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Summary

Theca cells are essential for female reproduction being the source of 
androgens that are precursors for follicular oestrogen synthesis and also 
signal through androgen receptors (AR) in the ovary and elsewhere. Theca 
cells arise from mesenchymal cells around the secondary follicle stage. 
Their recruitment, proliferation and cytodifferentiation are influenced, 
directly or indirectly, by paracrine signals from granulosa cells and oocyte 
although uncertainty remains over which are the critically important signals 
at particular stages. In a reciprocal manner, theca cells secrete factors 
that influence granulosa cell proliferation and differentiation at different 
follicle stages. Differentiated theca interna cells acquire responsiveness 
to luteinizing hormone (LH) and other endocrine signals and express 
components of the steroidogenic machinery required for androgen 
biosynthesis. They also express insulin-like peptide 3 (INSL3) and its 
receptor (RXFP2), levels of which increase during bovine antral follicle 
development. INSL3 signaling may play a role in promoting androgen 
biosynthesis since knockdown of either INSL3 or its receptor (RXFP2) in 
bovine theca cells inhibits androgen biosynthesis while exogenous INSL3 
can raise androgen secretion. Bone morphogenetic proteins (BMPs) of 
thecal or granulosal origin suppress thecal production of both INSL3 and 
androgen. Inhibin, produced in greatest amounts by granulosa cells of 
preovulatory follicles, reverses these BMP actions. Thus, BMP-induced 
inhibition of thecal androgen production may be mediated by reduced 
INSL3-RXFP2 signaling. Activins also inhibit androgen production in an 
inhibin-reversible manner and recent evidence in sheep indicates that 
theca cells synthesize and secrete activin, implying an autocrine role 
in suppressing androgen biosynthesis in smaller follicles, akin to that 
envisaged for BMPs. 

Introduction

Ovarian androgens play an essential role in female reproductive physiology being obligatory 
substrates for ovarian oestrogen synthesis as well as having direct androgen receptor (AR)–
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mediated actions in the ovary and elsewhere. Indeed female mice lacking functional AR show 
defective follicle development and premature ovarian failure (Shiina et al. 2006). Ovary- and 
adrenal-derived androgens can also be aromatized to oestrogens by various peripheral tissues 
including brain, bone and adipose tissue (Simpson 2003) reflecting additional ‘non-reproductive’ 
roles. 

Evidence that the mammalian ovary synthesises and secretes androgens first emerged in the 
1930s (Deanesly 1938). It was subsequently revealed that theca interna cells of developing 
antral follicles are their principle source and that the capacity of ovarian follicles to synthesise 
oestrogens depended on the cooperation of theca interna and granulosa cells in accordance 
with the two-gonadotrophin, two-cell theory (Ryan & Petro 1966, Fortune & Armstrong 1977). 
This theory proposed that luteinizing hormone (LH) acts on theca interna cells to promote 
biosynthesis of androgens (androstenedione, testosterone), which then diffuse to neighbouring 
granulosa cells where the aromatase enzyme complex converts them to oestrogens (oestrone, 
oestradiol), under the influence of follicle stimulating hormone (FSH). Whilst the two-cell, two-
gonadotrophin theory has stood the test of time remarkably well, it is increasingly evident that 
additional endocrine signals and a multitude of locally-produced signals also contribute to the 
regulation of thecal androgen production and granulosal oestrogen production at successive 
stages of follicle development.

The physiological importance of theca-derived androgens cannot be overstated since several 
key events in the female reproductive process (follicle maturation, preparation of reproductive 
tract, generation of preovulatory LH surge, ovulation, oestrus behaviour, libido) are reliant upon 
their timely production. Unfortunately, disorders that affect thecal androgen biosynthesis, such 
as polycystic ovarian syndrome (PCOS) in humans, are commonplace and are associated with 
impaired fertility and other co-morbidities (Baptiste et al. 2010). Given the above, it is perhaps 
surprising that theca cells have not commanded more attention by ovarian biologists over recent 
decades. Recent PubMed searches yielded cumulative hits totalling 63,492, 13,918 and 3,658 
for the terms “oocyte”, “granulosa cell” and “theca cell” respectively, supporting this perception.

The aim of this review is to provide an update of the literature on ovarian theca cells and 
androgen production with an emphasis on studies involving domestic ruminants. We will also 
discuss in more detail recent findings from our own laboratory on the actions and interaction 
of bone morphogenetic proteins (BMPs) and insulin-like peptide 3 (INSL3) on androgen 
production by bovine theca cells. The reader will find much additional information on theca 
cells in excellent review articles (Erickson et al. 1985, Magoffin 2005, Tajima et al. 2007, 
Young & McNeilly 2010).

Formation of the theca layer

Recruitment of theca cells from ovarian stroma

It is generally accepted that theca cells are derived from mesenchymal progenitor cells within 
the cortical stroma. There is some evidence in the mouse that a definitive population(s) of thecal 
progenitor stem cells exists (Honda et al. 2007) although comparable studies are currently 
lacking in other species including ruminants. Under the influence of presumptive signals 
emitted by activated preantral follicles (i.e. primary and secondary stage), stromal progenitor 
cells congregate around the follicular basal lamina and align to form first one, and subsequently 
multiple layers of elongated cells surrounding the follicle (Erickson et al. 1985, Orisaka et al. 
2006b, Itami et al. 2011). Thecal recruitment occurs independently of gonadotrophin action 
as the stromal progenitor cells do not express LH receptors and the theca layer still forms in 
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FSH receptor-null mice (Kumar et al. 1997, Abel et al. 2000). Rather, evidence suggests that 
soluble factor(s) secreted by the oocyte and/or granulosa cells of activated follicles drive thecal 
recruitment (Magoffin 2002, Magoffin 2005, Orisaka et al. 2006b, Itami et al. 2011). Whilst the 
identity of the key factor(s) involved is still unknown, granulosa-derived kit ligand (KITLG) and 
hedgehog proteins, and oocyte-derived GDF9 are prime candidates. Theca layers fail to develop 
in the arrested follicles of GDF9-null mice (Elvin et al. 1999). GDF9 may act either directly on 
surrounding stromal (pre-theca) cells to upegulate KIT expression or indirectly by modulation 
of KITLG and IGF1 production by granulosa cells that, in turn, binds to their signaling receptors 
(KIT, IGFR) on pre-theca cells (Nilsson & Skinner 2002). Like GDF9, oocyte-derived BMP15 has 
also been shown to upregulate KITLG expression by granulosa cells (Otsuka & Shimasaki 2002).

From the primary follicle stage in mice, granulosa cells begin to express hedgehog proteins  
(Ihh, Dhh) that induce target gene expression (Ptch1, Gli1) in surrounding mesenchymal stromal 
cells (i.e. pre-theca cells). This expression pattern persists in the theca layer until the preovulatory 
stage, perhaps implying a role in both theca cell recruitment and differentiation (Wijgerde et 
al. 2005). Cultured bovine theca cells from antral follicles also respond to hedgehog protein 
with upregulation of Gli1 expression, increased proliferation and androgen production (Spicer 
et al. 2009). Other candidate theca recruitment factors include VEGFA (Yang & Fortune 2006, 
Yang & Fortune 2007) from granulosa cells and BMP15 and BMP6 from the oocyte. In addition, 
evidence suggests that established theca cells also secrete paracrine factors that indirectly 
influence surrounding stromal cells to ‘amplify’ recruitment including transforming growth 
factor a (TGFΑ), basic fibroblast growth factor (bFGF/FGF2), keratinocyte growth factor (KGF/
FGF7), hepatocyte growth factor (HGF), IGFs and androgens. Both KGF and HGF have been 
shown to increase granulosal KITLG expression that, in turn, upregulates thecal FGF7and HGF 
expression (Parrott & Skinner 1998) as well as stromal KIT expression and cell proliferation 
(Parrott & Skinner 2000). Theca-derived androgens may also have an amplifying role since 
androgen can upregulate KITLG expression by mouse granulosa cells (Joyce et al. 1999) and 
promote the primary to secondary follicle transition in bovine ovarian cortical strips (Yang & 
Fortune 2006, Yang & Fortune 2007).

Proliferation and differentiation of theca cells  

After congregating around the basal lamina, theca cells proliferate and differentiate into an inner 
theca interna and outer theca externa. Whilst the key signals responsible are largely unknown, 
proliferation and cytodifferentiation are presumably influenced by gradients of paracrine 
signaling molecules from the centrally located granulosa/oocyte compartment (i.e. KITLG, 
GDF9, BMP15, EGF, hedgehog proteins) in conjunction with endocrine signals (i.e. LH, insulin, 
IGFs) diffusing from new capillary vessels forming close to the basal lamina. Once established, 
theca cells may also secrete autocrine/paracrine factors that promote further proliferation and 
differentiation, including IGFs (Barbieri et al. 1986, Magoffin & Weitsman 1994, Spicer et 
al. 2004), bFGF (Nilsson et al. 2001) and androgens (Yang & Fortune 2006, Yang & Fortune 
2007). Evidence in the mouse suggests that a radial signaling gradient of hedgehog proteins 
emitted by granulosa cells is involved in the differentiation of the more distantly located theca 
cells into theca externa cells that show a smooth muscle-like phenotype (Ren et al. 2009). 
In contrast, theca interna cells acquire LH receptors and begin to express components of the 
steroidogenic pathway (NR5A1, STAR, CYP11A1, HSD3B1, CYP17A1). Morphologically, theca 
interna cells display hallmark features of steroidogenically-active cells, including abundant 
smooth endoplasmic reticulum, numerous mitochondria with tubular cristae and lipid vesicles 
that store cholesterol esters as precursor for the synthesis of steroid hormones. As mentioned 
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above, theca externa cells lack these features and have a morphology more akin to smooth 
muscle cells, indicative of a more structural or mechanical support role in the follicular unit. 
There is some evidence that theca externa cells exhibit contractile behaviour around the time 
of ovulation that may contribute to extrusion of the cumulus-oocyte and wound closure around 
the margin of the corpus haemorrhagicum (Hunter 2003).

As secondary follicles progress towards the antral stage they acquire their own vascular 
supply in the form of a sheath of capillaries coursing throughout the theca layer; these capillaries 
are excluded by the basal lamina from the avascular granulosal compartment, until follicle 
luteinisation (or atresia). A well-developed thecal capillary bed is essential for bidirectional 
transfer of substances to (e.g. gonadotrophins, nutrients) and from (e.g. steroids, metabolites) the 
follicular unit. VEGF and other pro-angiogenic factors expressed predominantly by granulosa 
cells play a prominent role in vascularization of the theca interna (Fraser 2006, Fraser & Duncan 
2009, Robinson et al. 2009). Inhibition of VEGFA signaling leads to reduced proliferation of 
endothelial and theca cells, compromises follicle development and blocks ovulation (Fraser 
2006). Treatment of bovine cortical strips with VEGFA promotes primary to secondary follicle 
transition (Yang & Fortune 2006, Yang & Fortune 2007). Recent evidence in cattle indicates 
that theca-derived BMP4 and BMP7 may contribute to thecal vascularization by upregulating 
VEGFA expression in granulosa cells (Shimizu et al. 2012). 

A brief life history of theca cells: from recruitment to luteal regression

It is clear that the capacity of stromal progenitor cells to differentiate into theca cells persists 
throughout the reproductive lifespan of a female (i.e. until the primordial follicle reserve is 
depleted). Whilst a theoretical possibility, we are not aware of any evidence that failure of 
thecal recruitment ever becomes a limiting factor in the supply of growing preantral follicles in 
females approaching the end of their reproductive lifespan.  The subsequent fate of established 
theca cells (and their progeny) largely corresponds to the developmental trajectory of the 
individual follicle, >99% of which are lost through atresia during the 4-6 months it takes for 
a primary follicle to reach the preovulatory stage in sheep, cattle and humans (Lussier et al. 
1994). Inadequate development and/or early regression of the thecal vasculature is reportedly 
a common feature of atretic follicles (Fraser 2006). A detailed discussion of follicle atresia in 
the bovine and how this relates to changes in theca cells, granulosa cells and oocyte may be 
found elsewhere (Rodgers & Irving-Rodgers 2010). Comprehensive reviews focussing on follicle 
vascularization include Robinson et al. (2009) and Fraser & Duncan (2009).

Once follicles have acquired a well-developed capillary network it seems reasonable to 
assume that their theca interna cells are exposed to pituitary LH pulses and other endocrine 
signals, regardless of the stage of follicle development. However, androgen production remains 
at relatively low levels during preantral and early antral follicle stages, only increasing markedly 
during the mid- to late-antral stage. This implies the involvement of other, locally produced 
signals that suppress androgen production at earlier follicle stages whilst augmenting LH-
dependent androgen production at later stages. Intraovarian factors implicated in the regulation 
of androgen production are discussed in more detail in the final section of this review. 

For selected bovine antral follicles that achieve dominance around the time of luteal 
regression, exposure to the ovulation-inducing LH surge initiates luteinisation of both theca and 
granulosa cells, characterised by an abrupt loss of thecal CYP17A1 expression and androgen-
synthesizing capacity, and granulosal CYP19A1 expression and oestrogen-synthesizing capacity 
(Voss & Fortune 1993). Instead, the proximal components of the steroidogenic pathways of 
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both cell types are upregulated (i.e. STAR, CYP11A1, HSD3B1) and predominantly used for 
the synthesis of progesterone as theca cells transform into ‘small’ luteal cells and granulosa 
cells become ‘large’ luteal cells of the newly formed corpus luteum. Both ‘small’ and ‘large’ 
luteal cells actively secrete progesterone until corpus luteum regression (Berisha & Schams 
2005, Miyamoto et al. 2010).

Paracrine effects of theca interna cells on granulosa cells and oocyte

In addition to supplying androgens to granulosa cells as substrates for aromatization to 
oestrogens, theca cells express an array of paracrine signaling molecules shown to influence 
the proliferation and differentiated function of granulosa cells at different stages of follicle 
development (Orisaka et al. 2006a). Prominent amongst these are androgens themselves that 
have been shown to act via AR to promote follicle development (Vendola et al. 1999, Shiina et 
al. 2006, Yang & Fortune 2006), upregulate FSHR  and CYP19A1 expression (Luo & Wiltbank 
2006) and FSH-induced oestrogen production (Hillier & De Zwart 1981, Harlow et al. 1986, 
Weil et al. 1999). Thus, thecal androgens play a vital role in promoting granulosal CYP19A1 
expression/aromatase activity as well as providing substrate for the enzyme.  

Many non-steroidal factors secreted by theca cells have likewise been shown to modify 
granulosa cell proliferation and/or function in ruminants and other species (Fig. 1). For 
example, in vitro studies on bovine/ovine follicles show that theca-derived KGF (FGF7) and 
HGF promote granulosa cell proliferation (Parrott et al. 1994, Parrott & Skinner 1998), TGFB1 
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Fig. 1. Theca cells are recruited from cortical stromal cells and proliferate and differentiate under the influence of 
paracrine factors secreted by the granulosa cells and/or oocyte of activated follicles. Differentiated theca interna 
cells are responsive to LH and other endocrine and intra-ovarian factors. In turn, they secrete factors (steroids and 
proteins) that exert autocrine/paracrine effects on theca cells and paracrine effects on granulosa cells. They also 
deliver androgens to granulosa cells as substrate for oestrogen synthesis. Abbreviations: AMH, anti-mullerian 
hormone; BMP, bone morphogenetic protein; IGF, inslulin-like growth factor; INSL3, insulin-like peptide 3; 
GDF, growth and differentiation factor; HGF, hepatocyte growth factor; HH proteins, hedgehog proteins; KITL, 
kit ligand (stem cell factor); TGF, transforming growth factor. Black arrows indicate paracrine effects while orange 
arrows indicate autocrine effects. Grey arrows and grey dashed arrows indicate endocrine effects.
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down-regulates FSH-induced CYP19A1 expression and oestradiol secretion (Ouellette et al. 
2005, Zheng et al. 2008), IGF1 enhances cell proliferation and oestradiol secretion (Gutierrez 
et al. 1997, Glister et al. 2001, Monget et al. 2002), BMP4, BMP6 and BMP7 enhance basal 
and IGF-induced oestradiol secretion (Monget et al. 2002, Glister et al. 2004, Campbell et 
al. 2006). In contrast, FGF10 inhibits oestradiol secretion (Buratini et al. 2007) while FGF18 
inhibits FSHR expression and steroidogenesis and promotes cell death (Portela et al. 2010). 
Since thecal expression of FGF18 mRNA and FGF18 protein in follicular fluid were higher in 
subordinate than in dominant follicles, it was suggested that theca-derived FGF18 might be an 
important atretogenic factor in bovine follicles (Portela et al. 2010). It should be cautioned that 
expression of many of the above proteins is not exclusive to theca cells and so the observed 
effects of purified/recombinant proteins on granulosa cells is not necessarily indicative of 
theca-granulosa interaction.

Thecal steroidogenesis and factors modulating androgen secretion

Endocrine factors

In response to pulses of GnRH from the hypothalamus, pituitary gonadotrophs secrete LH 
pulses that, in turn, promote transient increases in ovarian output of androgens and oestrogens 
(Baird & McNeilly 1981, Campbell et al. 1990). The frequency and amplitude of LH pulses 
are modulated by both extrinsic (e.g. photoperiod, socio-sexual cues) and intrinsic (e.g steroid 
feedback) influences (Martin 1984) and vary according to the stage of the reproductive cycle.  
LH plays a major role in promoting androgen production by theca interna cells, particularly 
those of antral follicles with a well-developed vascular system. It does so by upregulating the 
expression of several key genes involved in the steroidogenic pathway that converts cholesterol 
into androgen, including STAR, CYP11A1 and CYP17A1. As would be anticipated from this, 
treatment of cows with a GnRH antagonist (acyline) to block pulsatile LH secretion inhibited 
thecal STAR and CYP17A1 mRNA levels and reduced androgen production (Luo et al. 2011). 

Thecal androgen production is also enhanced by insulin, as revealed by in vitro studies on 
theca cells from several species including cattle, sheep and human (Spicer & Echternkamp 
1995, Campbell et al. 1998, Franks et al. 1999). This has given rise to the theory that raised 
insulin levels in women with insulin resistance could be a contributory factor in the aetiology of 
polycystic ovarian syndrome, a condition usually associated with ovarian androgen excess and 
arrested antral follicle development (Baptiste et al. 2010). Like insulin, IGF1 can also stimulate 
thecal androgen production (Velazquez et al. 2008) while the adipokines leptin (Spicer 2001) 
and adiponectin (Lagaly et al. 2008) have been shown to inhibit thecal androgen production 
by cultured bovine theca cells.

Intra-ovarian factors 

In concert with LH and other endocrine factors, numerous locally-produced growth factors have 
been implicated as intra-ovarian regulators of thecal androgen production. These include KITLG 
(Parrott & Skinner 1997), IGFs (Campbell et al. 1998, Spicer et al. 2004), bFGF/FGF2 (Hurwitz 
et al. 1990, Scaramuzzi & Downing 1995), FGF9 (Schreiber et al. 2012), EGF (Scaramuzzi & 
Downing 1995, Campbell et al. 1998), TGFΑ (Roberts & Skinner 1991, Campbell et al. 1994) 
TNFΑ (Spicer 1998), interleukins (Hurwitz et al. 1991) and multiple TGFβ superfamily members 
(reviews: Woodruff & Mather 1995, Shimasaki et al. 2004, Knight & Glister 2006) (Fig. 2). 
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Theca cells express a full complement of receptors and intracellular signal transduction 
components for TGFβ superfamily members and are responsive to multiple ligands including 
TGFβ, activins, BMP2, BMP4, BMP6, BMP7 and AMH, all of which are expressed at the 
intrafollicular level and have been shown to attenuate basal and/or LH-induced androgen 
production in several species including rat, human, cattle and sheep (Brankin et al. 2005, 
Glister et al. 2005, Campbell et al. 2006, Glister et al. 2010, Glister et al. 2011, Campbell 
et al. 2012, Young et al. 2012, Young & McNeilly 2012). The suppressive effect of activin-A 
is antagonised by follistatin and inhibin (Wrathall & Knight 1995, Young et al. 2012, Young 
& McNeilly 2012). Activin-B also suppresses androgen production by sheep theca cells to a 
similar extent as activin-A, and the effects of both are effectively reversed by inhibin-A (Young 
et al. 2012). 

In addition to blocking activin signaling, inhibin-A was shown to antagonise the suppressive 
effects of BMP2, 4, 6 and 7 on bovine theca cells (Glister et al. 2010). This was accompanied 
by a reversal of a marked BMP-induced decline in expression of CYP17A1 and, to a lesser 
extent, LHCGR, STAR, CYP11A1 and HSD3B1 expression. In sheep theca cells, the inhibitory 
effect of activin-A on androgen production was associated with a decline in STAR and HSD3B1 
expression while CYP17A1 expression was unaffected (Young & McNeilly 2012). However, 
co-treatment with inhibin-A to reverse the activin-induced suppression of thecal androgen 
production, led to an increase in expression of CYP17A1 and HSD3B1. Furthermore, treatment 
with inhibin alone raised CYP17A1 expression and androgen production indicating that sheep 
theca cells produce an endogenous ligand whose action is opposed by inhibin. The finding 
that follistatin treatment alone also raised androgen secretion indicates that activin is the 
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Fig. 2.    Systemic and intra-ovarian factors shown to modulate thecal androgen production in vitro. So 
far, only a minority of these factors (highlighted in bold) has been shown to modulate ovarian androgen 
production in vivo (evidenced by experiments involving direct administration, immunoneutralization, 
spontaneous mutations or targeted deletions of ligand/receptor genes). More in vivo studies are required 
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endogenous ligand produced by sheep theca cells (Young & McNeilly 2012). Indeed, the same 
group reported expression of INHBA and INHBB mRNAs in the theca layer of sheep antral 
follicles (Young et al. 2012). In contrast, whilst studies in the authors’ laboratory have also 
documented expression of INHBA and INHBB mRNAs in bovine theca layers (Glister et al. 
2010), we found no stimulatory effect of follistatin treatment on androgen secretion by isolated 
theca interna cells (C Glister & P G Knight 2013, unpublished observations). Therefore, we 
interpret the ability of inhibin alone to raise androgen production as being due to antagonism 
of endogenous BMPs, that are also expressed by theca cells (Glister et al. 2010). 

It was recently reported that AMH also exerts a suppressive effect on LH-induced 
androgen production by cultured sheep theca cells (Campbell et al. 2012). Moreover, AMH 
immunoreactivity in granulosa cells declined during follicle development and was inversely 
associated with aromatase immunoreactivity. The study also found that active immunization of 
sheep against AMH was associated with raised intrafollicular androgen concentrations in small 
antral follicles, supporting a physiological role for granulosa-derived AMH as an additional 
paracrine factor that can suppress thecal androgen production.

Taken together, the above evidence indicates that multiple intra-follicular TGFβ family 
members including activins, BMPs and AMH negatively regulate basal and LH-induced 
androgen production. In contrast, inhibins, follistatin and likely several BMP binding proteins 
(e.g. chordin, gremlin, noggin) secreted by granulosa cells (Glister et al. 2011) oppose these 
signals and upregulate androgen production. Granulosal production of inhibin and follistatin, as 
well as thecal expression of the inhibin co-receptor, betaglycan (Glister et al. 2010), increases 
in growing preovulatory follicles and, by counteracting activin/BMP signaling on theca cells, 
this would serve to enhance the ability of theca cells to deliver sufficient androgen to granulosa 
cells for aromatization to oestrogen. It should be noted that recent evidence in sheep (Young 
et al. 2012) and cattle (Glister et al. 2010) indicates that theca cells also express mRNAs for 
inhibin/activin subunits. This raises the possibility that theca cells, as well as granulosa cells, 
secrete functional inhibin/activin proteins that contribute to the regulation of thecal androgen 
production and other intrafollicular events. Further work is needed to investigate this aspect 
of intrafollicular regulation.

In vitro studies on bovine (Roberts & Skinner 1990, Wrathall & Knight 1995) and human 
(Gilling-Smith et al. 1997) theca cells have shown that oestradiol itself, at physiological 
concentrations (i.e. similar to peak concentrations in antral fluid) can upregulate thecal androgen 
production. This indicates that an additional intra-follicular positive feedback loop operates to 
ensure an adequate supply of androgen for conversion to oestrogen in the late follicular phase. A 
recent study in rats also provided evidence that, in addition to inhibin, another FSH-dependent 
paracrine factor from granulosa cells (oestradiol?) was capable of upregulating thecal CYP17A1 
expression (Hoang et al. 2013).

With regard to potential regulatory roles of oocyte-derive factors on thecal androgen 
production, GDF9 was found to enhance forskolin-stimulated androgen production by rat 
theca-interstitial cells (Solovyeva et al. 2000) while GDF9-induced upregulation of androgen 
secretion and CYP17A1 expression in rat preantral follicles was blocked by intra-oocyte injection 
of GDF9 antisense nucleotide (Orisaka et al. 2009). However, other studies showed that GDF9 
inhibits forskolin-induced androgen production by human theca cells (Yamamoto et al. 2002) 
and both LH- and IGF1-induced androgen production by bovine theca cells (Spicer et al. 2008). 
Whether these discordant findings reflect species differences, or differences in experimental 
methodology is not known at this time. Nonetheless, the likelihood is that oocyte-derived factors 
do exert direct regulatory actions on surrounding theca cells, as well as on granulosa cells.
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Evidence for interactions between BMP and insulin-like peptide 3 (INSL3) signaling in 
regulating theca androgen production

As mentioned above studies in the authors’ laboratory using bovine theca cells in primary 
culture showed that bone morphogenetic proteins (BMPs) are powerful suppressors of thecal 
androgen production and that granulosa-derived inhibin can antagonise this effect of BMPs 
and raise androgen production (Glister et al. 2005, Glister et al. 2010). Likewise, several 
BMP-binding proteins (gremlin, noggin) can reverse the inhibitory effect of BMPs (Fig. 3), and 
multiple BMP-binding proteins are expressed in the bovine ovary, particularly by granulosa 
cells (Glister et al. 2011). In a subsequent microarray study (Glister et al. 2013) we showed that 
BMP treatment down-regulates expression of several hundred genes in theca cells including 
multiple components of the steroidogenic pathway leading to androgen biosynthesis, most 
prominently CYP17A1 but also NR5A1, STAR, CYP11A1 and HSD3B1. Intriguingly, thecal 
expression of insulin-like peptide 3 (INSL3) was profoundly suppressed by BMP treatment 
and this prompted a series of experiments that revealed a hitherto unknown functional link 
between BMP and INSL3 pathways in the regulation of ovarian androgen production (Glister 
et al. 2013, Satchell et al. 2013). INSL3 was initially identified as a testicular product, but it 
has become evident that the ovary also synthesizes substantial amounts of INSL3 (review: Ivell 
& Anand-Ivell 2011). In the bovine ovary, both INSL3 and its cognate receptor (RXFP2) are 
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predominantly expressed by theca cells and expression levels of both increase during antral 
follicle development (Satchell et al. 2013). In rat preantral follicles expression of RXFP2 was 
also detected in oocytes and INSL3 was shown to upregulate GDF9 expression, follicle growth 
and androgen production (Xue et al. 2014). Using cultured bovine theca cells, RNAi-mediated 
knockdown of either INSL3 or its receptor RXFP2 was shown to suppress androgen production 
(Fig. 4) whereas exogenous synthetic human INSL3 promoted a modest increase in androgen 
production (Glister et al. 2013). During the synchronized bovine oestrous cycle plasma INSL3 
levels increase during the preovulatory period and then decline after the LH surge, paralleling 
the changes in plasma oestradiol (Satchell et al. 2013) (Fig. 5). This suggests that the peak in 
circulating INSL3 reflects the output of theca cells of the dominant ovulatory follicle and that 
the subsequent fall in INSL3 after the LH surge reflects diminished thecal output associated 
with follicle luteinisation. In support of this, in vitro culture of theca cells with a luteinizing 
concentration of LH promoted a marked decline in INSL3 mRNA expression and INSL3 secretion 
accompanied by an upregulation of STAR and CYP11A1 expression and progesterone secretion 
(Satchell et al. 2013).  
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Fig. 4.  RNAi knockdown of INSL3 or its receptor (RXFP2) in cultured bovine theca cells reduces CYP17A1 
expression and androstenedione secretion indicating that INSL3 signaling is required for maintaining 
androgen synthesis. Values are means ± SEM (n=4 independent cultures). **P<0.01 versus control. 
(redrawn from Glister et al 2013).

Collectively, these findings revealed the importance of another intraovarian growth factor, 
INSL3, for maintaining androgen production by ovarian theca cells and showed that the 
suppressive action of BMPs on androgen production is intimately linked to their inhibition of 
INSL3 signaling. On the basis of these findings we propose that a functional deficit in thecal BMP 
signaling promotes excess thecal INSL3-RXFP2 signaling and that this could be a contributory 
factor in ovarian androgen excess disorders such as PCOS. Indeed, circulating INSL3 levels 
are raised in women with PCOS (Gambineri et al. 2011, Anand-Ivell et al. 2013). Conversely, 
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a functional excess of thecal BMP signaling could contribute to androgen insufficiency by 
reducing INSL3-RXFP2 signaling. Both situations compromise normal follicle development and 
lead to subfertility or infertility in animals and human. Moreover, the extra-ovarian actions of 
androgens, either acting directly or after peripheral conversion to oestrogens, will be perturbed 
by over- or under-secretion of ovarian androgen.

Conclusions

In summary, theca interna cells have an indispensible role in the ovary, not only contributing to 
preantral and antral follicle development mediated by androgen receptor interaction, but also 
in the timely provision of androgen substrate required for granulosal oestrogen biosynthesis, 
particularly in the final preovulatory stage of follicle development. It has become apparent that 
theca cells are closely regulated by an array of intra-ovarian factors that operate in concert with 
LH and other endocrine signals to modulate follicular androgen biosynthesis. Intra-ovarian BMPs 
and the INSL3-RXFP2 system are recent additions to this list and, based on findings from the 
authors’ laboratory, a schematic model depicting their proposed involvement is presented in 
Fig. 6.  Dysregulation of ovarian androgen production is a likely consequence of perturbations 

Fig. 5.  Changes in mean (±SEM) plasma 
concentrations of progesterone, oestradiol-
17β and INSL3 during PG-synchronized 
oestrous cycles in heifers. Samples are aligned 
to the time of PG administration (day 0) 
indicated by the arrow. Statistical analysis was 
performed by repeated measures ANOVA. 
(replotted from Satchell et al 2013).
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in one or more of these local signaling mechanisms at any stage of follicle development. 
Recognising that most of the experimental evidence thus far has arisen from in vitro studies, 
the challenge remains to define which are the most important local signaling mechanisms in 
terms of physiological regulation in the whole animal context.
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