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Summary 

Reduced reproductive performance of lactating cows during the summer is 
associated mainly with intensive genetic selection for high milk production, 
which places a great load on the thermoregulatory mechanism. Today, 
cooling is the predominant strategy used to alleviate the effects of heat 
stress. However, it cannot eliminate the decline in reproduction. A better 
understanding of the mechanism by which heat stress compromises fertility 
is required to develop new strategies to mitigate its effects. This review 
summarizes what is known about the multifactorial effect of thermal stress 
on reproductive functions, which includes alterations in the hypothalamus–
pituitary–ovarian axis: gonadotropin secretion, follicular development, 
steroid production and corpus luteum function. The review provides some 
new insights into the cellular and molecular responses of oocytes and 
embryos to elevated temperature, discusses some potential underlying 
mechanisms, such as nuclear and cytoplasmic maturation, mitochondrial 
function, apoptotic pathways and oxidative stress, and suggests potential 
approaches to alleviating these effects. Given the complexity of heat-stress 
effects on reproduction, comprehensive reproductive management during 
the summer is suggested, based on: (1) an efficient cooling system as a 
prerequisite for any other strategies, (2) hormonal treatment targeted to 
specific subgroups of cows that will benefit from it, rather than the whole 
herd, and (3) combining two or more strategies in a program, rather than 
correcting the function of a single aspect of the reproductive system.

Introduction 

Reduced reproductive performance of lactating cows during the summer is well-documented. 
Given the intensive genetic selection for high milk production and the concomitant global 
climate warming, fertility problems are expected to worsen in the coming years. Heat stress 
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is not confined only to hot climates. For example, Japan has experienced unusual summer 
weather over the past few decades leading to reduced production and reproduction in lactating 
cows in temperate-climate regions such as Hokaido (Kadokawa et al. 2012). Moreover, the 
effects of heat stress are not limited to the hot months as they carry over to the following cooler 
months, resulting in long-term effects through the year which inflict heavy economic losses 
on the dairy industry.

The most common strategy to alleviate the effect of heat stress is to provide shade and 
evaporative cooling, based on combining sprinkling and ventilation in both the holding pen 
(before milking) and the feeding area (after milking). In Israel, this approach was successfully 
implemented 22 years ago in a large dairy herd. Cooling management based on seven 30-min 
cooling periods a day enabled maintenance of normal body temperature (< 39.0ºC) in cows 
producing 30 kg milk/day, and conception rates (CRs) similar to those in the winter (Wolfenson 
et al. 1988). However today, intensive cooling consisting of 10 periods for a total of 7 cumulative 
h/day prevents the decline in milk production in extremely high-yielding cows (>13,000 kg/
year) but not that in summer reproduction. The summer-to-winter milk-production ratio in Israel 
is 0.985, whereas CR is lower by 22 percentage units in the summer vs. winter (Flamenbaum & 
Galon 2010). Nevertheless, efficient cooling management is a prerequisite for other, additional 
strategies to improve reproductive responses under heat stress. 

This review will discuss the potential mechanism by which heat stress impairs reproductive 
features, focusing on its deleterious effects on ovarian function and embryonic development. 
New insights into heat-induced cellular and molecular alterations associated with oocyte 
maturation and developmental competence are presented. The review summarizes strategies 
that are known to alleviate the effects of heat stress. It also provides some practical guides for 
implementing reproductive management during the hot season.    

Effect of heat stress on ovarian function 

Among the components of the female reproductive tract, the ovary is highly sensitive to thermal 
stress. Given their lengthy developmental process, the ovarian pool of follicles and their enclosed 
oocytes have the potential to be exposed to environmental stressors, the most studied being 
thermal stress. Impaired growth and function of the small antral follicles can be expressed weeks 
later by compromised functioning of the dominant and preovulatory follicles. These alterations 
might in turn impair the cascade of events leading to ovulation and formation of the corpus 
luteum (CL). Moreover, while heat stress can directly affect the developing embryos, it can 
also affect embryonic development indirectly by attenuating oocyte developmental capacity. 

Effects of heat stress on the follicles 

The follicular stages that are susceptible to thermal stress have not been precisely defined. Roth 
et al. (2000) suggested that early antral follicles of approximately 0.5–1.0 mm in diameter are 
sensitive to heat stress. In Gir cows, a 28-day period of heat stress reduced oocyte competence 
for 105 days (de Torres-Júnior et al. 2008), indicating that alterations occur at the small-antral 
follicle stage. Heat stress impairs the growth of medium-size follicles (6–9 mm), reduces the size 
of the first- and second-wave dominant follicles (Badinga et al. 1993, Wilson et al. 1998a,b), 
and attenuates dominance. These alterations are reflected in an increased number of medium- 
and large-size follicles, reduced concentration of inhibin and increased follicle-stimulating 
hormone (FSH) in the plasma (Badinga et al. 1993, Wolfenson et al. 1995, Roth et al. 2000). 
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Alterations in follicular development are tightly associated with changes in the endocrine milieu. 
Seasonal studies have reported lower steroid concentrations in the follicular fluid obtained from 
large follicles, reduced granulosa-cell viability and impaired aromatase activity during the hot 
season (for review see Wolfenson et al. 2000). Follicle pieces obtained from heat-stressed cows 
secrete lower levels of androstenedione and oestradiol upon gonadotropin stimulation (Bridges et al. 
2005), most likely due to decreased expression of luteinizing hormone (LH) receptors and reduced 
follicular response to LH (Ozawa et al. 2005). Alterations in steroidogenic capacity carry over from 
the summer to the autumn, as reflected by relatively low oestradiol content in the follicular fluid 
in late summer and increased levels throughout the autumn (Roth et al. 2001b, Roth et al. 2004). 
This transient effect is highly important because induction of frequent follicular waves during the 
autumn can enhance this spontaneous improvement (Roth et al. 2004). Similarly, the idea that 
hormonal manipulation of follicle turnover will improve fertility was recently tested by Friedman 
et al. (2011; Fig. 1): induction of three consecutive 9-day follicular waves during the summer and 
fall improved CR (37 vs. 53% for control and treated cows, respectively) in primiparous but not 
multiparous cows. Treatment also increased the percentage of primiparous cows that were pregnant 

Fig. 1. Follicular turnover to improve fertility of lactating cows during the summer. (a) 
Schematized treatment protocol: cows 50 to 60 DIM were administered GnRH (day = 
0) followed by PGF2α on day 7 to induce three successive 9-day follicular waves. Cows 
were inseminated at oestrus and pregnancy diagnosis was performed 40 to 50 days 
postinsemination. Treatment increased conception rates in (b) primiparous cows and (c) 
cows with milk production <40 kg. Mean values are presented.
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at 120 days in milk (DIM) (51 vs. 65% for control and treated cows, respectively). Treatment was 
more effective for cows with a high body condition score (BCS) or low somatic cell count (SCC) 
than for cows with a low BCS or high SCC. As in that study, only 60% of the cows responded to 
the treatment (i.e., showed oestrus within 5 days of the expected time), fertility could have been 
improved with timed AI. It seems that hormonal manipulation to induce follicular turnover might 
be beneficial for some subgroups of cows while utilizing efficient cooling management.

Among the potentially adverse effects of heat stress associated with low oestradiol levels are 
impairment of oestrus duration and intensity, increased incidence of anoestrus, silent ovulation, and 
reduced number of mounts (Gwazdauskas et al. 1981). Poor oestrus detection can be improved 
by using modern aids such as the Heat-Watch system, a radio-telemetric pressure transducer 
and pedometric oestrus detection (Nebel et al. 2011). Alternatively, utilization of ovulation-
synchronization protocols ending with timed AI procedures can improve rate of pregnancies per 
AI (Moore & Thatcher 2006). Nevertheless, timed AI cannot overcome the negative effects of 
heat stress on conception, as heat-stress alterations involve impairment in oocyte developmental 
competence and development of early-cleaving embryos. These might be better overcome by 
a timed embryo transfer procedure, which bypasses the effects of heat stress on these sensitive 
developmental stages (Hansen 2013a,b).

Reduced oestradiol concentrations during the follicular phase may also affect the preovulatory 
LH surge, and disrupt the cascade of events leading to oocyte ovulation. These, in turn, might lead 
to the development of non-ovulatory follicles and formation of ovarian cysts or alternatively, affect 
the formation and functioning of the CL. Suppression of pulsatile LH release and the preovulatory 
LH surge has been reported in hot climates (Wise et al. 1988). Heat-stressed cows with low 
oestradiol concentrations expressed a low-amplitude GnRH-induced LH surge (Gilad et al. 1993). 
Nonetheless, GnRH administration at the onset of oestrus (Ullah et al. 1996, Kaim et al. 2003) 
increased CR in mainly primiparous, and less in multiparous heat-stressed cows.

Effect of heat stress on oocyte developmental competence 

Mammalian oocytes are arrested at the prophase stage of the first meiotic division and acquire 
their meiotic competence and fertilization potential in a stepwise manner during follicular 
development. Perturbations in the physiology of the follicle-enclosed oocyte during the lengthy 
period of follicular development can potentially lead to an oocyte with reduced competence for 
fertilization and subsequent development. Oocytes harvested from cows during the summer exhibit 
reduced ability to develop to the blastocyst stage after in-vitro fertilization (Al-Katanani et al. 2002) 
or chemical activation (Zeron et al. 2001). A period of two to three oestrous cycles is required 
for recovery from summer heat damage and appearance of competent oocytes in the subsequent 
fall (Roth et al. 2001a). A similar form of recovery has been shown in mice, where the effects of 
induced maternal hyperthermia carried over through three pregnancy cycles (Aroyo et al. 2007). 

Gendelman et al. (2010) reported that the ratio between 2- and 4-cell-stage embryos (42 h 
postfertilization) was higher in the hot season (May–November) than in the cold season (December–
April), indicating a delay in the two first embryonic divisions. As early-cleaving zygotes are more 
competent to develop to the blastocyst stage than their late-cleaving counterparts, it appears 
that embryos developed from oocytes collected in the hot season have inferior developmental 
competence. Moreover, findings indicate that not only the individual ovulated oocyte, but also the 
ovarian pool of germinal vesicle (GV)-stage oocytes is impaired during heat exposure. Payton et 
al. (2004) examined the effect of heat shock on oocytes held at the GV stage using S-roscovitine, 
a cell-cycle inhibitor. While exposure to 41ºC did not impair GV breakdown, it reduced the 
proportion of oocytes that progressed to metaphase II (MII) and those that developed to blastocysts. 
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Similarly, preculturing with 75 μM 3-isobutyl-1-methylxanthine (IBMX) maintained meiotic arrest 
by elevating cAMP concentrations in the oocyte. Exposing IBMX-blocked oocytes to heat shock 
(41.2ºC) reduced the proportion of oocytes that developed to the blastocyst stage, similar to the 
reduction reported for seasonal thermal stress (Gendelman & Roth 2012a). The same study provided 
new insight into the molecular alterations resulting from heat shock in the GV-stage oocytes. Both 
seasonal and induced thermal stress impaired the expression of maternal transcripts (MOS, GDF9, 
POU5F1 and GAPDH) involved in oocyte maturation and early embryonic development (Fig. 
2a). Although it was the GV-stage oocyte that was exposed to the thermal stress, the effect of heat 
stress on POU5F1 expression first appeared in MII-stage oocytes and further in embryos, before 
(i.e. 2-, 4-, and 8-cell stages) and after (i.e. 8–16-cell stage) embryonic genome activation (Fig. 
2b). The maternal mRNA stored in the oocyte is critical during the period of oocyte maturation, 
fertilization, and first embryonic divisions, until the embryonic genome becomes fully functional. 

Fig. 2. Seasonal variations in transcript levels in oocytes and preimplantation embryos. (a) 
Transcript levels of MOS, GDF9, POU5F1, and GAPDH in MII-stage oocytes collected in 
hot and cold seasons. (b) Transcript level of POU5F1 in GV- and MII-stage oocytes and 
in cleaved embryos before (2-, 4- and 8-cell) and after (blastocyst) embryonic genome 
activation. Data from real-time PCR, presented as means ± SEM; P < 0.05.
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The level of POU5F1 governs embryo fate and a critical amount of POU5F1 protein is required 
to sustain embryonic stem cells (Niwa et al. 2000). Thus, the low expression of POU5F1 found 
in embryos during the hot season could explain their low developmental competence. 

Given the substantial damage caused by heat stress to the ovarian pool of oocytes, enhanced 
removal of the damaged follicles has been suggested. Frequent follicle aspirations by an ovum 
pick-up procedure improved the morphology and developmental competence of oocytes 
aspirated in the fall (Roth et al. 2001a). Hormonal treatment with FSH increased the number 
of growing follicles (Friedman et al. 2010) and the proportion of grade-1 oocytes and those 
cleaved to the 2-cell stage (Roth et al. 2002). Similarly, short-term administration of bovine 
somatotropin (bST) increased the proportion of grade-1 oocytes, but it did not improve cleavage 
rate or blastocyst formation (Roth et al. 2002). 

Both somatotropin and IGF-I receptors are expressed in ovarian follicles and immature oocytes 
(Longergan et al. 2000). Under thermoneutral conditions, low doses (325 mg) of bST during the 
pre- and peri-implantation periods (days 0 and 14 post insemination) reduced embryonic losses 
and improved fertility (Ribeiro et al. 2013). Exposure of dairy cows to heat stress decreased 
plasma IGF-I concentration in association with reduced oocyte quality (de Rensis & Scaramuzzi 
2003). It is therefore reasonable to assume that bST administration to increase IGF-I might 
mitigate the deleterious effects of heat stress. However, a single injection of bST (500 mg) at 
insemination did not improve fertility of hyperthermic cows (Bell et al. 2008). In-vitro studies 
have reported that physiological doses (12.5 ng/mL) of IGF-I reduce the deleterious effect of 
heat shock on GV-stage oocytes and improve their cellular and developmental competence 
(Paula-Lopes et al. 2013). On the other hand, non-physiological doses of IGF-I (100 ng/mL) 
did not improve (Paula-Lopes et al. 2013), and even had a negative effect (Zhandi et al. 2009) 
on developmental competence. While its effect on the oocyte is not clear-cut, IGF-I has been 
shown to reduce the negative effects of heat shock on 5-day-old embryos. Moreover, transferring 
in-vitro-derived embryos treated with IGF-I resulted in a higher pregnancy rate in the summer 
(Jousan & Hansen 2007). 

Effect of heat stress on nuclear and cytoplasmic maturation 

Thermal stress does not affect only the maternal mRNA; it also compromises other cellular 
characteristics of oocytes. Through maturation, the oocytes undergo multinuclear and 
cytoplasmic events, all associated with oocyte developmental competence (Eppig 1996). These 
include reorganization of the cytoskeletal filaments, resumption of meiosis, and redistribution 
of cytoplasmic organelles such as mitochondria, cortical granules and endoplasmic reticulum 
(Ferrieria et al. 2009; Yamada & Isaji 2011). Exposing bovine oocytes to heat shock during 
maturation impairs both microtubulin and microfilaments, which are involved in both nuclear 
and cytoplasmic organelle transport. As a result, most heat-shocked oocytes that fail to undergo 
maturation and fertilization are arrested at the MI to MII stages (Roth & Hansen 2005). Heat-shock 
induced perturbations of the spindle apparatus in bovine (Ju et al. 2005, Roth & Hansen 2005), 
porcine (Ju & Tseng 2004) and parthenogenetically activated bovine oocytes (Tseng et al. 2004). 
With respect to cytoplasmic events, heat shock impaired cortical granule translocation (Payton 
et al. 2004) and mitochondrial distribution in oocytes (Gendelman & Roth 2012b) and 2-cell-
stage embryos (Rivera et al. 2004). Cortical granule relocation is the mechanism underlying 
the elimination of polyspermy, whereas maternal mitochondrial storage is the primary energy 
source for embryo growth to the blastocyst stage. Taken together, these alterations might lead 
to fertilization failure.
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Mitochondrial dysfunction in heat-shocked oocytes 

Mitochondrial activity and membrane potential are key indicators of cellular viability. 
Mitochondrial membrane potential reflects the pumping of hydrogen ions across the inner 
membrane via the processes of electron transport and oxidative phosphorylation. Exposing 
GV-stage and maturing oocytes to heat shock reduces oocytes’ mitochondrial activity and 
mitochondrial membrane potential in cumulus cells (Paula-Lopes et al. 2012). Similarly, the 
proportion of oocytes with high mitochondrial membrane potential is relatively low during 
the summer (Gendelman & Roth 2012b). New evidence for season-induced alterations in 
the expressions of both nuclear (SDHD and ATP5B) and mitochondrial (MT-ND2, MT-CYB, 
COX2) genes has been recently provided by Gendelman and Roth (2012b). These genes are 
crucial in the oxidative-phosphorylation process and therefore, alterations in their expression 
might impair the number of active components in the electron transport chain and in turn lead 
to reduced ATP levels. Supporting this assumption, oocyte maturation with 50 μM CoQ10 a 
ubiquitous free-radical scavenger and a key component of the mitochondrial respiratory chain, 
increased the proportion of polarized mitochondria and enhanced the proportion of embryos 
that developed to the blastocyst stage in the fall, to a level similar to that achieved in the winter 
(Gendelman & Roth 2012b; Fig. 3).

Fig. 3. Effect of CoQ10, a ubiquitous free-radical scavenger, on mitochondrial function and 
developmental competence of oocytes collected in the fall. (a) Proportion of high-polarized 
mitochondrial membranes (∆ψm) in MII-stage oocytes. (b) Proportion of oocytes developed 
to 8-day blastocyst. Data are presented as means ± SEM; P < 0.05.

Heat-shock-induced apoptosis in oocytes 

Heat-induced alterations in mitochondrial functioning are associated with the activation 
of apoptotic cascades through intrinsic mitochondrial pathways. Exposing oocytes to 41ºC 



200 Z. Roth

during maturation decreased the proportion of oocytes with low mitochondrial membrane 
potential and TUNEL-positive chromatin (Soto & Smith 2009). Similarly, heat shock during 
maturation increased the proportion of oocytes expressing high activity of group II caspases 
(i.e., caspases 2, 3 and 7) and nuclear apoptotic fragmentation (Roth & Hansen 2004a,b). The 
mitochondrial apoptotic pathway involves cell-membrane alterations, such as phosphatidylserine 
externalization at an early phase of the apoptotic cascade (Lahorte et al. 2004) and activation 
of the sphingomyelin pathway, resulting in DNA damage (Hannun & Luberto 2000). Kalo and 
Roth (2011) linked heat-induced alterations in the oocyte phospholipid membrane and oocyte 
developmental competence. Alterations included hydrolysis of membrane sphingomyelin, 
ceramide generation and phosphatidylserine externalization (Annexin-V assay). Roth and Hansen 
(2004b) reported that the anti-apoptotic molecule S1P blocks the effect of heat shock on bovine 
oocytes, by modulating the ceramide–S1P balance. Specific inhibitors—fumonisin B1 to block 
dihydroceramide synthase and desipramine hydrochloride to block acid sphingomyelinase—
were used to inhibit ceramide formation through de-novo and hydrolytic pathways, respectively 
(Kalo & Roth 2011). Use of these inhibitors alleviated, to some extent, the effect of heat shock and 
support the notion that thermal-stress-induced apoptosis via ceramide formation is functionally 
related to the reduced developmental competence of bovine oocytes.

The amount of lipid in the ruminant oocyte is relatively high and consists of 50% triacylglycerol, 
20% phospholipid, 20% cholesterol and 10% free fatty acids (McEvoy et al. 2000). Thus, lipid 
metabolism, in particular that of sphingomyelins, might offer a number of opportunities for 
modifying oocyte responses to heat shock. In particular, ceramide can be produced de novo 
from condensation of serine with palmitoyl-CoA (Jenkins et al. 2002) and therefore, dietary 
manipulations that affect the membrane fatty acid composition or reduce ceramide formation 
might improve oocyte quality. Zeron et al. (2001) reported that oocyte membrane composition 
is affected by season, and is characterized by decreased polyunsaturated fatty acids during 
the summer. Feeding ewes with polyunsaturated fatty acids increased the proportion of high-
quality oocytes in that season (Zeron et al. 2002). Similarly, in-vitro supplementation of palm 
oil Ca-LCFA increased the proportion of oocytes developing to blastocysts (Fouladi-Nashta et 
al. 2007). Nevertheless, dietary fatty acids administered during the summer did not have any 
effect on in-vitro developmental competence of oocytes aspirated from lactating cows (Bilby 
et al. 2006).

Hyperthermia-induced oxidative stress

Hyperthermia-induced oxidative stress is suggested to be one of the processes by which 
environmental stress disrupts reproductive performance in mammals. Ozawa et al. (2002) 
reported that exposing zygotes to heat shock, either directly or through maternal hyperthermia, 
causes early embryonic loss and is associated with reduced levels of the cytosolic antioxidant 
glutathione (GSH). Elevated body temperature increases intracellular reactive oxygen species 
(ROS) in bovine oocytes (Nabenishi et al. 2012) and preimplantation embryos (Sakatani et 
al. 2004), and decreases GSH concentration in mouse embryos (Matsuzuka et al. 2004). 
The balance between pro- and antioxidants plays a pivotal role in the follicle: spontaneous 
resumption of meiosis is inhibited by antioxidants and may be induced by an increase in ROS 
(Takami et al. 1999). On the other hand, high ROS levels within the follicle are associated with 
increased cytoplasmic defects and abnormal chromosomal segregation (Van Blerkom et al. 
1997). Therefore, it is reasonable to assume that heat-induced perturbations of this balance are 
involved in disruption of the developmental competence of follicle-enclosed oocytes. Moreover, 
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administration of exogenous antioxidants has been suggested to overcome the adverse effects 
of heat stress on fertility. Nevertheless, vitamins A, E and C, provided either as nutritional 
supplements or intramuscularly, did not have any beneficial effect in heat-stressed cows (Ealy et 
al. 1994, Aréchiga et al. 1998, Paula-Lopes et al. 2003). Similarly, supplementation of vitamin 
E to the culture medium failed to improve in-vitro-derived bovine embryos under heat shock 
(Ealy et al. 1994, 1995, Paula-Lopes et al. 2003). On the other hand, in-vitro administration of 
anthocyanin and dithiothreitol was reported to protect embryos from heat shock (Sakatani et al. 
2007, Castro e Paula & Hansen 2008). Aréchiga et al. (1998) reported that feeding supplemental 
β-carotene for at least 90 days beginning at ~15 days after calving increased the proportion 
of cows that were pregnant at 120 days postpartum by 14 percentage units, suggesting that 
long-term rather than periodic administration is needed.  

Using a mouse model, Roth et al. (2008) showed that in-vivo administration of the antioxidant 
epigallocatechin gallate (EGCG), the most abundant flavonoid component of green tea, can 
moderate some of the deleterious effects induced by maternal hyperthermia. Pretreatment with 
EGCG at a dose of 100 mg/kg body weight increased the proportion of early cleaved embryos 
and the percentage of blastocysts that formed and hatched. In addition, pretreatment with 
EGCG reduced the apoptotic status of preimplantation embryos, most likely as a result of its 
antioxidative, antiapoptotic and/or membrane-stabilizing activities within the antral follicles. 
Matsuzuka et al. (2005) showed that administration of melatonin, another potent ROS scavenger, 
to heat-stressed mice alleviates hyperthermia-induced early embryonic death. A recent study 
reported that treatment of dairy cows with melatonin implants before calving improved their 
reproductive performance in the summer as it reduced days open and the number of AIs per 
pregnancy (Garcia-Ispierto et al. 2013). Taken together, although oxidative stress appears to 
be involved in the mechanism by which hyperthermia disrupts the oocyte, use of exogenous 
antioxidants to manipulate the animal’s oxidative status has not yet been implemented in 
practice. 

Heat stress and early embryonic development

Much of the effect of heat stress involves changes in ovarian function. However, studies indicate 
that preimplantaion embryos are also sensitive to elevated temperatures in a stage-dependent 
manner. Embryos at early developmental stages are more susceptible to thermal stress and 
then become more resistant at later developmental stages (Hansen 2007a,b). Exposing cows 
to elevated temperatures between onset of oestrus and insemination (Putney et al. 1988) or 
on day 1 after oestrus (but not on days 3, 5 or 7) decreased the development and viability of 
embryos on day 8 (Ealy et al. 1993). Similarly, induction of heat shock blocked the development 
of 2-cell-stage embryos, had a moderate effect on 4- to 8-cell-stage embryos and only a limited 
effect on the morulae (Hansen 2007a). A change in the balance between ROS generation and 
GSH level has been recently suggested to underlie acquisition of embryonic thermotolerance 
(Hansen 2013b).

Embryo-transfer procedures can bypass the thermosensitive developmental stages (for review 
see Hansen 2013b). Various studies have reported that embryo transfer during the summer results 
in pregnancy rates similar to those achieved with AI or embryo transfer in the winter. One major 
limitation of this approach is the poor survival of embryos following freezing. The percentage 
of pregnancies during the hot season was greater for cows receiving in-vitro-derived fresh, but 
not frozen, embryos (Ambrose et al. 1999, Drost et al. 1999). On the other hand, transferring 
in-vivo-derived frozen–thawed embryos increased pregnancy rates for recipient cows relative 
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to artificially inseminated ones (Putney et al. 1989). However, when the recipient could not 
maintain normal body temperature, pregnancy rate following embryo transfer was compromised 
(Vasconcelos et al. 2006). Use of an efficient cooling system to maintain normothermia in the 
recipient cows is thus highly important as it might alleviate the deleterious effects of heat stress 
on the uterus and plasma progesterone concentrations. 

Effect of heat stress on the CL and progesterone level 

Formation of a functioning CL following ovulation is obligatory for pregnancy maintenance. 
Thus, heat-induced alteration in luteal function and reduced progesterone (P4) concentration in 
the circulation is another mechanism suggested to reduce embryo survival and to increase early 
embryonic loss. Plasma P4 concentrations during the summer are lower than those during the 
spring or winter (Howell et al. 1994, Wolfenson et al. 2002). Chronic seasonal exposure has 
a deleterious carryover effect on follicular function that leads to the formation of a suboptimal 
CL and low P4 concentration in the plasma (Wolfenson et al. 2000). An in-vitro study suggested 
that luteal insufficiency is the result, at least in part, of previous exposure of the preovulatory 
follicle to thermal stress and decreased production of P4 by follicular cells, in particular theca 
cells (Wolfenson et al. 2002). 

As a delayed increase in postovulatory P4 and low concentrations during the preimplantation 
stages can lead to early embryonic losses (Mann & Lamming 2001), various studies have 
attempted to moderate the deleterious effects of heat stress on luteal function by inducing an 
accessory CL and excess luteal tissue. Administration of human chorionic gonadotropin (hCG) 
on day 5 or 6 post-AI did not affect CR (Schmitt et al. 1996) or increased it by 13 percentage 
units (Beltran & Vasconcelos 2008). On the other hand, administration of GnRH between days 
5 and 15 post-AI increased conception rate by approximately 15 percentage units (Willard et 
al. 2003; López-Gatius et al. 2006), whereas others found no improvement in summer fertility 
(Franco et al. 2006). Differences among studies could be related to variations in the day of 
hCG or GnRH administration or to severity and duration of the thermal stress. 

Supplementation of exogenous P4 at the very early stages of pregnancy has the potential to 
increase embryo survival and improve conception in cows. Under normothermal conditions, 
P4 supplementation during the early (days 5 to 9), but not late (days 12 to 16) luteal phase 
increased trophoblast length and Interferon-τ production on day 16 postfertilization (Mann et al. 
2006). Friedman et al. (2012) recently reported that administration of a controlled intravaginal 
drug-releasing (CIDR) device on day 5 ± 1 post-AI for 13 days had a substantial effect on CR 
in the summer when the device was inserted on day 4, relative to days 5 or 6 (43, 39 and 
34%, respectively). Importantly, cows with low BCS at peak lactation, or those diagnosed with 
postpartum reproductive disorders, or both, gained significant benefit from the CIDR implant 
(Fig. 4). It should be noted that cows were maintained under normothermic to temporary mild 
hyperthermic conditions. 

Conclusion 

In-vitro and in-vivo studies explored the multifactorial effects of heat stress on ovarian function 
(Fig. 5). These effects include alterations in follicular growth, steroid production and hormonal 
secretion, and reduction in oocyte and embryonic developmental competence. Cooling is a 
prerequisite for any additional strategy and should be performed over long periods of time. 
Similarly, periodic administration of antioxidant is not efficient at protecting the follicle and 



203Heat stress and reproductive performance

its enclosed oocytes. Hormonal treatments with GnRH/PG2α to induce follicular turnover were 
found successful for a subpopulation of cows (primiparous, high BCS, low SCC), but had only 
a limited impact on the herd as a whole. The deleterious effect of heat stress on CL function 
can be mitigated by insertion of a CIDR device 5 days post-AI to increase P4 levels in order 
to support the developing embryo, and this has been found to be beneficial for a subgroup 
of cows with postpartum uterine diseases. The effect of heat stress on the oocyte and early-
cleaved embryos can be bypassed by thermoresistant embryo transfer. Nevertheless, to date, 
none of these suggested approaches have been widely implemented on farms. It is proposed 
that combining two or more of these potential approaches into one program might be more 
efficient for improving reproductive responses under heat stress. For example, combining 
hormonal treatments before (GnRH/PG2α) and after (CIDR) insemination would compensate for 

Fig. 4. CIDR inserted post-AI to improve conception rate during the summer and fall. Cows 
were treated with insert containing 1.9 g of P4 on day 5 ± 1 post-AI for 13 days. Analysis 
revealed (a) a day-by-treatment interaction (P < 0.06), with approximately 1.5 ng/mL greater 
progesterone concentration in plasma from day 9 to 16 of the cycle. (b) Interaction (P = 
0.035) between treatment and low BCS at peak lactation, reflected by a 26-percentage-
unit increase in conception rate. (c) A 23-percentage-unit increase in conception rate in 
cows treated with CIDR and diagnosed with postpartum reproductive disease. Data are 
presented as means.
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the deleterious effects of summer heat stress on two different reproductive tissues, the ovarian 
pool of follicles and their enclosed oocytes and the CL, respectively. This program has been 
found to extend the population of cows that benefit by 16 percentage units relative to each 
treatment alone (Z Roth et al., unpublished observations). It is suggested that a comprehensive 
strategy, rather than correcting the function of a single part of the reproduction tract, is required 
to cope with the whole heat-stress problem. 

Fig. 5. Diagram illustrating the effects of heat stress and heat-induced oxidative stress on oocyte and 
embryo competence at various developmental stages. Also presented are various compounds that can be 
administered to counteract the effects of heat shock in vitro, and some potential approaches to improving 
fertility. Heat stress can impair follicular development and steroid synthesis, which in turn can disrupt the 
endocrine milieu. Heat stress also affects oocyte maturation and developmental competence, as reflected 
by impaired nuclear, cytoplasmic maturation and cytoskeletal rearrangement during maturation, as well as 
altered mitochondrial features and transcript abundance. Heat-induced apoptosis has been documented 
in matured oocytes and preimplantation embryos, but not in the 2-cell-stage embryo. The embryo is more 
susceptible to thermal stress and reactive oxygen species (ROS) in the early stages of development and 
becomes more thermotolerant coincident with activation of the embryonic genome. In-vitro administration 
of antiapoptotic, antioxidant and growth factors can counteract the effects of heat shock on the oocyte 
and embryo. However, these have not yet seen practical use. Various approaches have been examined 
to improve the fertility of lactating cows under heat stress. While an efficient cooling system is required 
to maintain cows in normothermia, it is not sufficient to improve fertility. Other suggested approaches, 
to be combined with cooling, are: (1) hormonal administration to induce follicular turnover; (2) transfer 
of in-vitro-derived embryos treated with IGF-I. In both approaches, increasing plasma progesterone 
concentration to support the developing embryo might help increase conception rate during the summer.  
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