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In recent years, a few studies with sheep have experimentally tested the developmental
programming hypothesis by combining a post-natal nutritional challenge after exposure to a
pre-natal nutritional insult (Table 2). We asked the question whether moderate adult obesity
would exacerbate the effects on the offspring of maternal global energy restriction, and tested
the hypothesis by longitudinally sampling the offspring in a lean and then obese condition
(Rhodes et al. 2009). We found little evidence of programming by maternal global energy re-
striction per se, but some support for the hypothesis that development of obesity would reveal
a deleterious phenotype (altered glucose-insulin handling), albeit very mild. The only other
studies to have used a similar approach, but with an entirely different experimental paradigm
(i.e. 2x2 factorial arrangement; prenatal undernutrition [1-31 days gestation] x postnatal under-
nutrition [pair-fed to achieve 85% growth of control sheep]) found that post-natal intervention
had the greater effect on adult physiology (e.g. a 5-6 mm Hg greater increase in mean arterial
pressure to Angiotensin 1) (Cleal et al. 2007)) and a ~ 30% increase in insulin appearance after
a glucose tolerance test in male offspring only (Poore et al. 2007).

Peri-conceptional diet and developmental programming in ruminants

Taken together, a priori assumptions about the expected adult phenotype when utilising either
postnatal overnutrition (greater deterioration of metabolic control) or postnatal undernutrition
(improvement of metabolic control) are not clear cut and further work in this area is warranted.
Nevertheless, when broad consideration is given to all studies conducted in ruminants it is
apparent that interventions that are initiated very early in gestation (and/or prior to concep-
tion) lead to greater effects on adult physiology than those that are specifically targeted to late
gestation. This is most evident in the study of Sinclair et al (2007) in which dietary methyl
group deficiency for 8 weeks before and 6 days into gestation (i.e. embracing the periods of
oocyte growth and maturation, and pre-implantation embryo development) revealed a 11 mm
Hg increase in mean arterial pressure and a 30% increase in the pressor response to infused
angiotensin Il in two-year-old male offspring. Responses such as this at the earliest stages of
mammalian development hint at the importance of key epigenetic processes that occur in germ
cells and pluripotent embryonic cells, and that subsequently determine offspring health.

The present article, therefore, will provide a contemporary overview of these molecular
processes drawing, where necessary, on information acquired from mice and other mammalian
species, before reviewing our current state of knowledge with respect to ruminants. Finally,
current limitations and outstanding issues are indentified, and consideration given to future
priorities for research funding.

DNA methylation programming in the germline

The aforementioned processes of development are regulated in a temporal and spatial manner by
a series of carefully orchestrated alterations to the transcriptome which arise as a consequence
of covalent modifications to DNA and associated histone proteins that act in concert with
chromatin structure in a cell-lineage specific manner. Over the last 20 years there has been an
exponential increase in activity in the field of epigenetics and mammalian development with
more than 7000 research articles and 2000 reviews dedicated to the topic. For a contemporary
overview of some of the broader aspects of this area the reader is directed elsewhere (Reik,
2007; Petronis, 2010). Instead, attention in the current article is directed towards epigenetic
programming in the germline, with consideration given to covalent modifications to components
of the nucleosome (the functional subunit of chromatin) and, in particular, to DNA.
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alter offspring health and fertility come from transgenerational studies in the rat investigating the
effects of maternal protein restriction during pregnancy (Harrison & Langley-Evans, 2008) and
pregnant rats exposed to the agricultural fungicide vinclozolin (Guerrero-Bosagnna & Skinner,
2009). In both cases phenotypic defects were transmitted via the male germline, at least to the
F2 generation, indicating that defects programmed into the male gamete can alter offspring
health. Furthermore, the studies with vinclozolin were extended to demonstrate epigenetic
alterations to DNA methylation in epididymal sperm which persisted to F3 offspring.

There also needs to be greater emphasis in the future on assessing the effects of specific com-
ponents of the maternal diet during clearly defined periods of gestation. To that end due care
and consideration should be given to the processes of nutrient storage, transport and function
in the pregnant animal offered a nutrient deficient diet, as this will lead to the onset of body
tissue depletion followed by deficiency, dysfunction and ultimately disease (Sinclair and Singh,
2007). In the past the timing and extent of nutrient restriction has frequently been inadequately
monitored, greatly hindering data interpretation. Finally, and returning to the interests of the
pioneering scientists listed at the beginning of this article, greater consideration should be made
in future towards understanding the programming of traits of agricultural importance.

Conclusions

The foregoing discussion highlights the need to fully sequence and annotate the genomes of
domesticated animal species, in particular the sheep, so that full advantage can be made of the
contemporary molecular tools available to provide the mechanistic insights required in the field
of developmental programming of health and disease. This is best exemplified by the extent of
knowledge in epigenetic programming through the germline in the mouse compared to other
mammalian species. Large animals, such as the sheep, represent a more appropriate model to
study the developmental origins of health and disease because their mature size, and associated
reproductive rate, metabolism and physiology are more similar to that of humans. Domestic
ruminants are also species of commercial interest, so that in the future perhaps more emphasis
should be placed on studying traits of economic importance where animals are offered more
thoughtfully formulated diets that facilitate the study of specific micro-and macro-nutrients.
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