternal RNA has been shown 
to start with binding of microRNA to specific sequences in the 3’ untranslated region during 
pre-embryonic genome activation (Tadros & Lipshitz 2005, Giraldez et al. 2006, Lund et al. 
2009). In large mammals, embryonic genome activation occurs several cell cycles later than 
in mice, maternal RNA stores are utilized to sustain protein synthesis during this extended 
period of transcriptional silence, and maternal reserves are used and degraded more gradually 
(Gilbert et al. 2009). It remains very difficult to draw any conclusion regarding the biological 
implications of transcript abundance where endogenous reserves and the possibility of RNA 
degradation prior to translation are involved (Gilbert et al. 2009).            

Mammalian somatic cells generally contain 20–30 pg of total RNA, of which 1–5 % is 
mRNA. In the case of oocytes and early blastomeres, these figures are very different: A bovine 
fully grown GV stage oocyte contains around 340 pg of total RNA with a proportion of 18% 
of mRNA  whereas a bovine blastocyst contains 2,350 pg of total RNA (Figure 1) (Gilbert et al. 
2009). Oocytes accumulate RNA reserves during their growth and these maternal stocks are 
used to sustain protein synthesis until embryonic genome activation (Clegg & Piko 1982, Piko 
& Clegg 1982, Bachvarova et al. 1985, Paris & Richter 1990, Paynton & Bachvarova 1994). 
This implies that cells contain large quantities of dormant RNA and that transcript abundance 
may not be indicative of protein synthesis. This is true for the entire pre-embryonic genome 
activation period, after which gene expression becomes more like in somatic cells. When RNA 
reserves are present, no scenario can be excluded: transcripts and their corresponding proteins 
may both be abundant, or transcripts may be abundant while the proteins are completely 
absent (Pennetier et al. 2004, Vigneault et al. 2009).  In addition, in embryos in which genome 
activation occurs days after fertilization (i.e. in large mammals), ribosomal RNA profiles are 
very different from those of somatic cells. Microelectrophoretic profiles of total RNA obtained 
prior to embryonic genome activation show the two large ribosomal RNA molecules present in 
ratios far from the 18S: 28S theoretical maximum of 2.5 used as an indicator of sample quality 
in somatic cells (Gilbert et al. 2009). The physiological implications of this atypical ribosomal 
RNA content are still unclear. During the stages prior to embryonic genome activation, 28S 
RNA is detected in low amounts, and considering that it is the major component of the 60S 
ribosomal subunit, this may influence cell capacity for translation and/or ribosome turnover 
rate (Gilbert et al. 2009).

It is still unclear how dormant maternal RNA is recruited and sent either for protein synthesis 
or for breakdown. Clear evidence of the “closed-loop” model proposed in Xenopus and involving 
cytoplasmic polyadenylation-element-binding protein and Maskin to control RNA recruitment 
and translation (McGrew & Richter 1990, Kim & Richter 2008, Martineau et al. 2008, Radford 
et al. 2008) has not been shown in mammals. Differences could exist between the strategies 
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that amphibians and mammals devised as they evolved to manage maternal RNA. In Xenopus, 
embryonic genome activation occurs when the number of cells reaches 4,000–8,000, which 
corresponds to 12–13 divisions and occurs within seven hours (Newport & Kirschner 1982b, 
Newport & Kirschner 1982a). For such demanding and rapid recruitment of maternal RNA, 
mechanisms of storage may differ from those of mammals.    

Conserved mechanisms of maternal RNA storage include poly(A) tail removal and re-
elongation, the former rendering the molecule dormant and the latter required for recruitment. 
However, stored RNA are not completely deadenylated and variable length in poly(A) tails is 
observed (Gray & Wickens 1998, Gohin et al. 2014). Prior to embryonic genome activation, the 
transcript population is therefore composed of molecules bearing a very wide range of poly(A) 
tail lengths (Lequarre et al. 2004). Figure 1 provides an overview of the levels of RNA found in 
this developmental window. Oligo-dT may be used during sample processing to select different 
subpopulations of transcripts (Robert 2010). Since protein synthesis requires transcripts bearing 
a poly(A) tail, this use of oligo-dT might introduce a bias against stored transcripts. Whether 
or not this occurs is uncertain since the extent of tail shortening and lengthening required for 
RNA storage and recruitment is unknown and clear segregation based on tail length might not 
exist. Data need to be interpreted with caution since any comparison of treatments showing 
lower abundance of RNA during the maternal stage could be attributed to loss due to protein 
synthesis, to different poly(A) tail lengths or to increased rates of decay without translation.     

Figure 1. Schematic illustration of the different categories of RNA found in bovine oocytes 
and in embryos during the early stages of development

Even more challenging than interpreting transcript abundance prior to embryonic genome 
activation (no matter the technological platform) is the comparison of transcript abundance 
across developmental stages. Since each developmental stage differs in terms of cell number 
and size and RNA and protein content, there are no points of reference to which data can 
be easily interpreted in its physiological context. Prior to embryonic genome activation, cell 
number is irrelevant since the RNA content of a blastomere represents a subdivision of the 
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maternal RNA pool present at the previous stage. Following genome activation, cell number 
matters but it is still difficult to abandon the concept of the embryo as the biological unit and 
switch to accounting for cell numbers, because of a lack of reference for the interpretation of 
transcript level per blastomere.     

The dynamics of early embryogenesis pose many challenges for RNA profiling and data 
interpretation (Figure 2). Sample preparation methodology and data normalization can 
influence measurements and data interpretation profoundly (Gilbert et al. 2010). Over the 
years, spiking samples with exogenous transcripts has emerged as the most appropriate way to 
normalize datasets, since in a situation of overall reduction of cellular RNA content, all assumed 
housekeeping candidates will follow the same trend no matter how many reference genes are 
used, and thus contribute to data over-normalization (Robert 2010). A similar situation also 
occurs in high-throughput RNA profiling by microarrays and RNA sequencing (RNA-seq), since 
most normalization algorithms are based on leveling the mean or median between samples, 
which differ naturally throughout the various stages of development.

Figure 2. Different challenges arise when comparing samples within a developmental 
stage or across developmental stages. Due to large differences between embryos at 
different stages in terms of cell content (RNA, DNA, proteins, lipids, etc.), cell number 
and transcriptional potential, inter-stage comparison poses several challenges for data 
normalization and interpretation. In inter-stage comparisons, similar specimens will be 
compared, thus providing a more direct interpretation of treatment effects.

Elevated amounts of dormant RNA definitely hinder our attempts to describe mammalian early 
embryo physiology based on the transcriptome. It is well accepted that protein profiling would 
be a better-suited approach. However, overall profiling and identification of proteins still requires 
hundreds to thousands of oocytes or early embryos (Coenen et al. 2004, Massicotte et al. 2006, 
Berendt et al. 2009, Han et al. 2010). As an alternative, one efficient strategy for distinguishing 
between active and stored mRNA is to isolate subpopulations present in polyribosomal fractions 
(Potireddy et al. 2006, Chen et al. 2011, Scantland et al. 2011). Assuming that messenger RNA 
bound to polyribosomes is being processed for translation, it is presumed to be representative 
of gene activity and hence of the underlying physiological status. In mouse studies, comparison 



482 C. Robert and I. Gilbert

of the GV stage to MII oocytes by polyribosomal fractionation has provided insight into the 
reduction of translation potential, while the comparison of zygotes and 2-cell embryos has 
provided information about the proteins required for embryonic genome activation (Potireddy 
et al. 2006, Chen et al. 2011).  

The post-embryonic genome activation transcriptome 

Most of the transcriptomic surveys carried out during pre-hatching development have been 
performed on blastocysts, since this is the last developmental stage that can be maintained 
in culture. So far, the main application for these RNA abundance measurements has been to 
describe the impact of assisted reproductive technologies on embryo physiology. In most studies, 
embryos obtained from oocytes fertilized in vitro have been compared to reference embryos 
collected in vivo. The need for better understanding of the impact of assisted reproductive 
technologies on early development grew from observations of greater prevalence of aberrant 
phenotypes in animals resulting from embryos produced in vitro or obtained from somatic 
cloning (Young et al. 1998, van Wagtendonk-de Leeuw et al. 2000, Gibbons et al. 2002, Smith 
et al. 2012), including enlarged placentas and fetuses in ruminants (Sinclair et al. 2000, De 
Sousa et al. 2001), abnormalities associated with increased prenatal loss and higher perinatal 
mortality, although these phenotypes may lead to perfectly sound offspring.       

Earlier work aimed at identifying deviant gene expressions that could explain how early 
developmental stress translates into long-term consequences was conducted using RT-PCR 
(qualitative and quantitative) on candidate genes. Numerous studies have shown skewed 
responses to culture conditions. Impact on all types of molecular functions has been observed, 
including energetic metabolism, free radical management and synthesis of cell structural 
constituents (Wrenzycki et al. 1996, Wrenzycki et al. 1998, Niemann & Wrenzycki 2000, 
Wrenzycki et al. 2001, Yaseen et al. 2001, Lazzari et al. 2002, Wrenzycki et al. 2002, 
Lonergan et al. 2003a, Lonergan et al. 2003b, Lonergan et al. 2003c). Nowadays, the use of 
microarrays and RNA sequencing provides a more comprehensive picture of gene activity. It 
is now clear, based on observation of gene expression in a broad array of cell functions, that 
embryos react to perturbations in their microenvironment (Carter et al. 2010, Cote et al. 2011, 
Cagnone et al. 2012, Gad et al. 2012b, Plourde et al. 2012a, Plourde et al. 2012b, Cagnone 
& Sirard 2013, Cagnone & Sirard 2014). Gene expression overall tends to be more active in 
blastocysts of embryos produced in vitro than in their in vivo counterparts. This is consistent 
with the observation that metabolically quiet embryos tend to have better developmental 
potential (Leese 2002, Leese et al. 2007). Furthermore, in vitro conditions also influence the 
kinetics of embryo development (Mingoti et al. 2011), suggesting the possibility of stimulating 
or accelerating development, in vitro. Although perhaps unrelated physiologically, cleavage 
rate and developmental competence appear to be correlated (Lechniak et al. 2008, Isom et al. 
2012, Orozco-Lucero et al. 2014). The transcriptomes of embryos produced in different culture 
media have been compared in several studies (Cote et al. 2011, Cagnone et al. 2012, Plourde 
et al. 2012b, Cagnone & Sirard 2013, Penagaricano et al. 2013, Cagnone & Sirard 2014). We 
have found in our laboratory that culture conditions providing poor developmental rates in 
some cases unexpectedly produced blastocysts with a transcriptome more similar to the in 
vivo reference than did conditions that yielded the highest blastocyst rates (Cote et al. 2011). 
Furthermore, a treatment intended as a negative control in which embryos were produced in 
media without serum, BSA or any macromolecule provided a low blastocyst rate as expected, 
but an overall transcriptome similar to that observed for the best-yielding system (Cote et al. 
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2011). In addition, low-yielding systems provided more consistent transcriptome profiles than 
did high-yield conditions (Cote et al. 2011). This is reflected in much greater morphological 
dispersion among embryo cohorts than is observed with high-yielding systems. Conceptual 
questions arose from these results (Figure 3): Does the stringency of low-yielding systems allow 
only highly competent embryos to survive while high-yielding systems keep compromised or 
deviant embryos alive? Would ill phenotypes be more frequent among blastocysts produced 
in high-yielding systems? Is optimization of in vitro conditions to obtain the highest blastocyst 
rates a justified goal? These questions remain unanswered.  

Figure 3. Intrinsic developmental potential is determined largely by the quality of the 
oocyte. Are observed differences between the performances of in vitro production systems 
merely indicative of stringency allowing only high-potential embryos to survive? Would the 
most competent oocytes reach the blastocyst stage in all systems or would the blastocysts 
yielded by different systems originate from oocytes with different characteristics? 

It was also noted early in the study of the response of embryo transcriptomes to different 
assisted fertilization microenvironments that blastocyst cohort composition influenced the 
results. Some in vitro production systems produce cohorts that are more homogenous than 
others (Cote et al. 2011, Plourde et al. 2012b). In most studies, samples composed of a fixed 
number of pooled blastocysts are analysed. However, all blastocysts are not equal in terms of 
morphology and hence cell number, type (e.g. inner cell mass or trophectoderm) and viability. 
Comparing blastocysts of different morphological classes revealed important differences in 
transcriptome profile (Rekik et al. 2011). In addition, some culture conditions have been shown 
to skew the gender ratio and that male and female blastocysts exhibit large differences in gene 
expression (Bermejo-Alvarez et al. 2010, Garcia-Herreros et al. 2012). These observations 
presented a conundrum, since the most logical grouping of embryos for valid comparisons of 
in vitro treatments was according to morphology and gender. The treatment effects were thus 
confounded with effects due to these factors. Part of the solution to this problem would be to 
obtain transcriptome profiles of single blastocysts that had been sexed and morphologically 
classified. However, due to natural biological variance, this would require experimental designs 
with a larger number of biological replications in order to reach statistical significance, and 
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this for both genders and all morphological classes. This would allow a more comprehensive 
description of embryo cohorts obtained from a treatment, but at extreme cost in terms of 
resources.     

In some gene expression studies, a specific blastocyst subgroup defined on the basis of 
morphological characteristics may be of interest, for example expanded blastocysts when 
production of embryos of a quality sufficient for uterine transfer is the goal. The best culture 
conditions in this case are those that produce the greatest number of high-grade transferable 
embryos. In our experience, the comparison of stage-specific blastocysts greatly decreases 
the number of genes contributing to confounding effects that merely reflect the impact of the 
experimental treatments on embryo cohort sample heterogeneity (Plourde et al. 2012a, Plourde 
et al. 2012b). 

How do embryos cope with stress?

One of the most comprehensive transcriptome profiling studies was a comparison of blastocysts 
on the basis of time spent in vitro or in vivo (Gad et al. 2012a). Early embryos were collected 
in vivo at different times post-insemination and their development was continued in vitro while 
embryos obtained from in vitro fertilization were placed in utero at various early developmental 
stages and then re-collected at the blastocyst stage for continued development. It was thus shown 
that extending the time in vitro led to affect genes implicated in lipid metabolism deviations 
and free radical management. These same authors have thoroughly reviewed the impact of 
culture conditions on transcript abundance (Gad et al. 2012b). 

Many other large-scale gene expression studies that focused on the impact of media 
composition in culture systems support the conclusion that genes involved in lipid metabolism 
and free radical management are highly responsive cellular pathways in early embryos. For 
several years now, serum has been suspected of inducing abnormal offspring syndrome (Young 
et al. 2001, Lazzari et al. 2002) and is known to increase lipid accumulation in embryos (Crosier 
et al. 2001, McEvoy et al. 2001). Moreover, the stress caused by exposure to high levels of 
lipid affects the inflammatory response, while deviant lipid metabolism leads to decreased 
survival rates after cryopreservation (Rizos et al. 2003).  Both oocytes and embryos are very 
sensitive to the lipid content of their microenvironment and certain fatty acids are particularly 
detrimental to embryo development (Leroy et al. 2005, Shehab-El-Deen et al. 2009, Leroy et 
al. 2010, Van Hoeck et al. 2013, Cagnone & Sirard 2014). In addition to bringing a completely 
new perspective to the impact of maternal nutrition on fertility, these results add emphasis to 
the influence of the microenvironment on embryo metabolism.   

Increased concentrations of glucose cause blastomeres to shift their energetic metabolism 
from the standard mitochondrial aerobic pathway to the anaerobic fermentative pathway 
terminating with lactic acid, a sign of stress similar to the Warburg effect observed in cancer 
cells (Cagnone et al. 2012). It was shown more than a decade ago that the presence of serum not 
only causes lipid accumulation but also reduces mitochondrial capacity (Abe et al. 2002). Our 
studies of the impact of culture conditions based on strict comparison of the transcriptomes of 
morphologically staged blastocysts (early blastocysts) indicate similar effects on lipid metabolism 
and mitochondrial function (Plourde et al. 2012b). However, mitochondrial function was 
affected only when embryos were produced from oocytes collected from slaughterhouse ovaries. 
When oocytes were collected in vivo by trans-vaginal pick up, mitochondrial function was not 
affected and blastocyst rates were greatly increased (Plourde et al. 2012b).

It appears overall that metabolic stress in embryos is sensed primarily by mitochondria, 
which respond by switching energy pathways, and in turn influences cell lipid content and 
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free radical management, possibly triggering apoptosis. It has already been proposed that 
embryos of superior quality have greater mitochondrial capacity, based on higher mitochondrial 
DNA content (St John et al. 2004, El Shourbagy et al. 2006, Van Blerkom 2011, Stigliani et 
al. 2013). Several studies based on different methodological approaches and with different 
perspectives on embryo quality all converge to the conclusion that viability is highly dependent 
on mitochondrial status, which is highly sensitive to environmental conditions. We believe that 
proper mitochondrial function begins in the oocyte and translates into higher developmental 
potential supported by a stable and relatively quiescent metabolic state.  

A window of sensitivity to stress exists around the time of embryo genome activation (Gad 
et al. 2012a). This corresponds to the time at which mitochondria switch from the immature 
shape found in the oocyte (known to be inefficient for oxidative phosphorylation due mainly 
to the limited number of cristae) to a more mature cylindrical form (Crocco et al. 2011). It 
also coincides with an increase in the efficiency of energy production from glucose (Rieger et 
al. 1992). During these important cytoplasmic events, the nuclear genome activates first by 
initiating transcription in the nucleolus, which is the site of ribosomal RNA production (Hyttel 
2001). As mentioned, prior to genome activation, the embryo has an atypical 18S: 28S RNA 
ratio and subsequently acquires a ratio close to that of somatic cells (Gilbert et al. 2009). 

Activation also involves a major genomic reprogramming that is done to erase the extremely 
specific programs of the gametes and allow the very plastic program of undifferentiated 
(totipotent or stem) cells to begin. The mechanisms by which genomic reprogramming occurs 
are currently the focus of many studies worldwide and are beyond the scope of the present 
review (for recent reviews on this topic see (Kohli & Zhang 2013, Seisenberger et al. 2013). 
This reprogramming is effected through complete reorganization of the epigenetic architecture, 
including DNA methylation and histone modifications, and coincides with the longest cell 
cycle of pre-hatching development (36.25 ± 15.05 hours in cattle (Lequarre et al. 2003)) and 
culminates in major activation of transcription.

Window of sensitivity and mechanisms of coping with stress

One of the most striking observations to emerge from comparing the transcriptome of embryos 
produced under different conditions is that the embryonic RNA population is composed of a large 
contingent of long non-coding (lnc) molecules (Robert et al. 2011, Zhang et al. 2012). Furthermore, 
we found that this class of transcripts is the most profoundly affected by culture conditions (Cote 
et al. 2011, Plourde et al. 2012b). Even lncRNA originating from the mitochondrial genome was 
among the candidates most affected. The in vitro microenvironment was also associated with the 
presence of lncRNA that was undetectable in blastocysts obtained in vivo. To our knowledge, 
no such variance has ever been observed for a protein-encoding transcript.    

The abundance of these uncharacterized transcripts in blastomeres far exceeds the prevalence 
observed in somatic cells as published by the Encode Project (Harrow et al. 2012). The source 
of lncRNA has been determined from transcriptional events occurring in intergenic or intronic 
regions as well as from the strand opposite the protein-coding sequence, thus corresponding to 
natural antisense RNA (Khalil et al. 2009, Hawkins & Morris 2010, Li & Ramchandran 2010). 
These events have often been considered as transcriptional noise (Hangauer et al. 2013). 
However, emerging evidence suggests that this dark matter is important and plays a crucial 
role in nearly all cellular processes from nuclear transcription to epigenetic remodeling to 
translation control (Fatica & Bozzoni 2014). It may also be crucial for the development and 
maintenance of stem cell potency (van Leeuwen & Mikkers 2010, Guttman et al. 2011, Fatica 
& Bozzoni 2014).
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The involvement of lncRNA in embryo physiology remains unknown. Does it result from 
transcriptional leakage arising from the permissive state characterizing embryonic stem cells?  
Stem cell transcription favors shorter gene transcripts (Mercer et al. 2011) due probably to a 
shorter cell cycle length. Is the extended cell cycle that marks the activation of the embryonic 
genome more prone to transcriptional errors? Are deviations in lncRNA abundance observed 
at the blastocyst stage indicative of denatured epigenetic marks?  These questions remain 
unanswered.

Integration of data already available may hold the key to the future

Over the past decade, transcriptome profiling studies have been numerous. Most of these studies 
have focused on a handful of candidates for further characterization. The bulk of the data is still 
of interest insofar as each study was designed to address one or a few questions but combined 
with other datasets could serve to increase the statistical power to highlight trends in embryo 
response. Although different methodological platforms can lead to data incompatibility and 
increased noise, by considering the limitations regarding platform compatibility and sample 
composition, it may be possible to generate a reference base of embryo general responsiveness. 
This is important, since the concept of embryo normalcy has yet to be defined (Figure 4). For 
instance, to what extent does deviant management of free radicals lead to a deviant phenotype? 
Normalcy must reside within an interval and some stresses may be more challenging than others 
to embryo viability. Such a definition would provide a rational basis for improving conditions 
in order to produce embryos of superior quality. 

Figure 4. Given that blastocysts react to their environment, it is expected that they will 
modify their gene expression in response to different environmental insults represented by 
the different stresses along the X axis. Deviant gene expression could fall within a normalcy 
interval (red dots lines) that does not translate into peak phenotypes or it could induce 
long-term effects. The current challenge is to distinguish transient adaptive responses from 
deviations with potential long-term impact.

One of the main challenges ahead is to define how observed deviations in gene expression 
translate into physiology. Since it is now well established that embryos both react and adapt to 
changes in their microenvironment and that their response to the stress of assisted fertilization 
involves changes in gene expression level, the next step is to distinguish between transient 
responses and those that have a long-term impact. One way to accomplish this might be 
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to integrate the different layers of genomic data including transcript abundance and DNA 
methylation. Each of these types of information alone may be limited in usefulness while a 
combined picture could lead to new insight. For instance, would a deviant gene expression 
accompanied by altered DNA methylation at the same locus be indicative of long-term impact 
whereas absence of impact on DNA methylation would be more indicative of a transient 
response driven by transcription factors? The study of DNA methylation alone is proving to 
be more complex than anticipated, since methylation marks are distributed throughout the 
entire genome, which spans 100 times more nucleotides than the protein-coding regions. 
Interpretation of DNA methylation data is currently challenging to say the least. Sorting datasets 
in terms of extent and position of methylation marks in relation to the corresponding transcript 
levels may prove helpful.  

Conclusion

In conclusion, transcriptome profiling of early embryos remains technically challenging, 
especially when the survey is conducted across developmental stages. Blastocyst gene 
expression profiling has provided nonetheless valuable insight into how embryos cope with 
their microenvironment. The possibility of adding epigenetic information will raise new 
opportunities to refine our knowledge of embryonic physiology. A link very likely exists between 
the biological functions of mRNA, lncRNA and DNA methylation. Known interactions include 
that involving lncRNA Xist, which drives X chromosome inactivation in females, resulting in 
extensive DNA methylation and shutdown of nearly all genes on this chromosome (Froberg 
et al. 2013, Lessing et al. 2013). Even more relevant, dysregulation in the interplay between 
expression of protein encoding genes, lncRNA transcription and DNA methylation is responsible 
for many imprinting-related disorders such as large offspring syndrome in ruminants and 
Beckwith-Wiedemann and Silver-Russell syndromes in humans (Chiesa et al. 2012, Singh et 
al. 2012, Soejima & Higashimoto 2013). With such a wealth of information within reach, the 
prospects for studying and defining in fine detail the characteristics of an early embryo destined 
to become a healthy individual are very promising.         
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