Genetic improvement in cattle — are we sacrificing
reproduction in favor of production?

Robert A. Cushman', Anthony K. McNeel', Robert G. Tait Jr.", Amanda K.
Lindholm-Perry', George A. Perry?, Warren M. Snelling’, Gary L. Bennett'

"USDA, ARS U.S. Meat Animal Research Center, Clay Center, Nebraska, USA; ?Department of Animal
Science, South Dakota State University, Brookings, South Dakota, USA

Summary

Reproductive traits can range from lowly to moderately heritable.
Genomic technologies provide a powerful tool for improving selection
for traits that are lowly heritable, sex-linked, or not expressed until later
in life. Therefore, as genomic technologies become a part of selection
decisions, there is a critical need to understand how specific gene variants
affect reproductive traits in cattle. Both classical quantitative genetics
approaches and genomic approaches have identified genetic correlations
between production traits and fertility. In dairy cows, single trait selection
for milk production and associated inbreeding has resulted in a decline
in conception rates over the last 60 years. Conversely, increases in body
condition score at the time of calving in both beef and dairy cows are
advantageously genetically correlated with decreased postpartum intervals
to estrus. In beef cattle, the allele of p-calpain (CAPNT1) associated with
increased meat tenderness is also associated with an increased post-
partum interval to ovulation that could be detrimental to reproductive
performance in the cow herd. However, in Charolais cattle, there was
no genetic correlation between ovarian activity in females and proportion
of adipose tissue in male carcasses, indicating that carcass traits can be
improved without negatively impacting reproduction in the cow herd
when selection is applied properly. Thus, there is a need for a systems
based approach to understand how specific gene variants influence the
overall physiology to ensure that selection pressure is applied uniformly
for production, disease resistance, heat tolerance, and parasite resistance
without negatively impacting reproductive efficiency in the cow herd.

Introduction

The economic value of reproduction to the commercial producer is five times greater than milk
production or growth rate (Trenkle & Willham 1977, Randel & Welsh 2012), and selection
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focused only on production traits can have negative consequences for fertility (Pryce et al. 2010,
Cochran et al. 2013, Sugimoto et al. 2013, Wolcott et al. 2014). Perhaps the best example of this
is the decline in fertility in dairy cows that has occurred as positive selection for milk production
has been applied (Butler 1998, Lucy 2001). Milk production increased during the last 60 years
as a result of this selection; however, conception rates declined precipitously during the same
time. It is possible that assisted reproductive technologies simply mask these antagonisms and
potentially allow the problems to increase. Therefore, care must be taken to ensure that selection
for production traits does not result in the selection of gene variants that antagonize reproductive
traits. With advancements in genomic technologies, it has become possible to understand the
roles of specific genes on production and reproductive function and potentially counteract the
antagonisms of these gene variants on fertility through marker-assisted selection.

Fortunately, female reproductive traits expressed early in life appear to be excellent candidates
for predicting lifetime reproductive performance (Cushman et al. 2014, Johnston et al. 2014).
For example, conceiving early in the first breeding season is associated with increased fecundity
in beef cows (Lesmeister et al. 1973, Cushman et al. 2013a, Perry & Cushman 2013), and
development of the reproductive axis is a genetically controlled process (MacLaughlin et al.
2001). Conversely, heifers with poor reproductive tract development prior to their first breeding
season have decreased pregnancy rates, later calving dates, lower calf weaning weights, and
decreased rebreeding performance (Holm et al. 2009). Johnston et al. (2009) reported that
reproductive tract size in heifers was a heritable trait, and differences in endometrial gene
expression between cows with differing levels of fertility have been identified (Minten et al.
2013). Thus, it is critical to understand how developmental genes that enhance growth and
carcass traits are also influencing onset of reproductive cycles, development of the reproductive
tract, and establishment of the ovarian reserve.

Genetic relationships amongst reproductive traits are generally favorable. Age at puberty
and post-partum interval to first estrus are reproductive traits with moderate to high heritability
that are favorably genetically correlated (Mialon et al. 2000, Morris et al. 2000, Cammack et
al. 2009, Cushman et al. 2014, Johnston et al. 2014). This indicates that a set of genes may
influence the onset of reproductive cycles both at puberty and in the post-partum period. These
genes could contribute to early conception and increased fertility. For instance, selection for
a decreased age at puberty in Angus heifers resulted in an increase in the pregnancy rate as
they became mature cows (Morris et al. 2000), indicating that the onset of normal reproductive
cycles and behavioral estrus are important components of fertility in domestic ruminants.

Relationships between production traits and reproductive traits

Genetic correlations between production traits and fertility have been reported for both beef
and dairy cows. Bormann et al. (2006) reported an antagonistic genetic correlation between
yearling gain and pregnancy rate in beef heifers where increasing growth rate of heifers decreased
the fertility. Johnston et al. (2009) reported antagonistic genetic correlations of residual feed
intake and meat color in steers with age at puberty in heifers. In dairy cows, days of productive
life had an antagonistic genetic correlation with milk yield and fat yield, but calving interval,
days to first service, and number of inseminations were favorably genetically correlated with
days of productive life (Pritchard et al. 2013). Bastin et al. (2012) reported antagonistic genetic
correlations between milk yield, fat yield, and protein yield and days open. Adipose is an
important tissue that provides endocrine regulation of reproductive function. The genetic
correlations for specific fatty acids with days open changed with days in milk. This was likely
explained by the physiological status of the cows, where cows in negative energy balance during
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early lactation may mobilize different fatty acids from fat depots compared to fatty acids available
during positive energy balance status later in lactation. Genes that regulate deposition and
mobilization of fat depots will most likely provide key genetic markers for applying selection
pressure that is balanced between production and reproduction (Galic et al. 2010).

A putative functional polymorphism near the pleiomorphic adenoma gene 1 (PLAGT) was
associated with decreased serum insulin-like growth factor-1 and fat depth (Fortes et al. 2013).
This single nucleotide polymorphism (SNP) was associated with increased net food intake,
weight and hip height, but resulted in a delay in age at puberty. Other polymorphisms in seven
genes associated with production traits were used to examine the variation in reproductive traits
(Collis et al. 2012); results showed a number of alleles associated with favorable production
traits were not favorable for reproductive traits. Among these, the allele of CAPN1 that was
associated with increased meat tenderness was associated with longer post-partum anestrous
intervals. Not all of these relationships are antagonistic. While cow longevity was negatively
genetically correlated with carcass conformation, it was advantageously genetically correlated
with birth weight, weight at 120 days of age, weight at 210 days of age, cold carcass weight,
fatness, and meat color (Varona et al. 2012). Furthermore, the genetic correlation between
calving day and weight adjusted to 550 days of age was near zero, and selection for increased
post-weaning gain did not negatively impact development of the reproductive tract and ovaries
in Nelore heifers (Forni & Albuquerque 2005, Monteiro et al. 2013).

Applying genomic technologies to reproductive traits

Many reproductive traits are lowly to moderately heritable, sex-limited, binomial in nature,
or expressed late in life; making traditional selection methods difficult (Cushman et al. 2008,
Cammack et al. 2009). Genomic technologies have the ability to identify chromosomal regions
associated with reproductive traits in cattle (Fortes et al. 2010, Pryce et al. 2010, Snelling et
al. 2012, Sugimoto et al. 2013). However, these studies have identified very few SNPs that
reach significance when corrected for multiple testing, and may indicate that these traits are
pleiotropic in nature (Fortes et al. 2010, Fortes et al. 2013). To circumvent this difficulty in
identifying specific genes, investigators have used the results of genome-wide association
studies to estimate effects using all the available genotypes (Allan & Smith 2008). Pryce et al.
(2010) reported few SNP from the BovineSNP50 BeadChip associated with fertility traits in
dairy cows when corrected for multiple testing; however, they were able to identify unfavorable
genomic correlations between milk production and fertility traits. This demonstrates the
need to identify the underlying gene variants and their effects on whole animal physiology,
because applying genomic selection without understanding the underlying genes can cause
antagonistic interactions in exactly the same way that single trait selection can (Allan & Smith
2008, Snelling et al. 2013).

Snelling et al. (2012) reported no significant SNPs for age at puberty or heifer pregnancy rate
when corrected for multiple testing (Figs. 1 and 2). Only one SNP located in the muscle gene
Titin (TTN) was significant for antral follicle count when corrected for multiple testing (Fig. 3).
This SNP is in the non-coding region of Titin and the functional polymorphism influencing
follicle count could be in Titin or another gene that is in linkage disequilibrium with this SNP.
Other polymorphisms in Titin have been associated with marbling in Japanese Black cattle
(Yamada et al. 2009, Watanabe et al. 2011) but the degree and direction of the relationship
between these markers and the one associated with antral follicle count are unknown. Further
research is needed to ensure that using genetic markers in Titin for selection can do so without
negatively impacting the ovarian reserve in the cow herd.
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Fig. 1. Manhattan plot of genome-wide SNP association with age at puberty using the
Illumina BovineSNP50 beadchip. No markers reached significance when adjusted for

multiple testing (Dashed red line).
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Fig. 2. Manhattan plot of genome-wide SNP association with heifer pregnancy rate using
the lllumina BovineSNP50 beadchip. No markers reached significance when adjusted for
multiple testing (Dashed red line).
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Fig. 3. Manhattan plot of genome-wide SNP association with antral follicle count using
the lllumina BovineSNP50 beadchip. A single marker in the non-coding region of Titin
exceeded significance when adjusted for multiple testing (Dashed red line).
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The main reason that few of these studies have identified major gene effects on fertility is the
need for animals to be able to reproduce in order to pass their genes to the next generation.
The majority of the segregating gene variants that affect fertility will likely result in sub-fertility,
because those that result in infertility will be rapidly lost from a population if the carriers
fail to reproduce. However, gene variants that result in reproductive failure only when in
a homozygous state can remain in the population if they convey a selection advantage to
heterozygous animals. Inbreeding, which reflects homozygosity, has a detrimental effect on
fertility while effects of heterosis, arising from crossbreeding are favorable. Declining fertility
of dairy cows may be at least partially due to increased levels of inbreeding, coinciding with
intense selection for increased milk production using a smaller number of sires through artificial
insemination. In a long-term study of lifetime production, Cundiff et al. (1992) demonstrated
heterosis for pregnancy, calving, and weaning rates that resulted in crossbred cows averaging
at least one more calf weaned over their lifetime than contemporary straightbred cows. Using
the BovineSNP50 BeadChip, Snelling et al. (2012) demonstrated detrimental effects of genomic
inbreeding on heifer pregnancy rates, indicating that heifer that were homozygous for many
low frequency alleles were less likely to become pregnant.

Specific genes and structural variants resulting in an advantage for heterozygotes have been
reported. Kadri et al. (2014) used the BovineSNP50 BeadChip to identify a 660-Kb deletion
on bovine chromosome 12 in Nordic Red Cattle that was associated with increased milk
yield in heterozygous animals but resulted in embryonic lethality in homozygous animals.
Other genes having heterozygous advantage include growth differentiation factor 9 and bone
morphogenic protein 15 where polymorphisms cause reproductive failure due to improper
follicular development in homozygous ewes but result in increased prolificacy in heterozygous
ewes (Galloway et al. 2000, Hanrahan et al. 2004). Identification of genomic regions with
heterozygous advantage and homozygous infertility allow development of mating schemes
which leverage the heterozygote productivity, while limiting the infertility of homozygotes.
Furthermore, genotyping young animals identifies where individual animals will fit into such
a mating strategy.

Systems based investigations of the genetic changes

Researchers have addressed the issues of identifying polymorphisms that result in subtle changes
in fertility by dissecting specific component traits and identifying candidate genes that could
be influencing these traits, based on a priori knowledge of the biological system. Members of
the transforming growth factor- (TGF) super-family are involved in growth and development,
with several members (e.g. myostatin and bone morphogenic protein 8B) and their receptors
being identified as genetic markers for carcass or growth traits (Sellick et al. 2007, Esmailizadeh
et al. 2008, Cao et al. 2013). While other members of the TGFpB family (e.g. anti-Mdllerian
hormone, growth differentiation factor 9, and bone morphogenic protein 15) are involved in
fecundity and fertility (Cushman et al. 2002, Gigli et al. 2005, McNatty et al. 2005, Tang et al.
2013). Similar results are observed for members of the WNT family that have been reported
to be associated with carcass traits in poultry (Lu et al. 2012) , and are also crucial for proper
development of the reproductive tract and the ovaries (Vainio et al. 1999). These genes are
expressed in numerous tissues. Thus, there is a need for a systems based approach to understand
how specific polymorphisms influence whole animal physiology.

Several studies have identified genes in the gonadotropin signaling pathway and steroidogenic
synthesis pathway as excellent candidates to influence the initiation of reproductive cycles
(Fortes et al. 2010, Sugimoto et al. 2010, Cushman et al. 2013b, Homer et al. 2013, Sugimoto
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et al. 2013). Polymorphisms in the gonadotropin-releasing hormone receptor (GNRHR) were
associated with age at first calving in beef heifers and with expression of behavioral estrus in
dairy cows (Cushman et al. 2013b, Homer et al. 2013). Expression of behavioral estrus is
a trait that is associated with increased fertility in cattle (Perry & Perry 2008). This increase
in fertility is due to increased preovulatory estradiol concentrations in the cows that express
behavioral estrus (Perry et al. 2005, Jinks et al. 2013). In both beef cows and dairy cows,
estrogen synthesis pathways and estrus behavior have been associated with genetic markers for
reproductive traits (Fortes et al. 2010, Cochran et al. 2013, Homer et al. 2013). Cochran et al.
(2013) reported 40 SNP that were associated with daughter pregnancy rate in dairy cows. Of
these, 11 were negatively associated with yield traits, leaving 29 that were not associated with
yield traits. This demonstrates the availability of genetic markers with potential to improve
fertility by selection without compromising production.

Body composition also influences the onset of reproductive cycles in replacement heifers
and post-partum cows. A number of studies have reported a favorable genetic correlation
between body condition score and the onset of reproductive cycles in heifers and cows (Mialon
et al. 2001, Zink et al. 2011, Johnston et al. 2014). Selection for low residual feed intake
in replacement beef heifers is associated with later calving, most likely due to an increase in
lean mass (Randel & Welsh 2012). These authors concluded that it might not be possible to
improve feed efficiency without sacrificing reproductive efficiency; however, this is exactly
the situation where genomic approaches can improve selection decisions. A set of genetic
markers within and near the adipokine, chemerin (RARRES2), on bovine chromosome 4 were
associated with residual feed intake, average daily gain, and average daily feed intake as well
as average fat thickness and marbling (Lindholm-Perry et al. 2012). There were cases where
the allele that was associated with increased feed efficiency was associated with increased
adjusted fat thickness, breaking the established relationship of improved feed efficiency with
increased leanness. Thus, indicating that by using specific genetic markers it may be possible
to improve feed efficiency without compromising body composition, thereby maintaining the
ability to attain puberty at an acceptable age in heifers. Along these lines, Mialon et al. (2001)
reported no genetic correlation between female ovarian activity and the proportion of adipose
tissue in male carcasses in a population of Charolais cattle.

Selection for growth and carcass traits can have other consequences as well. Heifers that
experience dystocia have an increased risk of calf mortality, retained placenta, prolonged
rebreeding interval, and death (Laster et al. 1973, Bennett & Gregory 2001a). Positive
correlations of dystocia with calf birth weights, 200-d weights, and post-weaning gain suggest
that selection for carcass yield can have negative implications on reproductive performance
in the cow herd due to increases in dystocia (Bennett & Gregory 2001a, Bennett & Gregory
2001b). A genome-wide association study identified chromosomal regions associated with
calving traits in Holstein-Friesian cows (Purfield et al. 2013). A polymorphism in the hedgehog
interacting protein (HHIP) gene that is associated with stature in humans was associated with
direct calving difficulty, although polymorphisms in the bovine HHIP gene were not associated
with stature in cattle (Pryce et al. 2011). Hedgehog signaling is interesting because improper
signaling can lead to anovulation in mice (Ren et al. 2009) and can alter development of the
female reproductive tract (Migone et al. 2012, Ren et al. 2012). This again shows the complexity
of the biology where small perturbations in a signaling pathway could have pleiotropic effects
in a multitude of tissues.

Because of these pleiotropic effects in multiple tissues, it is necessary to move beyond
association studies and use systems based research to understand how these polymorphisms
function. An excellent example of this is the growth hormone (GHT) polymorphism that is the
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proposed causative mutation for the miniature condition in Brahman cattle. These cattle have
serum growth hormone concentrations that are greater than normal, but insulin-like growth
factor-1 concentrations that are lower than normal (Hammond et al. 1991). This led investigators
to first propose that this was due to a polymorphism in the growth hormone receptor (GHR);
however, treatment with exogenous growth hormone caused an increase in serum insulin-like
growth factor-1 concentrations (Chase et al. 2011). Subsequent investigation demonstrated
the presence of a polymorphism in GH1 that resulted in an alternate form of growth hormone
with 60% of the activity of native GH1 in a luciferase reporter system in a transfected Chinese
hamster ovary-derived cell line (McCormack et al. 2009). The polymorphism caused a
decrease in antral follicle numbers, but did not negatively impact fertility in cattle (Chase et
al. 1998). This example demonstrates how sound physiological studies can aid in identifying
and understanding functional polymorphisms. However, this is an extreme phenotype that is
easy to identify by the change in body stature.

For every success in identifying functional polymorphisms, there are results that lead to more
questionable conclusions. For example, a study in dairy cattle identified a polymorphism in
the ionotropic glutamate receptor AMPA1 (GRIAT) that resulted in a decrease in the number
of follicles detectable by ultrasonography, a change in the timing of the luteinizing hormone
surge, and a decrease in conception to artificial insemination. When the alternate form of the
receptor was transfected into immortalized murine hypothalamic GT1-8 cells, the release of
gonadotropin-releasing hormone in response to treatment with glutamate in vitro was attenuated
(Sugimoto et al. 2010). However, when the GRIAT polymorphism was tested in a population
of repeat-breeder beef cows, it was not associated with the number of antral follicles present
at necropsy (Cushman et al. 2013b). These conflicting results in association studies do not
prove or disprove the functionality of the polymorphism. There are several explanations for
the differences between the cattle populations. The beef cow population could have another
polymorphism in GRIAT or an associated gene that counteracts the effects of the primary
GRIAT polymorphism. Alternatively, the effect of the GRIAT polymorphism could be more
dramatic in lactating dairy cows where glutamate availability might be more limited due to its
conversion to pyruvate in a negative energy balance condition. It will take complex studies
of transcriptomics, proteomics, and metabolomics in numerous tissues to understand the
functionality of these polymorphisms in the whole animal.

Conclusions

Are we sacrificing reproduction for production? Possibly, in the vast majority of cases production
traits show antagonistic correlations with reproduction; however, there are situations where
the relationship is neutral. There are hints of genetic markers that could be positive for both
production and reproduction. These genetic markers with neutral and positive relationships
can be used to our advantage to develop more balanced selection programs. In cattle, the dairy
industry has adopted the use of genome-wide associations to select for daughter pregnancy
rate, because historical selection for milk production has clearly reduced fertility. Bos indicus
cattle provide heat tolerance and parasite resistance that make them particularly suited for
regions of the world where Bos taurus cattle do not perform as well. However, the delayed
puberty and decreased conception rates in Bos indicus cattle have led to research to identify
genetic markers to aid in improving reproductive rates in these breeds. At this point, the
need to select for fertility in Bos taurus breeds of beef cattle is not a perceived issue for most
producers because conception rates are acceptable. However, continued genetic and genomic
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selection solely for production traits, without considering accumulated inbreeding or correlated
responses in fertility, could eventually reduce fertility in these breeds as has happened in dairy
breeds. Therefore, the identification of genetic markers for fertility and an understanding of
how gene variants used to improve production traits also influence fertility are important for
the continued improvement of cattle.

Acknowledgments

The authors gratefully acknowledge the assistance of Cattle Operations at the U.S. Meat Animal
Research Center in collection of phenotypic data contributing to genomic analysis in the
Germplasm Evaluation and Marker Assisted Selection cattle populations. Research described
in this review was funded in part by ARS Research Project 5438-31000-093-00D (RAC). Names
are necessary to report factually on available data; however, the USDA neither guarantees nor
warrants the standard of the product, and the use of names by the USDA implies no approval of
the product to the exclusion of others that may also be suitable. USDA is an equal opportunity
provider and employer.

References

Allan MF & Smith TP 2008 Present and future applications
of DNA technologies to improve beef production. Meat
Science 80 79-85.

Bastin C, Soyeurt H & Gengler N 2012 Genetic parameters
of milk production traits and fatty acid contents in milk for
Holstein cows in parity 1-3. Journal of Animal Breeding
and Genetics 130 118-127.

Bennett GL & Gregory KE 2001a Genetic (co)variances
for calving difficulty score in composite and parental
populations of beef cattle: 1. Calving difficulty score, birth
weight, weaning weight, and postweaning gain. Journal
of Animal Science 79 45-51.

Bennett GL & Gregory KE 2001b Genetic (co)variances
for calving difficulty score in composite and parental
populations of beef cattle: Il. Reproductive, skeletal, and
carcass traits. Journal of Animal Science 79 52-59.

Bormann JM, Totir LR, Kachman SD, Fernando RL & Wilson
DE 2006 Pregnancy rate and first-service conception
rate in Angus heifers. Journal of Animal Science 84
2022-2025.

Butler WR 1998 Review: effect of protein nutrition on ovarian
and uterine physiology in dairy cattle. Journal of Dairy
Science 81 2533-2539.

Cammack KM, Thomas MG & Enns RM 2009 Review:
Reproductive traits and their heritabilities in beef cattle.
The Professional Animal Scientist 25 517-528.

Cao X-K, Wang J, Lan X-Y, Lei C-Z, Zhang C-L, Qi X-L &
Chen H 2013 Genetic variants in BMP8B gene are
associated with growth traits in Chinese native cattle.
Gene 532 108-113.

Chase CC Jr, Kirby CJ, Hammond AC, Olson TA & Lucy
MC 1998 Patterns of ovarian growth and development in
cattle with a growth hormone receptor deficiency. Journal
of Animal Science 76 212-219.

Chase CC Jr, Elsasser TH, Spicer L}, Riley DG, Lucy

MC, Hammond AC, Olson TA & Coleman SW 2011
Effect of growth hormone administration to mature
miniature Brahman cattle treated with or without insulin
on circulating concentrations of insulin-like growth
factor-l and other metabolic hormones and metabolites.
Domestic Animal Endocrinology 41 1-13.

Cochran SD, Cole JB, Null D) & Hansen, P) 2013 Discovery
of single nucleotide polymorphisms in candidate genes
associated with fertility and production traits in Holstein
cattle. BMC Genetics 14 49.

Collis E, Fortes MR, Zhang Y, Tier B, Schutt K, Barendse W &
Hawken R 2012 Genetic variants affecting meat and milk
production traits appear to have effects on reproduction
traits in cattle. Animal Genetics 43 442-446.

Cundiff LV, Nunez-Dominguez R, Dickerson GE, Gregory
KE & Koch RM 1992 Heterosis for lifetime production in
Hereford, Angus, shorthorn, and crossbred cows. Journal
of Animal Science 70 2397-410.

Cushman RA, Wahl CM & Fortune JE 2002 Bovine ovarian
cortical pieces grafted to chick embryonic membranes: A
model for studies on the activation of primordial follicles.
Human Reproduction 17 48-54.

Cushman RA, Allan MF & Kuehn LA 2008 Characterization
of biological types of cattle: Indicator traits of fertility in
beef cows. Revista Brasileira de Zootecnia 37 116-121.

Cushman RA, Kill LK, Funston RN, Mousel EM & Perry
GA 2013a Heifer calving date positively influences calf
weaning weights through six parturitions. Journal of
Animal Science 91 4486-4491.

Cushman RA, Miles JR, Rempel LA, McDaneld TG, Kuehn
LA, Chitko-McKown CG, Nonneman D & Echternkamp
SE 2013b Identification of an ionotropic glutamate
receptor AMPAT/GRIA1 polymorphism in crossbred
beef cows differing in fertility. Journal of Animal Science
91 2640-2646.



Genetic contributions to fertility in cattle 35

Cushman RA, McDaneld TG, Kuehn LA, Snelling WM &
Nonneman D 2014 Incorporation of genetic technologies
associated with applied reproductive technologies
to enhance world food production. Advances in
Experimental Medicine and Biology 752 77-96.

Esmailizadeh AK, Bottema CD, Sellick GS, Verbyla AP,
Morris CA, Cullen NG & Pitchford WS 2008 Effects of
the myostatin F94L substitution on beef traits. Journal of
Animal Science 86 1038-1046.

Forni S & Albuquerque LG 2005 Estimates of genetic
correlations between days to calving and reproductive
and weight traits in Nelore cattle. Journal of Animal
Science 83 1511-1515.

Fortes MR, Reverter A, Zhang Y, Collis E, Nagaraj SH,
Jonsson NN, Prayaga KC, Barris W & Hawken R} 2010
Association weight matrix for the genetic dissection
of puberty in beef cattle. Proceedings of the National
Academy of Sciences USA 107 13642-13647.

Fortes MR, Kemper K, Sasazaki S, Reverter A, Pryce JE,
Barendse W, Bunch R, McCulloch R, Harrison B,
Bolormaa S, Zhang YD, Hawken R}, Goddard ME &
Lehnert SA 2013 Evidence for pleiotropism and recent
selection in the PLAGT1 region in Australian beef cattle.
Animal Genetics 44 636-647.

Galic S, Oakhill JS & Steinberg GR 2010 Adipose tissue as an
endocrine organ. Molecular and Cellular Endocrinology
316 129-139.

Galloway SM, McNatty KP, Cambridge LM, Laitinen MPE,
Juengel JL, Jokiranta TS, McLaren R}, Luiro K, Dodds
KG, Montgomery GW, Beattie AE, Davis GH & Ritvos O
2000 Mutations in an oocyte-derived growth factor gene
(BMP15) cause increased ovulation rate and infertility in
adosage-sensitive manner. Nature Genetics 25 279-283.

Gigli I, Cushman RA, Wahl CM & Fortune JE 2005 Evidence
for a role for anti-Mullerian hormone in the suppression
of follicle activation in mouse ovaries and bovine
ovarian cortex grafted beneath the chick chorioallantoic
membrane. Molecular Reproduction and Development
71 480-488.

Hammond AC, Elsasser TH & Olson TA 1991 Endocrine
characteristics of a miniature condition in Brahman
cattle: circulating concentrations of some growth-related
hormones. Proceedings of the Society of Experimental
Biology and Medicine 197 450-457.

Hanrahan JP, Gregan SM, Mulsant P, Mullen M, Davis GH,
Powell R & Galloway SM 2004 Mutations in the Genes
for Oocyte-Derived Growth Factors GDF9 and BMP15
Are Associated with Both Increased Ovulation Rate and
Sterility in Cambridge and Belclare Sheep (Ovis aries).
Biology of Reproduction 70 900-909.

Holm DE, Thompson PN & Irons PC 2009 The value of
reproductive tract scoring as a predictor of fertility and
production outcomes in beef heifers. Journal of Animal
Science 87 1934-1940.

Homer EM, Derecka K, Webb R & Garnsworthy PC 2013
Mutations in genes involved in oestrous cycle associated
expression of oestrus. Animal Reproduction Science 142
106-112.

Jinks EM, Smith MF, Atkins JA, Pohler KG, Perry GA,
MacNeil MD, Roberts AJ, Waterman RC, Alexander

L) & Geary TW 2013 Preovulatory estradiol and the
establishment and maintenance of pregnancy in suckled
beef cows. Journal of Animal Science 91 1176-1185.

Johnston D}, Barwick SA, Corbet NJ, Fordyce G, Holroyd
RG, Williams PJ & Burrow HM 2009 Genetics of heifer
puberty in two tropical beef genotypes in northern
Australia and associations with heifer- and steer-
production traits. Animal Production Science 49 399-412.

Johnston DJ, Barwick SA, Fordyce G, Holroyd RG, Williams
PJ, Corbet NJ & Grant T 2014 Genetics of early and
lifetime annual reproductive performance in cows of
two tropical beef genotypes in northern Australia. Animal
Production Science 54 1-15.

Kadri NK, Sahana G, Charlier C, Iso-Touru T, Guldbrandtsen
B, Karim L, Nielsen US, Panitz F, Aamand GP, Schulman
N, Georges M, Vilkki J, Jund MS & Druet T 2014 A 660-
kb deletion with antagonistic effects on fertility and milk
production segregates at high frequency in nordic red
cattle: additional evidence for the common occurrence
of balancing selection in livestock. PLoS Genetics 10
e€1004049.

Laster DB, Glimp HA, Cundiff LV & Gregory KE 1973
Factors affecting dystocia and the effects of dystocia on
subsequent reproduction in beef cattle. Journal of Animal
Science 36 695-705.

Lesmeister JL, Burfening PJ & Blackwell RL 1973 Date of
first calving in beef cows and subsequent calf production.
Journal of Animal Science 36 1-6.

Lindholm-Perry AK, Kuehn LA, Rempel LA, Smith TP,
Cushman RA, McDaneld TG, Wheeler TL, Shackelford
SD, King DA & Freetly HC 2012 Evaluation of Bovine
chemerin (RARRES2) Gene Variation on Beef Cattle
Production Traits. Frontiers in Genetics 3 39.

Lu Y, Chen SR, Liu WB, Hou ZC, Xu GY & Yang N 2012
Polymorphisms in Wnt signaling pathway genes are
significantly associated with chicken carcass traits. Poultry
Science 91 1299-1307

Lucy MC 2001 Reproductive loss in high-producing dairy
cattle: where will it end? Journal of Dairy Science 84
1277-1293.

MacLaughlin DT, Texeira ] & Donahoe PK 2001 Perspective:
Reproductive tract development-New discoveries and
future directions. Endocrinology 142 2167-2172.

McCormack BL, Chase CC Jr, Olson TA, Elsasser TH,
Hammond AC, Welsh TH Jr, Jiang H, Randel RD,
Okamura CA & Lucy MC 2009 A miniature condition
in Brahman cattle is associated with a single nucleotide
mutation within the growth hormone gene. Domestic
Animal Endocrinology 37 104-111.

McNatty KP, Galloway SM, Wilson T, Smith P, Hudson
NL, O’Connell A, Bibby AH, Heath DA, Davis GH,
Hanrahan JP, & Juengel JL 2005 Physiological effects of
major genes affecting ovulation rate in sheep. Genetics
Selection Evolution 37 Suppl 1 S25-38.

Mialon MM, Renand G, Krauss D & Menissier F 2000
Genetic variability of the length of postpartum anoestrus
in Charolais cows and its relationship with age at puberty.
Genetics Selection Evolution 32 403-414.

Mialon MM, Renand G, Krauss D & Menissier F 2001
Genetic relationship between cyclic ovarian activity



36 R.A. Cushman et al.

in heifers and cows and beef traits in males. Genetics
Selection Evolution 33 273-287.

Migone FF, Ren Y, Cowan RG, Harman RM, Nikitin AY &
Quirk SM 2012 Dominant activation of the hedgehog
signaling pathway alters development of the female
reproductive tract. Genesis 50 28-40.

Minten MA, Bilby TR, Bruno RG, Allen CC, Madsen CA,
Wang Z, Sawyer JE, Tibary A, Neibergs HL, Geary TW,
Bauersachs S & Spenser TE 2013 Effects of fertility on
gene expression and function of the bovine endometrium.
PLoS One 8 e69444.

Monteiro FM, Mercadante ME, Barros CM, Satrapa RA,
Silva JA, Oliveira LZ, Saraiva NZ, Oliveira CS & Garcia
JM 2013 Reproductive tract development and puberty
in two lines of Nellore heifers selected for postweaning
weight. Theriogenology 80 10-17.

Morris CA, Wilson JA, Bennett GL, Cullen NG, Hickey
SM & Hunter JC 2000 Genetic parameters for growth,
puberty, and beef cow reproductive traits in a puberty
selection line. New Zealand Journal of Agricultural
Research 43 83-91.

Perry GA & Perry BL 2008 Effect of preovulatory
concentrations of estradiol and initiation of standing
estrus on uterine pH in beef cows. Domestic Animal
Endocrinology 34 333-338.

Perry GA & Cushman R 2013 Effect of age at puberty/
conception date on cow longevity. Veterinary Clinics
of North America: Food Animal Practice 29 579-590.

Perry GA, Smith MF, Lucy MC, Green JA, Parks, TE, MacNeil
MD, Roberts AJ & Geary TW 2005 Relationship between
follicle size at insemination and pregnancy success.
Proceedings of the National Academy of Sciences USA
102 5268-5273.

Pritchard T, Coffey M, Mrode R & Wall E 2013 Understanding
the genetics of survival in dairy cows. Journal of Dairy
Science 96 3296-3309.

Pryce JE, Bolormaa S, Chamberlain AJ, Bowman P}, Savin
K, Goddard ME & Hayes BJ 2010 A validated genome-
wide association study in 2 dairy cattle breeds for milk
production and fertility traits using variable length
haplotypes. Journal of Dairy Science 93 3331-3345.

Pryce JE, Hayes BJ, Bolormaa S & Goddard ME 2011
Polymorphicregions affecting human height also control
stature in cattle. Cenetics 187 981-984.

Purfield DC, Bradley DG, Kearney JF & Berry DP 2013
Genome-wide association study for calving traits in
Holstein-Friesian dairy cattle. Animal 8 224-235.

Randel RD & Welsh TH Jr 2012 Joint Alpharma-Beef Species
Symposium: interactions of feed efficiency with beef
heifer reproductive development. Journal of Animal
Science 91 1323-8.

Ren Y, Cowan, RG, Harman RM & Quirk SM 2009
Dominant activation of the hedgehog signaling pathway
in the ovary alters theca development and prevents
ovulation. Molecular Endocrinology 23 711-723.

Ren Y, Cowan RG, Migone FF & Quirk SM 2012
Overactivation of hedgehog signaling alters development
of the ovarian vasculature in mice. Biology of
Reproduction 86 174.

Sellick GS, Pitchford WS, Morris CA, Cullen NG, Crawford
AM, Raadsma HW & Bottema CD 2007 Effect of
myostatin F94L on carcass yield in cattle. Animal Genetics
38 440-446.

Snelling WM, Cushman RA, Fortes MR, Reverter A, Bennett
GL, Keele JW, Kuehn LA, McDaneld TG, Thallman RM
& Thomas MG 2012 Physiology and Endocrinology
Symposium: How single nucleotide polymorphism chips
will advance our knowledge of factors controlling puberty
and aid in selecting replacement beef females. Journal of
Animal Science 90 1152-1165.

Snelling WM, Cushman RA, Keele JW, Maltecca C,
Thomas MG, Fortes MR & Reverter A 2013 Breeding
and Genetics Symposium: networks and pathways to
guide genomic selection. Journal of Animal Science 91
537-552.

Sugimoto M, Sasaki S, Watanabe T, Nishimura S, Ideta
A, Yamazaki M, Matsuda K, Yuzaki M, Sakimura K,
Aoyagi Y, & Sugimoto Y 2010 lonotropic glutamate
receptor AMPA 1 is associated with ovulation rate. PLoS
One 5 e13817.

Sugimoto M, Sasaki S, Gotoh Y, Nakamura Y, Aoyagi
Y, Kawahara T & Sugimoto Y 2013 Genetic variants
related to gap junctions and hormone secretion influence
conception rates in cows. Proceedings of the National
Academy of Sciences USA 110 19495-19500.

Tang KQ, Yang WC, Zhang XX & Yang LG 2013 Effects of
polymorphisms in the bovine growth differentiation factor
9 gene on sperm quality in Holstein bulls. Genetics and
Molecular Research 12 2189-2195.

Trenkle A & Willham RL 1977 Beef production efficiency.
Science 198 1009-1015.

Vainio S, Heikkila M, Kispert A, Chin N & McMahon AP
1999 Female development in mammals is regulated by
Whnt-4 signalling. Nature 397 405-409.

Varona L, Moreno C & Altarriba ) 2012 Genetic correlation
of longevity with growth, post-mortem, docility and some
morphological traits in the Pirenaica beef cattle breed.
Animal 6 873-879.

Watanabe N, Satoh Y, Fujita T, Ohta T, Kose H, Muramatsu
Y, Yamamoto T & Yamada T 2011 Distribution of
allele frequencies at TTN g.231054C > T, RPL27A
2.3109537C > T and AKIRIN2 c.*188G > A between
Japanese Black and four other cattle breeds with differing
historical selection for marbling. BMC Research Notes
410.

Wolcott ML, Johnston DJ, Barwick SA, Corbet N} &
Williams P) 2014 The genetics of cow growth and body
composition at first calving in two tropical beef genotypes.
Animal Production Science 54 37-49.

Yamada T, Sasaki S, Sukegawa S, Yoshioka S, Takahagi Y,
Morita M, Murakami H, Morimatsu F, Fujita T, Miyake
T & Sasaki Y 2009 Association of a single nucleotide
polymorphism in titin gene with marbling in Japanese
Black beef cattle. BMC Research Notes 2 78.

Zink V, Stipkova M & Lassen J 2011 Genetic parameters for
female fertility, locomotion, body condition score, and
linear type traits in Czech Holstein cattle. Journal of Dairy
Science 94 5176-5182.



