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Advances in the analyses of human and other higher eukaryotic genomes
have disclosed a large fraction of the genetic material (ca 98%) which does
not code for proteins. Major portion of this non-coding genome is in fact
transcribed into an enormous repertoire of functional non coding RNA
molecules (ncRNAs) rather than encoding any proteins. Recent fascinating
and fast progress in bioinformatic, high-throughput sequencing and other
biochemical approaches have fuelled rapid growth in our appreciation
of the tremendous number, diversity and biological importance of these
ncRNAs in the hidden layer of gene regulation both at transcriptional
and post-transcriptional level. Broadly ncRNAs fall into three size classes
namely, 20 nucleotides for the large family of microRNAs (miRNAs),
to 25-200 nucleotides for other different families of small RNAs and
finally to over thousands of nucleotides for macro ncRNAs involved in
eukaryotic gene regulation. Among the ncRNAs that have revolutionized
our understanding of eukaryotic gene expression, microRNAs (miRNAs)
have recently been emphasized extensively with enormous potential for
playing a pivotal role in disease, fertility and development. They are found
to be potentially involved in various aspects of physiological regulation
of reproductive tissues (testis, ovary, endometrium and oviduct), cells
(sperm and oocytes) and embryonic development in addition to other
body systems. Here, we review the recent work on miRNAs in details
and some other small ncRNAs briefly in animal models focusing on their
diverse roles in the physiology of reproductive cells and tissues together
with their implications for ruminant reproductive biology.

Introduction

Proteomic analysis of genome sequences in the past highlighted only mRNA-coding genes and

non-protein-coding transcripts were often overlooked. Genomic analysis in the last decade

however revealed that with an increase in genome complexity, the protein coding fractions of

genome is much fewer compared to non-coding portion. It is estimated, that around 98% of

the transcriptional outputs of eukaryotic genomes consist of large proportion of RNAs, which

do not encode proteins (Adams et al. 2000). This vast untranslated fraction of the genome

harbors thousands of genes which lead to transcription of a remarkable number of functional

non-coding RNAs (Mattick & Makunin 2006). Beside the initial discovery of the ribosomal
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RNAs, small nuclear RNAs and transfer RNAs that are involved in mRNA splicing and translation,

many more classes and types of recently discovered ncRNAs are also known to be involved

in the regulatory functions namely, but not limited to, transcriptional and post transcriptional

gene regulation, chromosome replication, RNA processing, site-specific RNA modification,

DNA methylation, telomere synthesis and length differentiation, protein degradation and

protein translocation (Storz 2002, Hannon et al. 2006). Ongoing identification of new classes

of non-coding RNAs (ncRNAs) and new member of existing classes presently underscores the

paramount importance of ncRNAs function at many levels essential for gene expression and

genome stability.

Types of ncRNAs are emerging from occasional discoveries with varying in size, mechanisms

of biosynthesis and their regulatory mechanisms. However, their list is continuously and tremen-

dously increasing and getting appreciation for their functional importance. Broadly, ncRNAs

could be differentiated into three classes according to their range in size. Among them, the

tiny one known as miRNAs which ranges in size about 20-24 nucleotides (nt) and have been

found to modulate development of mammals and engaged in disease development as well as

contributing to the fertility of different species through post transcriptional gene regulation.

The group of ncRNAs ranging in size 100-200 nt are designated as small RNAs commonly

found as translational regulators in bacteria and some other species as well. Lastly, the ncRNAs

comprising the majority of longer transcripts to over 10000 nt in size are called macro ncRNAs

involved in epigenetic regulation of gene expression in eukaryotes (Hutvagner & Zamore 2002,

Storz 2002). In contrast to the uncertainty surrounding the function of most mammalian macro

ncRNAs, imprinted macro ncRNAs have clearly been identified as regulator of flanking genes

by DNA methylation (Koerner et al. 2009). Small non coding RNAs such as miRNAs, short

interfering RNAs, piwi-interacting RNAs and short nucleolar RNAs are associated with trans-

acting functions, whereas macro ncRNAs are so far only associated to cis-acting functions.

However, as knowledge on the types and the members of each type are still limited, most

of these biochemically abundant species of ncRNAs are yet to be discovered. It is likely that

there are many more ncRNAs than was ever suspected. Here we review the recent reports on

the small non-coding RNAs with particular emphasis on miRNAs in details and some other

selected small ncRNAs briefly in animal models focusing on their diverse roles in the physiology

of reproductive cells (germ cells) and tissues (testis, ovary, endometrium, oviduct and embryo)

together with their implications for ruminant reproductive biology.

Small non-coding RNAs and gene regulation

The notion of the sncRNAs is not new - for example 5S rRNAs, U6 RNA, snoRNAs, BC200 RNA,

etc. were discovered long before, but they are only recently highlighted because of growing

list of classes and members of sncRNAs which are found to be physiologically important as

riboregulators. A short list of several classes of sncRNAs in different species with their potential

functions are presented but not limited to Table 1. Among these all ncRNAs, miRNAs and

some other small ncRNAs have revolutionized our understanding of a hidden layer of new

gene regulation now-a-days. MiRNAs are the well characterized ones getting more attention

to the scientific community due to their high level of importance. Diverse expression pattern

of miRNAs and high number of their potential target mRNAs suggest their involvement in the

regulation of various developmentally related genes at post-transcriptional level (Lau et al. 2001,

Lai 2003, Ambros 2004, Bartel 2004, Alvarez-Garcia & Miska 2005, Plasterk 2006, Chen &

Rajewsky 2007). The tiny (18-24 nt in length) and single-stranded, derived from primary tran-

scripts termed as "pri-miRNAs", having an RNA hairpin structure of 60-120 nt with a mature
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Table 1. Classes of small ncRNAs 200 nt) in different species with their functions

Class of sncRNA Length Potential/probable Example Reference
(nt) function species

Reported in many (Fire et al. 1998), Reviewed in
species (Rana 2007)

Arabidopsis (Peragine et al. 2004,
Vazquez et al. 2004)

Mammals, Birds, (Lee et a). 1993, Bagga et al.
flies, Nematodes, 2005)
etc. (conserved)

Small interfering 19-21 Target mRNA
RNA (siRNA) cleavage

Trans-acting 21-22 mRNA cleavage
siRNA (tasiRNA)

MicroRNA 19-25 Translational
(miRNA) repression

24-27 Transposon control, Yeast, plants
transcriptional & flies

silencing

26-31 Transposon control in Mammals
germ cells

—28 Histone methylation, Tetrahymena
DNA elimination

68 Directs insertion & T. brucei
excision of uridines

80 Targets mRNAs for E. coli
degradation

87 Preventing formation of an E. coli
inhibitory mRNA structure

102 Directs 29-0-ribose S. cerevisiae
methylation of target
rRNA 


(Aravin et a). 2001, Reinhart
& Bartel 2002, Volpe et al.
2002, Grewal & Moazed
2003, Carrington 2005)

(O'Donnell & Boeke 2007)

(Mochizuki et al. 2002)

(Kable et al. 1997, Souza et
al. 1997, Simpson et al. 2000)

(Masse & Gottesman 2002)

(Wassarman et a/. 1999,

Altuvia & Wagner 2000)

(Samarsky & Fournier 1999,
Kiss 2001)

Repeat-associated
siRNA (rasiRNA)

Piwi-interacting
RNA (pi RNA)

Small-scan RNA
(scnRNA)

gCYb gRNA

RyhB sRNA

DsrA sRNA

U18 C/D
snoRNA

OxyS 109 Represses ranslation E. coli (Wassarman et al. 1999,
by occluding ribosome Altuvia & Wagner 2000)

binding

E. coli

E. coli

Human

Rodents

S. cerevisiae

Primates,
human

(Wassarman et al. 1999,
Keenan et a). 2001)

(Wassarman et al. 1999,
Wassarman & Storz 2000)

(Gu et al. 1998, Will &
Luhrmann 2001)

(Shen et al. 1997)

(Samarsky & Fournier 1999,
Kiss 2001)

(Martignetti & Brosius 1993)

4.5S RNA 114 Protein translocation

65 RNA 184 Transcription: Modulates
promoter use

U2 snRNA 186 RNA processing: Core of
spliceosome

BC1 RNA 142-165 Amplification of short
interspersed elements

snR8 H/ACA 189 Directs pseudouridylation
snoRNA of target rRNA

BC200 RNA 195-205 Encodes a neural small
cytoplasmic RNA

miRNA in one of the two strands (Fig. 1). This hairpin in turn is cleaved from the pri-miRNA

in the nucleus by the double-strand-specific ribonuclease, Drosha (Lee et al. 2002). The result-

ing precursor miRNA (pre-miRNA) is transported to the cytoplasm via a process that involves

Exportin-5 (Yi et al. 2003) and subsequently cleaved by Dicer (Lee et al. 2003) to generate a

short, double-stranded RNA duplex. One of the strands of the miRNA duplex is incorporated
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into a protein complex termed RNA induced silencing complex (RISC). RISC is guided by the
incorporated miRNA strand to mRNAs containing complementary sequences in 3 ' untranslated
region to 7- to 8-nt region of 5 " end of miRNA called seed sequence, which primarily results in
inhibition of mRNA translation (Pillai et al. 2005) (Fig. 1). Blocking the translation of mRNAs
occurs through interaction of RISCwith eukaryotic translation initiation factor 6, which prevents
assembly of 80S ribosomes (Chendrimada et al. 2007), or through inhibition of translation after
initiation (Jackson & Standart 2007). Recent reports have also indicated that miRNA, with or
without perfect sequence complementarity, can cause an increase in mRNA degradation by
endonucleolytic cleavage or deadenylation, respectively (Jackson & Standart 2007) or changes
in proteins associated with RISC can cause a shift from translational inhibition to translational
enhancement (Vasudevan et al. 2007, Orom et al. 2008). Those mRNAs which are repressed
by miRNAs are further stored in the cytoplasmic foci called P-bodies (Liu et al. 2005a, Liu et
al. 2005b, Rehwinkel et al. 2005). MiRNAs have found to play an integral part of animal gene
regulatory networks as one of the most abundant classes of gene regulators.

Fig. 1. Biogenesis of miRNAs and their mechanism of gene regulation.

Pri-miRNAs, which are generally synthesized by RNA polymerase II, are trimmed in the

nucleus by Drosha to generate a —60-nt pre-mi RNA which is exported to the cytoplasm,

where it is further processed by Dicer, in association with one of the four mammalian

Argonaute proteins (Ago) and TBRP. Target mRNAs are recognized by miRNAs in the form

of ribonucleoprotein complexes (miRNPs) through sequence complementarity, usually

between the miRNA and sequences in the 3 "-UTR of the mRNA. The miRNP complex

which is loaded onto the target mRNA exhibits direct or indirect effect in translational re-

pression. Direct effects occur either through inhibition of initiation (-) of translation through

binding Ago2 to m'G (7-methyl-G cap) results in prevention of ribosome association with

the target mRNA, or through inhibition of translation post-initiation, which includes pre-

mature ribosome drop off, slowed or stalled elongation, and co-translational protein. In

addition to direct effects on translation (or protein accumulation), miRNPs can have other

effects on targeted mRNAs, including promoting deadenylation (+), which might result in

degradation (increased turnover) (Nilsen 2007). Translational repression and/or deadenyla-

tion occurs followed by decapping and exonuclease-mediated degradation if base-pairing

is partially complementary or, in the case of perfect complementarity and provided the

miRNP contains specifically Ago2, may result in endonucleolytic cleavage of the mRNA

at the site where the mi RNA is annealed (Standart & Jackson 2007).
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Despite the fact that animal miRNAs, which are the focus of this review, have a significant

importance in the reproductive process, the other types of small noncoding RNA with distinct
properties also deserve more attention. Small interfering RNAs (siRNAs) differ from miRNAs

mainly in their Origin. They are the products of long, Dicer-processed, double-stranded (ds)

RNAs that silence genes by cleaving their target mRNAs (Fig. 2A) [reviewed in Reference (Chu

& Rana 2007)]. The RNAi was first discovered by introduction of long ds RNAs into C. elegans

(Fire et al. 1998). Like endogenous miRNAs, long dsRNAs are processed by the Dicer-TRBP-

PACT complex [reviewed in Reference (Chu & Rana 2007, Rana 2007)]. This dsRNA-processing
step creates RNA with 2-nt overhangs at their 3 ' ends and phosphate groups at their 5 ' ter-

mini. The anti-sense strand of siRNA, known as the guide strand serves as the template for

sequence-specific gene silencing by the RNAi machinery (Fig. 2A). The sense strand is known

as the passenger strand. Subsequent to Dicer processing, the 21-23 nt guide strand of duplex

siRNA is loaded into Ago2 to form the effector siRISC. Ago2 is the endonuclease responsible
for the cleavage activity of siRISC. With perfect base pairing and formation of an A-form helix

structure between the siRNA guide strand and its target mRNA, siRISC cleaves its target 10-11

nt from the 5 end of the guide siRNA strand, and the complex is recycled for the next round
of target mRNA cleavage. mRNAs cleaved by siRISC are subsequently degraded by cellular

exonucleases, resulting in robust depletion of target genes [reviewed in (Chu & Rana 2007,

Rana 2007)].

Piwi-interacting RNAs (piRNAs) are a third group of small RNAs (24 - to 30 - nt) generated by a

Dicer-independent mechanism and are associated with members of the Piwi family, a subtype
of Argonaute proteins with MIWI, MILI, and MIWI2 orthologs (Kuramochi-Miyagawa et al.
2001, Aravin et al. 2006, Lau et al. 2006, Watanabe et al. 2006). PiRNAs can be derived from

either transposons and other repeated sequence elements or complex DNA sequence elements

(Aravin et al. 2007, Brennecke et al. 2007, Houwing et al. 2007). Those piRNAs which are
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derived from repeated sequence elements are specifically designated as repeat-associated small

interfering RNAs (rasiRNAs). Based on the studies in Drosophila and mouse, piRNA has been

found to be produced like ping-pong manner, in which Ago3 bound to sense-strand piRNAs

catalyzes antisense-strand cleavage at an A:U base-pair that generates the 5 ' end of antisense

piRNAs (Fig. 2B) (Aravin et al. 2007, Brennecke et al. 2007, Gunawardane et al. 2007). The 5

ends of the resulting cleavage products are proposed to be associated with Aub or Piwi, with

nucleolytic processing of the 3 ' overhangs generating mature 23- to 30-nt antisense piRNAs

(Fig. 2B). The mature antisense pi RNA Argonaute complexes are then proposed to bind and

cleave sense strand RNAs, silencing gene expression and generating the 5 ' end of sense-strand

piRNA precursors that will be associated with Ago3. Processing of the 3 ' overhang produces

mature sense-strand piRNAs, completing the cycle (Fig. 2B) reviewed by (Klattenhoff & Theu-

rkauf 2008). Genetic studies in mice, Drosophila and zebrafish showed that piRNAs are crucial

to germ line development (Kuramochi-Miyagawa et al. 2004, Carmell et al. 2007, Houwing et

al. 2007) and proteins involved in piRNA production have also been implicated in the control

of gene expression in somatic cells (Pal-Bhadra et al. 2004, Grimaud et al. 2006).

Function of miRNAs in reproduction

miRNAs are estimated to comprise 1-5% of animal genes (Bartel 2004, Bentwich et al. 2005,

Berezikov et al. 2005) or a given genome could encode nearly thousands of miRNAs (Bentwich

et al. 2005). Moreover, a typical miRNA regulates hundreds of target genes (Brennecke et al.
2005, Krek et al. 2005, Lewis et al. 2005, Xie et al. 2005) and altogether they could target a

large proportion of genes up to 30% of the genome (Lim et al. 2005). Changes in the expression

of even a single miRNA found to have a significant impact on the outcome of diverse cellular

activities. Inhibition of miRNA biogenesis has been found to be resulted in developmental

arrest in mouse and fish (Bernstein et al. 2003, Wienholds et al. 2003, Giraldez et al. 2005)

and female infertility in mouse (Otsuka et al. 2007, Otsuka et al. 2008). Investigation on the

potential role of miRNA in reproduction up-to-date has been accomplished by the different

approach. First, by identifying the population of miRNAs in the germ cells and reproductive

tissues through cloning method. Second, by investigating the expression of candidate miRNA

or group of miRNAs using microarray platform or RT-PCR approach. Third, by localizing can-

didate miRNA in the tissue or cell using in-situ hybridization approach. Forth, by knocking

down global miRNA expression by creating Dicerl knockout mice. Finally, by investigating

specific miRNA function through using the oligonucleotide inhibitors and/or miRNA mimics or

precursors. Accounting the studies and approaches published so far, the following sub-sections

describe the role of miRNAs with respect to reproductive biology.

Function of miRNAs in the female reproduction

Expression and regulation of miRNAs in the mammalian ovarian cells and their function

Dynamically regulated, complex and coordinated ovarian functions include sequential recruit-

ment, selection and growth of the follicles, atresia, ovulation and luteolysis are under control

of closely coordinated endocrine and paracrine factors. All these factors are controlled by

tightly regulated expression and interaction of a multitude of genes in different compartments

of the ovary (Bonnet et al. 2008). As one of the major classes of gene regulators, miRNAs are

considered to be involved in the regulation of ovarian genes (Ro et al. 2007a, Hossain et al.

2009). Several studies expanding from identification and expression profiling to functional
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involvement of miRNAs in the ovary have been carried out in different animal species. Four
attempts have led to identify the distinct and major population of miRNAs in 2 weeks old
and adult mouse ovary (Ro et a/. 2007b), adult mouse ovary and testis (Mishima et a/. 2008),
adult bovine ovary (Hossain et al. 2009) and new born mouse ovary (Ahn et al. 2010) through
small RNA library construction and sequencing. Regardless of species these studies showed
that let-7 family, miR-21, miR-99a, miR-125b, miR-126, miR-143, miR-145 and miR-199b
to be most commonly abundant miRNAs in the ovary. The presence of miRNAs and their
differential expression can give the primary clue for their potential role in ovarian function.
However, further functional characterization of these miRNAs in different cell types of ovary
(oocyte, granulosa, theca cells and ovarian stroma) at different follicular stage or at different
estrus cycle remains to be elucidated. Although bioinformatic prediction and analysis of ovary
specific mRNAs targets for these enriched miRNAs revealed several molecular and cellular
pathways and physiological functions important for ovarian follicular development (Hossain
et al. 2009), atresia, ovulation as well as ovarian dysfunction, the identification of functional
target mRNAs remains to be validated by appropriate wet lab experiment.

Several studies highlighted the expression and regulation of some individual miRNAs in
different ovarian cells especially in oocyte and granulosa cells. After disclosing the absence or
less role of sperm born miRNAs in mammalian fertilization (Amanai et al. 2006), further stud-
ies were directed towards these two cell types (oocyte and granulosa). For example, the first
attempt was made in 2006 and the study identified small number of miRNAs as well as some
other small noncoding RNAs (rasiRNAs, gsRNAs) in mouse oocyte (Watanabe et al. 2006).
However, further identification of miRNAs in oocytes through direct cloning method is still
missing rather more initiative has been taken for microarray or RT-PCR based miRNAs detec-
tion through homologous or heterologous approach. For example, the differential expression
of miRNAs has been identified during bovine oocyte maturation and preimplantation embryo
development in-vitro using the heterologous approach (Tesfaye et al. 2009).

The Microarray experiments show that Dicerl is highly expressed and functionally important
in the oocytes during folliculogenesis as well as in the mature oocytes (Su et al. 2002, Choi et
al. 2007, Murchison et al. 2007). Conditional knockout of Dicer1 in growing oocytes revealed
unaffected oocyte growth and folliculogenesis during the early stage but meiosis I has been
found to be arrested with defective spindle organization in oocytes lacking Dicerl (Murchison
et al. 2007). Moreover, transcriptional analysis through microarray experiments has identified
the major portion of the transcripts as misregulated in Dicerl-deficient oocytes. These efforts
not only provide initial evidence for the role of miRNAs in the oocyte but also suggested that
a large proportion of the maternal genes are directly or indirectly under the control of miRNAs
(Murchison et al. 2007, Tang et al. 2007). However, Suh et al. studied the effect of deletion of
another miRNAs processing molecules called Dgcr8 and revealed contrasting conclusion that
the effects on the phenotypes in Dicer deficient oocytes are rather due to endogenous siRNAs
(Suh et al. 2010). Moreover, the expression level of miRNAs in Dgcr8 deficient oocyte found
to be reduced as similar to the Dicer deficient oocyte. In addition, there was no effect due to
deletion of Dgcr8 allele even from maternal and zygotic genome on the phenotype as well
as mRNA profile which were very unlikely for Dicer deficient oocytes. These findings show
that miRNA function is globally suppressed during oocyte maturation and preimplantation
development.

The progress of the study on miRNAs is higher in case of granulosa cells compared to
oocyte and other ovarian cell types. For example, study of expression of miRNAs by Fiedler
et al. (2008) in mouse mural granulosa cells collected before and after an ovulatory dose of
hCG identified miR-132 and miR-212 as highly upregulated following LH/hCG induction.
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Further analysis of these two miRNAs in cultured granulosa cells revealed the roles in the post-
transcriptional regulation of CtBP1 gene which is known to be interacting with steroidogenic
factor-1 and acts as a co-repressor of nuclear receptor target genes. Recently, studies have been
conducted to know the role of miRNAs in human granulosa cells (GC) by transfecting 187
individual synthetic miRNA precursors that mimic endogenous precursor miRNAs representing
the majority of human miRNAs (Sirotkin et al. 2009a). Interestingly, they have screened 80
miRNAs which control both proliferation and apoptosis in ovarian granulosa cells, as well as
they have identified miRNAs which promote and suppress these processes utilizing a genome-
wide miRNA screen. Transfection of cultured human granulosa cells with 11 out of 80 tested
miRNA constructs resulted in significant increase in percentage of cells containing PCNA a cell
proliferation marker. These were mir-108, mir-7, mir-9, mir-105, mir-128, mir-132, mir-141,
mir-142, mir-152, mir-188 and mir-191. Eleven out of the 80 miRNAs tested in the same
experiment (mir-15a, mir-96, mir-92, mir-124, mir-18, mir-29a, mir-125a, mir-136, mir-147,
mir-183 and mir-32) found to promote up to 2-fold accumulation of Bax - proapoptic marker
in human primary granulosa cells. However, the detailed regulatory mechanism for regulating
such two processes through targeting which mRNAs by the individual miRNAs are unknown
and remains to be disclosed in future investigation.

The most recent work highlighted one miRNA (miR-224) in detail for regulation of granulosa
cell proliferation and thereafter has shown to affect ovarian estrogen release in mouse (Yao et
al. 2010). In that experiment miR-224 expression was found to be regulated by TGF-R/Smads
pathway through inhibiting TGF-g superfamily type I receptors (SB431542) which leads to
blockage of phosphorylation of the downstream effectors Smad2/3 in vitro in granulosa cells.
The ectopic expression of miR-224 was suggested to enhance TGF- g 1-induced granulosa
cell proliferation through targeting Smad4. This was a good demonstration for the notion that
miRNAs could control or promote TGF- R 1-induced GC proliferation and ovarian estrogen
release. However, there are many more miRNAs and their mechanism involved in the function
of granulosa cells is still remaining to be elucidated. So, to further clarify the role of miRNAs
in oogenesis and folliculogenesis, generation of knockouts or knocking down the individual
miRNAs could help to understand their critical roles in ovarian development as well as ovar-
ian cellular functions. Information on the regulatory role of miRNAs in the ovarian cells of
ruminants compared to human and mouse are so limited and these are the open field for the
researcher working on ruminant reproductive biology. Currently, the expression and functional
evidence of miRNAs in the follicular theca cells in any physiological states of any species
remains to be elucidated.

Ovarian steroidogenesis and miRNAs

Recent studies revealed interesting relationship between ovarian steroids and miRNAs. Several
studies suggested ovarian steroid dependent biogenesis & maturation of miRNAs and reversely
some set of miRNAs could regulate the secretion of ovarian steroid. It has been first demon-
strated that ovarian steroids influence the expression of some miRNAs (hsa-miR20a, hsa-m iR21
and hsa-miR26a) in endometrial stromal cell and glandular epithelial cell in human (Pan et al.
2007). The molecular mechanism by which ovarian steroids regulate the expression of miRNAs
was unclear but such regulatory function has been suggested to alter the expression of their
target genes and cellular activities manifested by their products thereby (Pan et al. 2007). It
has been also shown that LH/hCG regulates the expression of selected miRNAs, which affect
posttranscriptional gene regulation in mouse within ovarian granulosa cells (Fiedler et al. 2008).
Estrogen was found to suppress the levels of a set of miRNAs in mice and human cultured cells
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through estrogen receptor a (ERa) by associating with the Drosha complex and preventing
the conversion of pri-miRNAs into pre-miRNAs (Yamagata et al. 2009). As down-regulation of

miRNAs appeared to stabilize human VEGF mRNA, the posttranscriptional control by estro-

gen appears to mediate the half-life of estrogen target genes via regulated mi RNA maturation
(Yamagata et al. 2009). In addition, upregulation of subset of miRNAs in female mice lacking

estrogen receptor a and down regulation of some miRNAs in the estrogen target organ (Uterus)

was observed following estradiol (E2) treatment in ovariectomized female mice (Macias et al.

2009). Altogether these studies suggested that ERa bound to E2 inhibits the production of

a subset of miRNAs by a mechanism whereby ERa blocks Drosha-mediated processing of a

subset of miRNAs by binding to Drosha in a p68/p72-dependent manner and inducing the

dissociation of the microprocessor complex from the pri-m iRNA (Macias et al. 2009).
In contrast, some miRNAs are also found to play important role in the ovarian steroidogenesis

(Sirotkin et al. 2009b). Genome-wide screening of miRNAs revealed the involvement of miRNAs
in control of release of the ovarian steroid hormones progesterone, androgen and estrogen in

human ovarian cells (Sirotkin et al. 2009b). They have evaluated the effect of transfection of
cultured primary ovarian granulosa cells with gene constructs encoding the majority of identified

human pre-miRNAs on release of progesterone, testosterone and estradiol was also evaluated.

These results revealed thirty-six out of 80 tested mi RNA constructs inhibiting the progesterone

release in granulosa cells and 10 miRNAs have been found to promote progesterone release.

Subsequent transfection of cells with antisense constructs to two selected miRNAs (mir-15a and
mir-188) revealed induction of progesterone output due to lack of blockage of progesterone

release. While fifty-seven tested miRNAs were found to inhibit testosterone release, only one

miRNA (mir-107) enhanced testosterone output. Fifty-one miRNAs suppressed estradiol release,
while none of the 80 miRNAs tested were found to stimulate it (Sirotkin et al. 2009b). However,
the complex regulatory mechanisms for controlling miRNAs biogenesis by the steroids or vice

versa are still unclear. The involvement of miRNAs for such mechanisms as regulator of several

hundreds of genes as potential target could be much higher than ever speculated.

Role of miRNAs in other female reproductive tissues and disease conditions

Both physical and functional integrity of the oviduct is responsible for the transport and pro-

tection of the oocyte during fertilization and early embryo development through shuttle the

oocyte/embryo toward the uterus and secreting necessary proteins. As the activity of this organ

largely depends on the level of estrogen and progesterone, it is likely that transcriptional regu-
lation for the cyclic phenotypic changes of the oviduct and uterus could be under control of

miRNAs as evidenced in the ovary. But, the expression and regulatory network of miRNAs for

the physiology of oviduct is still an open field for investigation. The loss- or gain-of-function

studies of Dicer have evidenced primarily the importance of miRNAs for oviductal functions.

Conditional inactivation of Dicer in the mesenchyme of the developing Mullerian ducts, in

ovarian granulosa cells and mesenchyme-derived cells of the oviducts and uterus revealed

female sterility in mouse. Several other reproductive defects including decreased ovulation

rates, compromised oocyte and embryo integrity, prominent bilateral paratubal (oviductal) cysts,

adenomyosis, shorter and hypotrophic oviduct and uterus have been reported in mouse (Hong

et al. 2008, Nagaraja et al. 2008, Gonzalez & Behringer 2009). Thus, findings revealed diverse

and critical roles of Dicer and its miRNA products for postnatal differentiation, development

and function of the female reproductive tract as well as female fertility. However, expression

and functional characterization of individual miRNAs for the physical and functional integrity
of oviduct is yet to be investigated.
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The uterus, which undergoes cyclic changes throughout the menstrual or estrous cycle during
embryo implantation, is also largely dependent on ovarian steriod. The receptivity of uterus
during blastocyst implantation is achieved through transition from elevated estrogen dependent
highly proliferative state to progesterone dependent highly secretory state. MiRNAs could also
be involved in this uterine change through regulating or interfering the post transcriptional and
translational activity of vast number of genes which are supported by the initial conditional in-
activation of Dicer studies. In addition, several studies have reported the regulation of miRNAs
in the endometri um by the ovarian steroid (Pan et al. 2007, Toloubeydokhti et al. 2008, Macias
et al. 2009). Differential expression of miRNAs in endometrial carcinogenesis and between
uterine leiomyoma versus normal myometrium has been studied (Boren et al. 2008, Marsh
et al. 2008). Differential expression of miRNAs in endometrium of women with and without
endometriosis has been evidenced and revealed importance of miRNAs in normal endometrial
cellular activities, pathogenesis of endometriosis and associated reproductive condition (Pan et
al. 2007, Teague et al. 2009). Additionally, a reduced expression of miR-199a and miR-16 may
work synergistically to promote an inflammatory environment by up-regulating COX-2 protein
levels, thereby promoting prostaglandin production, neoangiogenesis and estradiol mediated
cellular proliferation in endometriotic tissues (Teague et al. 2009). So, in addition to the study
of conditional inactivation of Dicer, studies on the identification of miRNA expression in the
normal & diseased uterus and the characterization of some individual miRNA in the uterus
(normal & endometriotic) as well as in the uterine implantation site (discussed in previous sec-
tion) has shade initial light onto the importance of miRNAs regulating physiological changes of
the uterus in response to steroids and pregnancy as well as in pathogenic condition.

In addition to their importance in the regulation of normal ovarian physiology as described in
the previous section, recently it has become evident that miRNAs play a major role in ovarian
tumorigenesis. Several miRNA expression profiling studies have identified changes in miRNA
patterns that take place during ovarian cancer development (lorio et al. 2007, Dahiya et al.
2008, Giannakakis et al. 2008, Laios et al. 2008, Nam et al. 2008, Yang et a/. 2008a, Zhang
et al. 2008, Wyman et al. 2009, Bendoraite et al. 2010). Candidate miRNAs which were found
to be most commonly altered in ovarian carcinoma compared to normal tissue from different
study (observed at least in three experiments) are let-7 family, miR-100, miR-106b, miR-10b,
miR-125b, miR-143, miR-145, miR-155, miR-15a, miR-199b, miR-200a, miR-200b, miR-200c,
miR-21, miR-22, miR-222, miR-368, miR-424 and miR-99a. The majority of these deregulated
miRNAs including miR-15a, miR-34a, miR-34b ; miR-210 and let-7 family were found to be
down-regulated in human ovarian cancer, hence suggested to act as tumor suppressor and
thereby represent potential targets for therapy (Johnson et al. 2005, Giannakakis et al. 2008,
Kumar et al. 2008, Zhang et al. 2008). The downregulation of major miRNAs in the epithelial
ovarian cancer has been found due to both genomic losses and epigenetic alterations (Zhang et

al. 2008). Further understanding the underlying mechanisms of how miRNAs are regulated in
normal or disease condition together with identification of their specific target genes and their
functions might lead to increase reproductive efficiency and the development of preventive
or therapeutic strategies by regulating specific target genes associated with such reproductive
disorders.

MiRNAs in the male reproduction

Importance of miRNAs in male reproduction has been shown by analyzing the expression and

regulation of miRNAs in the testicular cells with their putative functions. MiRNAs were first

detected from the testis during establishing the techniques reliable for genome-wide miRNA
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profiling (Barad et al. 2004, Liu et al. 2004). A number of miRNAs differentially expressed dur-
ing testicular development and bioinformatic identification of several possible male germ cell
target mRNAs has been reported (Yu et al. 2005). Further analysis revealed mir-122a targeting
transition protein 2 (Tnp2) mRNA, a testis-specific and post-transcriptionally regulated mRNA
in postmeiotic germ cells first suggested the miRNAs mediated posttranscriptional regulation in
the mammalian testis. Small RNAs cDNA library constructed and identified 52 distinct miRNAs
as well as other small noncoding RNAs (rasiRNAs and gsRNAs) in the testis (Watanabe et al.
2006). The evidence for the potential involvement of the miRNA pathway in the regulation
of male germ cell (GC) development were reported by localizing testis-expressed miRNAs
(miR-21, let-7a, miR-122a), in the chromatoid body of male GCs and expected to have control
in post-meiotic GC differentiation (Kotaja et al. 2006). In 2007 Novotny and his coworkers lay
out the potential involvement of miRNAs in post-transcriptional regulation in the testis by the
miR-17-92 cluster during meiotic recombination (Novotny et al. 2007). In the same year several
individual efforts were made to clone miRNAs from the testes in a large scale. Through small
RNA cloning method Ro et al. (2007a) identified 141 miRNAs from the mouse testis including
29 novel miRNAs and from the pattern of expression they have suggested twenty eight can-
didate miRNAs which are preferentially (22) or exclusively (6) expressed in the mouse testis
for further functional studies. Comparison of miRNAs pattern between immature and mature
mouse testes through miRNA microarray (with 892 miRNA probes) identified 19 significantly
different miRNAs expression (Yan et al. 2007). Future studies ablating specific miRNAs using
transgenic technologies or by other suitable approach will help us better understand the role
of individual miRNAs in gonadal development. The expression patterns of several members
of the miRNA pathway in the testis namely Dicer (Dcr), Drosha, Agol, Ago2, Ago3 and Ago4
are identified to express in pachytene spermatocytes, round and elongated spermatids and
Sertoli cells (Gonzalez-Gonzalez et al. 2008). Moreover, miRNAs were found to be localized
to XY body of spermatocytes including the nucleolus of Sertoli cells (Marcon et al. 2008). The
transgenic male mouse lacking Dcr in germ cells were found to be subfertile both due to the
defect in the transition from round to elongating spermatids and production of sperm with ab-
normal motility (Maatouk et al. 2008). Recent study has identified that about 86% of X-linked
miRNAs actually escape meiotic sex chromosome inactivation (MSCI) during spermatogenesis
and transcriptional silencing of genes on X & Y chromosomes was found to occur in mid-to-late
pachytene spermatocytes (Song et al. 2009). Further more, selective ablation of Dcr in Sertoli
cells has led to infertility due to complete absence of spermatozoa and progressive testicular
degeneration (Papaioannou et al. 2009). In the same study altered expression of several key
genes such as Gdnf, Kitl, Man2a2, and Serpina5 which are essential for spermatogenesis, was
revealed as a result of the miRNA mediated post-transcriptional control in the Sertoli cells
leading to abnormal spermatogenesis. The existence, preferential and temporal differential
expression of miRNAs and the involvement of their machinery genes especially Dcr in the
mature and immature testis as well as in different testicular cells has evidenced the functional
role of miRNAs in the physiology of testis. Despite various studies carried out on comparative
expression analysis of hundreds of testicular miRNAs, there is a tremendous research gap in
the investigation of exact functional role of specific miRNAs in the development and prolifera-
tion of germ cells in testis.

miRNAs regulation of embryonic development process and stem cells maintenance

The well-orchestrated expression of genes that are derived from the maternal and/or embryonic

genome is required for the onset and maintenance of distinct morphological changes during
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the embryonic development. Optimum regulation of genes or critical gene regulatory event

in favor of early embryonic development have been shown to be directly (individual miRNAs

study) or indirectly (disrupting miRNAs biogenesis) under the control of miRNAs. Disruption

of Dicer1 - an enzyme important for biogenesis of miRNAs and RNA interference related

pathways in mammals was first demonstrated and shown that loss of Dicerl lead to lethality

early in development, where Dicer-I-null embryos were found to be depleted of stem cells in

mouse (Bernstein et al. 2003). Another report has been published in the same year to show

the importance of Dicerl in vertebrate development through inactivation of the Dicerl gene in

zebrafish and subsequently observed the early developmental arrest (Wienholds et al. 2003).

While defective generation of miRNAs was observed in Dicer-null mouse embryonic stem

cells with severe defects in differentiation both in vitro and in vivo, the re-expression of Dicer

in the knockout cells has been found to rescue these defective phenotypes (Kanellopoulou

et al. 2005). Additionally, maternal miRNAs have been shown to be essential for the earliest

stages of mouse embryonic development through the loss of maternal inheritance of miRNAs
following specific deletion of Dicer from growing oocytes (Tang et al. 2007). So, these initial

reports suggested that miRNAs are essential for embryonic development as the effect of loss
of Dicer1 could primarily arise from an inability to process endogenous miRNAs which later

on functioning in gene regulation. While critical roles for miRNAs biogenesis in the early

embryonic development are well established, roles for individual miRNAs have only recently

been investigated mostly in the mouse.

The role of miRNAs has been suggested first for differentiation or maintenance of tissue
identity during early embryonic development in zebrafish (Wienholds et al. 2005). Several at-
tempts were made to clone miRNAs from the embryo or embryonic tissues to understand the

miRNA-mediated regulation of embryonic development. A significant number of miRNAs has

been identified at specific stages of mouse embryonic development through massively parallel

signature sequencing technology (Mineno et al. 2006) and in bovine embryo through small RNAs

library construction (Coutinho et al. 2007). The coexistence of dynamic synthesis and degrada-
tion of miRNAs has been shown but overall quantity and stage-dependent miRNAs increases as

the embryos develop during mouse preimplantation stage embryonic development (Yang et al.
2008b). Even, during the preimplantation stage miRNAs are shown to participate in directing

the highly regulated spatiotemporally expressed genetic network as well. In vitro gain- and

loss-of-function experiments showed that the expression of cyclooxygenase-2, a gene critical

for implantation, is post-transcriptionally regulated by two miRNAs namely: mmu-miR-101a
and mmu-miR-199a* (Chakrabarty et al. 2007). Another study has identified higher expression

of miR-21 in the subluminal stromal cells at implantation sites on day 5 of pregnancy but not

detected during pseudo-pregnancy or even under delayed implantation (Hu et al. 2008). This
revealed that the expression of mmu-miR-21 in the implantation sites regulated by the active

blastocysts. Moreover, in the same study, the role of miR-21 in embryo implantation has been

suggested due to targeted regulation of the Reck gene (Hu et al. 2008). Recent microarray based
miRNAs expression profiling in elongated cloned and in vitro-fertilized bovine embryos has

suggested that the reprogramming of miRNAs occurred in cloned bovine elongated embryos

(Castro et al. 2010). However, status of reprogramming error in the extra embryonic tissues (or

placenta) has not yet been separated which could be the main reason for the cloned pregnancy

loss during the first trimester.

Recent studies identified a unique set of miRNAs expressed and its functional importance

in embryonic stem cells (ES cells). Initial effort has identified that miR-290 through miR-295

(miR-290 cluster) are ES cell-specific and there after suggested that they could potentially

participate in early embryonic processes such as the maintenance of pluripotency in mouse
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(Houbaviy et al. 2003). Similar study in human has also identified some clustered miRNAs

(miR-296, miR-301 and miR-302: homologous to the miRNAs reported by Houbaviy et a/. in
mouse) specifically expressed in human ES cells and not in differentiated embryonic cells or

adult tissues (Suh et al. 2004). These clustered miRNA organization is presumably effective

for coordinated regulation of their expression and regulation of common targets because a

common seed is shared between some miR-290 cluster miRNAs, miR-302a-d and miR-93

(Houbaviy et al. 2003, Houbaviy et a/. 2005). The role of miR-290 cluster in embryogenesis

has been evidenced in a study, in which the generation of a mouse mutant with a homozygous

deletion of the miR-290 cluster resulted in the death of embryos (Ambros & Chen 2007). By

the loss- or gain-of-function studies of Dicer, DGCR8 and ES-related miRNA genes such as

miR-290-295 cluster have strongly suggested that miRNAs play an important role in ES cell
maintenance, differentiation (Benetti et al. 2008, Sinkkonen et al. 2008) and lineage determina-
tion (Kanellopoulou et al. 2005, Wang et al. 2007, Ivey et al. 2008, Tay et a/. 2008). Despite
the fact that knowledge on the role of miRNAs in the embryonic development and stem cell

maintenance, differentiation and lineage in mouse and human is increasingly building, it is

yet to be elucidated for ruminants.

miRNAs regulation of epigenetics in reproduction and early development

The term epigenetics refers to all heritable changes in gene expression that are not associated

with concomitant alterations in the DNA sequence. Reversible DNA methylation and histone
modifications are known to have profound effects on controlling gene expression. Correct DNA

methylation patterns are paramount for the generation of functional gametes with pluripotency

states, embryo development, placental function and the maintenance of genome architecture

and expression in somatic cells. Aberrancies in both the epigenetic and in the miRNA regu-
lation of genes have been documented to be important in diseases and early development.

Very little is known about the miRNAs mediated epigenetic processes or epigenetic control

of miRNAs expression, which are potentially involved in regulating reproduction and early

development. The potential role of Dicer has been postulated in heterochromatin formation
(Fukagawa et al. 2004). In addition, Dicer-deficient mutants are shown to reduce epigenetic
silencing of expression from centromeric repeat sequences as a result of alterations in DNA

methylation and histone modifications (Kanellopoulou et al. 2005). As contradictory to this,
no apparent changes were observed in the centromeric heterochromatin later on (Murchison

et al. 2005). However, controversial result were reported by recent studies, where the Dicer

deficient stem cells were found to have reduced levels of both de novo DNA methylation
and DNA methyltransferases (Dnmts) (Benetti et al. 2008, Sinkkonen et al. 2008) as well as
increased telomere recombination and elongation (Benetti et al. 2008). These results sup-
ported a model in which the miR-290 cluster maintains ES cells by controlling de novo DNA

methylation via RbI2 and indirectly telomere homeostasis and by repressing the self-renewal

program through modulating the epigenetic status of pluripotency genes upon differentiation
[reviewed in (Wang et al. 2009)].

Epigenetic regulation by the miRNAs has opened up a new dimension of mode of regulation

from translational suppression and classic RNAi degradation. In addition to regulation of gene

expression at the posttranscriptional level in the cytoplasm, recent findings suggest additional
roles for miRNAs in the nucleus. MiRNAs which are encoded within the promoter region of

genes could be involved in silencing such genes at transcription level epigenetically. Such

cis-regulatory roles of miRNAs have been observed in transcriptional silencing of POLR3D

expression and endothelial nitric oxide synthase (eNOS) promoter activity (Zhang et al. 2005,
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Kim et al. 2008). Moreover, miR-122 has been shown to facilate replication of hepatitis C viral

RNAs without affecting mRNAs translation or RNA stability (jopling et a/. 2005).

Recently, aberrant epigenetic reprogramming of imprinted miR-127 in cloned murine em-

bryos has been reported in relation to the aberrant epigenetic reprogramming of the mouse

retrotransposon-like gene RtI1 (Cui et al. 2009). MiRNA-mediated switching of chromatin

remodeling complexes in neural development by repression of BAF53a has been observed in

mouse (Yoo et al. 2009). This repression is accomplished through the 3 " UTR of BAF53a and

mediated by the simultaneous activities of miR-9* and miR-124. Repressor-element-l-silencing

transcription factor participates in this switch by repressing miR-9* and miR-124, thereby permit-
ting BAF53a expression in neural progenitors. Interestingly, the aberrant DNA methylation and

histone modifications could simultaneously induce silencing of miRNAs in colorectal cancer

(Bandres et al. 2009). The relation of miRNA and epigenetics is presently being elucidated. So,

much less is known about the specific miRNA and their targets to regulate epigenetic machinery

or epigenetic regulation of specific miRNAs that are required for normal physiological condition

or for any phenotypic effects, but this area of research is rapidly moving forward.

Implication of sncRNAs for ruminant reproductive biology and challenges

Non-coding RNAs comprise the major part of the mammalian transcriptome and have been

suggested to play an important role in the regulation of gene expression. They are important

in most epigenetic mechanisms as is exemplified by the role of small RNAs in silencing of

transposable elements, miRNAs in gene expression control, large RNAs in X-chromosome
inactivation and DNA imprinting and "heritable" RNAs in non-mendelian epigenetic inherit-

ance. Moreover, DNA methylation and histone modifications can be directed by different types

of ncRNAs. Among the sncRNAs, miRNAs seem well suited to maintain the delicate balance

between normal reproductive biology, system development and tissue maintenance versus

deregulated growth and tumor formation. These small non-coding RNAs have been found

to play a central role in various cellular activities, including developmental processes, cell
growth, differentiation and apoptosis, cell—cell communication, inflammatory and immune

responses through gene expression stability. As many of these processes are an integrated part

of gonadal functions, germ cell formation, differentiation, uterine and oviductal cellular activi-

ties during different stage of reproduction and steroid synthesis, it is possible to postulate the

potential role of miRNAs in regulation of reproductive processes along with other physiologi-

cal functions. Alteration of the expression of miRNAs in any of these processes could lead to

subsequent infertility, reproductive and other steroid-dependent disorders with ultimate failure
in reproduction.

Being an important gene regulator, miRNAs could be an interesting avenue to resolve lot of

questions on different regulatory mechanisms of ruminant's reproductive process. Posttranscrip-

tional gene regulation by miRNAs during the periods of ovarian follicular development, atresia

and luteolysis could be an interesting field of investigation in ruminants. This is particularly
interesting since the ovarian follicle is a complex structure composed of different types of cells

that are functionally related and constantly changing and differentiating. Investigations are

required but remains to be elucidated for the role of miRNAs in the interaction between granu-

losa and theca cells which are essential for biosynthesis estrogen. In vitro culture models for a

single cell type (primary granulosa), co-cultures of theca and granulosa cells or whole follicle

cultures could be utilized for elucidating such miRNAs mediated regulation to overcome the

technical difficulties in in-vivo experiment. Identification of the whole set of miRNAs in different

ovarian cells in ruminants is paramount important for any functional study. To accomplish this,
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miRNAs microarray could be a useful approach either by using arrays from ruminants or by

heterologous approaches by using platform from other species like mouse or human. A direct

identification through construction of ovarian cell specific small RNAs library can also be an

option. In addition to identification, miRNA microarray could be also useful to describe dynamic

changes in miRNA transcript levels in closely related to regulatory events of gene expression

for successful follicular development to explain how this is all managed by the different ovar-

ian cell types. Although hundreds of genes, which are important for ovarian physiology, are

predicted to be potential target of miRNAs (Hossain et al. 2009), all these targets should be

validated to elucidate key points of such regulation. Thereafter, it might be possible to draw a

fine description of the role of miRNAs in the molecular mechanisms of the dynamic processes

occurring in these different compartments of ovary during follicular development and might

provide insight into how we might be able to enhance reproductive efficiencies.

In the absence of transcription, synthesis of hundreds of new products and disappearance

of many proteins during oocyte maturation after germinal vesicle breakdown and early em-

bryogenesis indicating fine regulation of hundreds of transcripts by a mechanism other than

transcription. These changes could possibly largely rely on and controlled by miRNAs, but it is

still remains to be elucidated. In addition, it has been evidenced that the bidirectional interac-

tions between oocyte and somatic cells control folliculogenesis. In this communication oocyte

secretes soluble paracrine factors that act on its adjacent granulosa cells, which in turn regulate

oocyte development in bi-directional communication axis (Gilchrist et al. 2004). Further in-

vestigations are required to know the role of miRNAs in paracrine signaling and gapjuntional

exchange and control of regulatory molecules through intercellular communication between

oocytes and granulosa cells.

A large number of target genes for a single miRNA and multiple miRNAs targeting the expres-

sion of one gene have been recognized as a major challenge in the assessment of the role of

specific miRNAs and establishing precise miRNA-target networks. Moreover, the identification

of functional targets represents a major hurdle in our understanding of miRNA function for com-

plex phenomena of reproduction in different ruminant species due to lack of complete genomic

information, suitable bio-informatic tools and difficulty to carry out in-vivo functional studies.

A few number of knockout studies in mice have been carried out to show the involvement of

regulatory miRNAs in mammalian reproduction. However, the knowledge on the functions of

specific miRNAs from mouse knockout models cannot be systematically applied to ruminants.

So, for large ruminant, the production of transgenic animals could help to elucidate miRNAs

mediated regulation of reproductive process in vivo. However, the success of such approaches

is limited due to technical difficulty, cost of making null miRNA transgenics and extended time

frame required to observe the effect in reproductive processes in ruminants.

Presently, our understanding of non-coding RNAs specially miRNAs function in reproductive

biology is very limited and much remains to be uncovered in this exciting field of investiga-

tion. Better understanding of small non-coding RNAs, especially miRNA-mediated regulatory

effects could be potentially used for regulation of ruminant reproductive processes including

ferti I ity and for treatment of reproductive and other steroid-dependent disorders in near future

and results can be applied in other species due to high level of conservation of miRNAs be-

tween species.

Conclusion

Non-coding RNAs comprise the majority of the mammalian transcriptome and have been sug-




gested to play an important role in the regulation of gene expression. In contrast to the uncer-
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tainty surrounding the function of most mammalian ncRNAs, imprinted macro ncRNAs have

clearly been shown to regulate flanking genes epigenetically and small non-coding RNAs have

been shown to have tremendous transcriptional regulation for normal physiology or disease

condition of different types of tissues and cells. Among the sncRNAs, miRNAs are the well

characterized one which could maintain the delicate balance between normal reproductive

biology, system development and tissue maintenance versus deregulated growth and tumor

formation. The studies on the role miRNAs in disease development are much extensive than

on reproductive biology and furthermore very limited in ruminant species compared to human

and mouse. Conditional Dicerl knockout mice have been used to show the consequences

that the lack of miRNA have on ovarian, testicular, oviductal, uterine, oocyte, and embryonic

function and development. To date, much of the work on miRNAs has focused on expression

profiling rather than their regulation and functional characterization within specific tissues

and cells or during the reproductive process. However, this area of research is rapidly moving

forward and it is expected that a lot of information regarding miRNA-mediated posttranscrip-

tional gene regulation and their epigenetic regulation in ruminant reproduction biology will

be known within the next several years. Studies to identify the specific miRNAs, their target

genes and post transcriptional regulatory network will further shed light on the importance of

specific miRNA both for the development and function of reproductive tissues as well as dis-

ease condition. Once relevant miRNAs and functional targets are identified, possible clinical

use for these molecules will represent the next front line and may lead to novel strategies for

better enhancing or manipulating reproductive efficiency.
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