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The pattern of intrauterine growth and size at birth, in particular, programmes
the structure and function of tissues later in life in many species, which
has important implications for the incidence of adult-onset generative
diseases in human populations. In mammals, the main determinant of
intrauterine growth is the placental supply of nutrients which, in turn,
depends on the size, morphology, transport characteristics and endocrine
function of the placenta. However, compared to somatic tissues, little
is known about the developmental programming of the placenta. This
review examines the epigenetic regulation of placental phenotype with
particular emphasis on the nutrient transfer capacity of the ovine placenta
and environmental factors shown to cause developmental programming
of other tissues. Overall, the placenta is responsive to environmental
factors and uses a number of different strategies to adapt its phenotype
to help support fetal growth during adverse intrauterine conditions. It is,
therefore, not just a passive conduit for nutrient transfer to the fetus but
alters its nutrient supply capacity dynamically to optimise fetal nutrient
acquisition. Thus, the placental epigenome provides both a memory of
environmental conditions experienced during development and an index
of the future well being of the offspring.

Introduction

Size at birth is critical in determining life expectancy. In human populations, the smaller the

neonate the less likely it is to survive at birth and more likely it is to develop adult onset, life

threatening diseases, such as hypertension, coronary heart disease and Type 2 diabetes (Barker,

1994). Similarly, in domesticated species including ruminants, natural and experimental restric-

tion of fetal growth leads to poor neonatal viability and a failure to thrive postnatally (Green-

wood & Bell 2003). Low birth weight in these animals is also associated with abnormalities

in metabolic, endocrine, reproductive and cardiovascular function in later life (McMillen &

Robinson 2005). Together, the epidemiological and experimental observations have led to the

concept that conditions experienced in utero lead to a specific epigenotype with phenotypic

consequences long after birth. The process by which environmental conditions during early life
permanently alter tissue structure and function is known as developmental programming.

In mammals, the main determinant of size at birth is the placental supply of nutrients for

fetal growth. In turn, this depends on the size, morphology, transport characteristics and
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endocrine function of the placenta (Sibley et al. 2005; Fowden et a/. 2006b). Experimental
manipulation of placental growth in sheep and other species leads to altered fetal growth and
postnatal physiological abnormalities, consistent with the human epidemiological findings
(Fowden et al., 2008). Epigenetic regulation of placental phenotype may, therefore, be an im-
portant mechanism by which environmental conditions programme intrauterine development.
Indeed, recent human studies have shown that the adverse cardiovascular consequences of
low birth weight are related to the shape and size of the placenta at birth (Barker et al. 2010).
However, compared to somatic tissues (McMillen & Robinson 2005; Gluckman et al. 2009),
little is known about the programming of the placenta per se. This review examines epigenetic
regulation of placental phenotype with particular emphasis on the nutrient transfer capacity of
the ovine placenta and environmental factors shown experimentally to cause developmental
programming of other tissues.

Placental size and morphology

Placental size directly affects the capacity for nutrient transfer via changes in the trophoblast
surface area for transport and, when measured as placental weight, is directly related to fetal
body weight at term in many species including ruminants (Baur 1977; Mellor 1983). In sheep,
direct experimental restriction of placental growth by removal of implantation sites, multiple
pregnancy or by embryo transfer between breeds of different sizes reduces fetal weight (Owens
et al. 1987; Dwyer et al. 2005; Reynolds et al. 2005). Placental weight and, hence, birth weight
is also determined by parity of the ewe (Dwyer et al. 2005). In addition, placental weight at
term is affected by a wide range of environmental factors, although their specific effects depend
on the severity, duration and gestational age at the onset of the perturbation (Table 1).

Both under- and over-nutrition affect placental weight at term (Table 1). Periconceptual
undernutrition from 60 days before conception up to implantation at---- 30 days of pregnancy
appears to have little effect on placental growth but, when the period of undernutrition occurs
during the main period of placental growth from 40-75 days, placental weight is often increased
at term (Table 1). If the period of nutrient deprivation extends into mid to late gestation, pla-
cental weight is generally lower than normal at term but not if undernutrition is confined solely
to late gestation (Table 1). In addition, the body condition score of the ewe at conception, an
index of pre-pregnancy nutritional state, and genetic adaptation to poor nutritional conditions
can alter the placental response to subsequent undernutrition, particularly during mid gesta-
tion (Kelly 1992; Osgerby et al. 2003; Vonnahme et al. 2006). In contrast, over-nutrition for
most of gestation leads to placental growth restriction at term (Table 1), especially in growing
adolescents (Redmer et al. 2004).

Ovine placental weight appears less sensitive to changes in fetal and maternal hormone
concentrations. Variations in maternal growth hormone (GH), IGF-1 and insulin levels dur-
ing mid or late gestation appear to have little effect on the weight of the total placenta or of
individual placentomes (DiGiacomo & Hay 1989; Harding et al. 1997; Wallace et al. 2006;
Wright et al. 2008). Similarly, manipulating fetal hormone concentrations by exogenous infu-
sion or endocrine gland ablation has shown that fetal pituitary, thyroid and adrenal hormones
have little effect on total placental weight at term, although they influence fetal growth (see
Fowden & Forhead, 2009). Placental weight near term is also unaffected by fetal administra-
tion of leptin and IGF-1 for 5-10 days during late gestation (Bloomfield et al. 2002; Forhead
et al. 2008). However, maternal administration of natural or synthetic glucocorticoids during
late gestation reduces placental weight in association with fetal growth restriction (Jensen et
al. 2002; Braun et al. 2007). Since glucocorticoid concentrations are altered by conditions,
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such as hyperthermia, undernutrition and hypoxaemia (see Fowden & Forhead 2009), these

hormones may mediate, in part, the effects of environmental stimuli on the placenta. Indeed,

in natural conditions, the placental effects of many of these environmental factors are likely

to be multi-factorial as conditions such hypoxaemia and hyperthermia reduce food intake in

pregnant ewes (Alexander & Williams 1977; Jacobs et al. 1988; Regnault et al. 2005).

Even during adverse conditions, fetal weight is still directly related to placental weight

(Wallace et al. 2005; Quigley et al. 2008). However, often, the effects of these conditions are

more pronounced on the placenta than fetus (Table 1). When placental growth is restricted,

placental efficiency increases as more grams of fetus are produced per gram of placenta than

in normal conditions (see Fowden et al 2009). Greater placental efficiency is also seen with

maternal glucocorticoid treatment, multiple pregnancy and increasing parity of the ewe (Jensen

et al. 2002; Dwyer et al. 2005). Hardier breeds of sheep also tend to have higher placental

efficiencies than breeds evolutionarily adapted to better nutritional conditions (Dwyer et al.,

2005). These observations suggest that the placenta can adapt to the fetal nutrient demands for

growth and help maintain normal fetal growth when its own growth is compromised. These

adaptations may have a morphological or functional origin.

Ovine placentomes can be classified into 4 types, A to D, using their gross morphological

appearance (Vatnick et al. 1991). The smaller, rounder A and B type placentomes predominate

throughout gestation and, on average, account for about 60% or more of the total number

under normal conditions. The larger, flatter C and D type placentomes are less common but

increase in frequency during late gestation, although their numbers appear to decrease again

close to term (see Fowden et al. 2006b). In general, adverse environmental conditions during

the period of maximal placental growth lead to a shift from A-type placentomes to the more

everted types later in gestation (Table 1). While this shift is often associated with placental

growth restriction, changes in placentome frequency distribution have been observed without

any change in total placental weight in response to both environmental and hormonal stimuli

(Penninga & Longo 1998; Bloomfield et al. 2002). This has lead to the suggestion that the

presence of more C and D-type placentomes is an adaptation to increase placental efficiency

and the transfer of nutrients to the fetus (Heasman et al. 1998; Steyn et al. 2001; Vonnahme et

al. 2006). Certainly, in carunclectomized ewes with small placentas composed solely of large

D-type placentomes, the rate of glucose transfer to the fetus per gram of placenta is enhanced

relative to controls (Owens et al. 1987; 1989). However, in normal conditions during late

gestation, there is little, if any, evidence for changes in placental weight, efficiency or glucose

transfer with the frequency of C/D type placentomes (Figure 1A-C).

In late gestation, adverse conditions either have little effect on placentome distribution or

reduce the incidence of C/D placentome types (Table 1). This may be the consequence of

elevated cortisol concentrations as both maternal and fetal glucocorticoid treatment in late

gestation increases the frequency of A/B type placentomes (Jensen et al. 2002; 2005; Ward

et al. 2006). By tagging individual placentomes before fetal treatment, cortisol was shown to

decrease, or even reverse, the normal rate of placentome eversion with increasing gestational

age, consistent with the prepartum decline in C/D placentome frequency seen during the natural

fetal cortisol surge (Ward et al. 2006; Fowden et al. 2006b). Since placental glucose delivery

to cortisol infused fetuses per gram of placenta is higher in animals with proportionately more

A/B type placentomes (Figure 1D), the cortisol-induced slowing of the progressive ontogenic

shift towards more everted placentomes may be an adaptive response to help maintain the

fetal nutrient supply during late gestation (Ward et al. 2006). Thus, the gross morphology of

the ovine placenta may be functionally significant in nutrient transport when cortisol concen-

trations are high.
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Fig. 1. Mean (+ SE) values of A) total placental weight, B) placentome number, C) placental

efficiency measured as gram fetus per gram placenta and D) placental glucose transfer

calculated as umbilical uptake per gram placenta at the prevailing glucose concentration

gradient in single sheep fetuses either infused with cortisol (1-2mg/kg fetus/day, shaded

columns) or in the control state (saline infused or untreated, open columns) before delivery

at 127-131 days with respect to the frequency distribution of more everted C and D type

placentomes expressed as a percentage of the total placentome number ( <10%, 10-

300/0, >30%). * significant effect of treatment P< 0.02 two-way ANOVA. In D) within

treatments, columns with different letters as superscripts are significantly different from each

other P <0.05 (two-way ANOVA). t significantly different from respective saline infused

placentome type (P< 0.05, t-test). Number of fetuses in A), B) and C) are Controls; <100/0

n = 18, 10-30%, n = 8; > 30%, n = 11: Cortisol; <100/0 n = 7, 10-30°/a n = 11, >30%

n = 6. In D) numbers are Controls; <10% n = 6, 10-30% n = 3, >30% n =5: Cortisol;

100/o n = 5, 10-30% n = 4, >300/0 n = 6. Data from Gardner et al. 2002; Ward 2002;

Ward et al. 2002; 2006 and Fowden, Forhead and Wooding, unpublished observations).
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Much less is known about environmental influences on ovine placental ultra-structure. Glu-

cocorticoid administration to either the ewe or fetus in late gestation prematurely decreases

the number of binucleate cells (BNC) in the fetal trophectoderm (Ward et al. 2002; Braun et
al. 2007), consistent with the prepartum decline in BNC numbers as fetal cortisol levels rise

towards term (Wooding & Burton 2008). These cells produce placental lactogen (PL) and
migrate across the maternal-fetal interface throughout pregnancy to form a syncytium by fu-

sion with the maternal epithelium. They are, therefore, involved in placental remodelling and
maternal PL delivery, both of which may influence placental efficiency (Fowden et al. 2009).

Reduced PL concentrations have been observed in hyperthermic and overnourished ewes,

although these changes probably reflect the reduced placental mass rather than decreased

BNC numbers or PL content per cell (Regnault et al. 2005; Lea et al. 2007). In contrast,

periconceptional undernutrition leads to raised maternal and fetal PL levels in late gestation
despite normal placental weight, which suggests that BNCs can be regulated nutritionally

(Oliver et al. 2005).

Between 50 days and term, the surface area for nutrient exchange increases in the ovine

placenta along with increases in the number and/or area of the capillaries in the caruncular
(maternal) and cotyledonary (fetal) portions of the placentomes (Stegmann 1975; Reynolds

et al. 2005). The cotyledonary increments are greater due to branching angiogenesis and an

increase in capillary density (Reynolds et al. 2010). In part, the vascular changes are driven
by the fetal nutrient demands as between breed embryo transfer has shown that constrain-
ing fetal growth below its genetic potential increases placental vascularity in several species

including sheep (Biensen et al. 1999; Allen et al. 2002; Reynolds et al. 2005). Placental
vascularity also changes in response to environmental stressors (Table 1) and with gross pla-

centome type, although not consistently across the A to D spectrum (Vonnahme et al. 2008).
Consequently, increasing placental vascularity may explain, in part, the increased efficiency

of the small placenta but does not provide a functional rationale for the shift towards more

everted placentome types after adverse conditions early in development.
Both increases and decreases in the number, area and density of the placental capillaries

have been observed during poor intrauterine conditions with differential responses in the

cotyledonary and caruncular vasculature in some instances (Krebs et al. 1997; Regnault et al.

2002; Luther et al. 2007; Redmer et al. 2009). At high altitude, placental capillaries become
more branched and looped, and their average luminal area increases in both the cotyledon-

ary and carunclar regions (Krebs et al. 1997). Similar increases in vessel tortuosity have been

observed in placentomes from hyperthermic ewes, in association with an increase in cotyle-

donary capillary number (Regnault et al. 2002). In addition, both over- and under-nutrition

during the period of maximal placental growth affects angiogenesis with regional alterations

in capillary area and/or number density, which become less pronounced with increasing

gestational age (Redmer et al. 2004; Luther et al. 2007; Zhu et al. 2009). In many of these

conditions, the changes in placental vascularity are accompanied by alterations in placental

expression of various angiogenic factors (Reynolds et al. 2005). These include the vascular

endothelial growth factor (VEGF), angiopoietin and fibroblast growth factor protein families

as well as their respective receptors, all of which have several isoforms (Reynolds et al.
2010). By altering blood flow and surface area for exchange, these environmentally-induced
changes in placental vascularity and morphology will modify nutrient transfer, particularly of

lipophilic molecules, like oxygen, which cross the placenta by simple diffusion. However,

to date, little is known about the epigenetic regulation of the thickness and morphology of

the interhemal membrane also important in determining the passive diffusional characteristics
of the placenta.
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Placental transport characteristics

For facilitated diffusion and active transport, placental nutrient transport capacity depends
not only on trophoblast surface area but also on expression of nutrient transporters per unit
area. Transplacental diffusion of nutrients into the fetal circulation is also determined by the
transplacental concentration gradient and the rate of nutrient utilisation by the utero-placental
tissues themselves (Hay 2006; Fowden et al. 2009). All of these factors change with gestational
age and during adverse intrauterine conditions (Regnault et al. 2005; Fowden et al. 2008). For
example, between mid and late gestation, there are increases in the placental abundance of
glucose transporter-3 (GLUT3), the transplacental glucose concentration gradient and in the
relative proportion of uterine glucose uptake transfered to the sheep fetus (Fowden 1997; Hay
2006). Since some of the glucose carbon used in utero is passed onto the fetus as lactate (Hay
2006), changes in placental lactate production towards term and during adverse conditions will
also influence the apparent glucose transfer capacity of the ovine placenta (Fowden 1997).

In late gestation, transplacental glucose transfer is altered by a range of nutritional and other
perturbations, although the extent to which these changes are due to genuine alterations in
the placental glucose transport capacity appears to depend on the specific insult (Table 2). For
instance, the small placenta of hyperthermic ewes transports more glucose per kg placenta than
controls, primarily as a result of an increased transplacental glucose concentration gradient
caused by fetal hypoglycaemia (Table 2). At the normal glucose concentration gradient, the
capacity for glucose transport per kg of hyperthermic placenta is actually 20-30% lower than
control due to reduced placental expression of the glucose transporters (GLUT), GLUT1 and
GLUT8 (Thureen et al. 1992, Regnault et al. 2003: Limesand et al. 2005). Conversely, the
weight specific glucose transfer capacity is increased in the small placenta of carunclectomised
ewes (Table 2). Similarly, 25-50% increases in placental glucose transfer capacity have been
observed with prolonged maternal hypoglycaemia or restricted dietary intake when the reduced
transplacental concentration gradient is taken into account (Table 2). These changes in glucose
transport are accompanied by altered patterns of placental GLUT] and GLUT3 expression,
which are isoform specific and temporally distinct depending on the insult (Das et al. 1998;
2000; Bell et al. 1999; Dandrea et al. 2001). In contrast, when placental growth is restricted
by over-nutrition of young animals, there is no change in glucose transport capacity or GLUT
expression per gram placenta, despite the reductions in placental and fetal mass (Wallace et al,
2005). Fetal glucocorticoid over-exposure also has no effect on the weight specific capacity for
placental glucose transport or on placental GLUT1 and GLUT3 expression, although umbilical
glucose uptake per gram placenta is reduced as a result of increased uteroplacental glucose
consumption (Table 2). The ovine feto-placental unit, therefore, adopts different strategies to
help maintain a fetal glucose supply during adverse conditions depending on the specific insult.
This may relate, in part, to the degree of placental growth restriction and/or to the maternal
and fetal endocrine mileux.

Compared to the GLUTs, less is known about the regulation of amino acid transporters
in the ovine placenta during adverse conditions. There are at least nine different amino acid
transporter systems with distinct functional characteristics yet overlapping specificities that
function to actively accumulate amino acids in the placenta and, then, facilitate their passive
transfer into the fetal circulation (Regnault et al. 2005). Transplacental amino acid flux varies
with the specific amino acid and the maternal concentration. It is also affected by catabolism
and transamination of amino acids within the placenta itself (Regnault et al. 2005). In sheep,
changes in the transplacental amino acid transport have been observed in response to hyper-
thermia, undernutrition and maternal administration of GH, IGF-I and glucocorticoids (Liechty
et al. 1991; Liu et al. 1994; Ross et al. 1996; Harding et al. 1997; Timmerman et al. 2000). In
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particular, there are reductions in the placental delivery of leucine, threonine, glutamate and
alanine to the fetus. There are also changes in uteroplacental handling and inter-organ shuttling
of essential and gluconeogenic amino acids in response to heat stressand undernutition (Liechty
et al. 1991; Rosset al. 1996; Timmerman et al. 2000). In rodents, environmental stimuli, such as
undernutrition and dietary composition, alter placental expression of the accumulative System
A amino acid transporters (Janssonet al. 2006; Jones et al. 2009; Coan et al. 2010) but little is
known about the epigenetic regulation of amino acid transporters in ovine placenta.

Placental endocrine function

The placenta produces a number of hormones including steroids, peptides, cytokines, glyco-
proteins and eicosanoids, which are released into both the fetal and maternal circulation (see
Fowden et al. 2008; Fowden & Forhead 2009). Some of these hormones, such as progesterone,
placental lactogen, the cytokines and placental variants of GH and prolactin have metabolic
actions in the mother that favour nutrient delivery to the fetus (Gootwine 2004). In sheep,
maternal concentrations of placentally derived hormones, such as progesterone and placental
lactogen, are lower than normal during adverse conditions, such as hyperthermia, overfeeding,
undernutrition and glucocorticoid overexposure (Regnault et al. 2002; Wallace et al. 2004;
2005; Braun et al. 2007). This is due, in part, to the reduced placental mass but may also reflect
cyto-architectural changes in the placenta caused, for instance, by altered BNC dynamics (Table
1). Receptors for these hormones are present in the ovine placenta and binding of ligands, such
as IGF-I, to their receptors has been shown to alter placental clearance of non-metabolisable
glucose and amino acid analogues in vivo (Harding et al. 1994; Gootwine 2004).

Other placental hormones, such asthe prostaglandins (PG)E2and F.,,,,alsoaffect the fetal sup-
ply of nutrients and oxygen but more indirectly by actions on fetal endocrine function, regional
blood flow and myometrial contractility (seeFowden & Forhead 2009). In sheep, undernutrition
during late gestation increases uteroplacental activity of PGH synthase and the production of
PGF2, and PGE2(Whittle et al. 2001) These increments in PG synthesis are directly related
to the degree of maternal hypoglycaemia and the fall in uteroplacental glucose consumption
and can be reversed by restoring normoglycaemia by re-feeding or glucose infusion into the
fasted animal (Fowden et al. 1994). The ovine placenta has also been shown to contain PG
dehydrogenase (PGDH), an enzyme which converts biologically active PGs into their inac-
tive keto metabolites (Whittle et al. 2001). Uteroplacental output of these metabolites rises
towards term and in response to undernutrition during late gestation (Fowden et al. 1994). In
part, the nutritionally induced changes in PG production and metabolism may be due to the
concomitant rise in glucocorticoid concentrations as cortisol has been shown to increase pro-
duction of PGF2,2andPGE2by enhancing PGH synthase activity and decreasing PGDH activity
in ovine placenta (Whittle et al. 2001). Sensitivity of placental PGDH and PGH synthase to
nutritional and endocrine stimuli increases with increasing gestational age in parallel with the
rise in fetal cortisol concentrations and the onset of myometrial contractile activity towards
term (Fowden et al. 1994).

The ovine placenta also inactivates a range of hormones, including glucocorticoids, cat-
echolamines, IGFs, thyroxine (.1-4)and tri-iodothyronine (T3), which limits their effectiveness
in the fetus (Fowden & Forhead 2004). For example, placental type III deiodinase converts
T4to biologically inactive reverse-T3 and maintains a high fetal clearance rate of 1-3,the most
biologically active thyroid hormone (Forhead et al., 2006). Similarly, the placental enzyme,
11g-hydroxysteroid dehydrogenase type 2 (116HSD2), converts active glucocorticoids to
their inactive metabolites, which reduces placental and fetal exposure to the higher cortisol
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concentrations found in the maternal circulation (Seckl 2004). Its placental activity is down
regulated by undernutrition and both maternal and fetal administration of glucocorticoids in
sheep (Whorwood et al. 2001; Clarke et al. 2002; Kerzner et al. 2002; McMullen et al. 2004;
Gnanalingham et al. 2007). In turn, by altering placental cortisol bioavai lability, these environ-
mentally-induced changes in 11SHSD2 activity influence placental production and metabolism
of other glucocorticoid sensitive hormones, such as the PGs, progesterone, oestrogens, placen-
tal lactogen and active thyroid hormones (see Fowden & Forhead 2004; 2009). Furthermore,
there are changes in the placental abundance of glucocorticoid and other hormone receptors
in response to maternal undernutrition, which will affect hormone bioavailability within the
placental tissues (Whorwood et al. 2001; Gnalingham et al. 2007; Yiallourides et al. 2009).
Epigenetic changes in placental hormone production may, therefore, alter placental delivery
of nutrients to the fetus either by paracrine actions on placental transport characteristics or by
endocrine actions on maternal metabolism that alter nutrient allocation between the maternal
and uteroplacental tissues (Fowden et al. 2006b). These programmed endocrine changes may
also determine the length of gestation and the development of maternal tissues, such as the
mammary glands, with implications for nutrition and growth after birth.

Molecular mechanisms of placental programming

Compared to the mouse placenta (Fowden et al. 2006a), relatively little is known about the
molecular mechanisms by which environmental factors alter the morphological and functional
development of the ovine placenta. Using microarrays, recent studies have shown that hypoxia
and dietary protein deprivation alter expression of over 200 genes in the mouse placenta with
specific up-regulation of genes involved in apoptosis and inhibition of cell growth (Gheorghe
et al. 2010). Gene deletion studies have demonstrated that imprinted genes, which are ex-
pressed monoallelically in a parent-of-origin manner, have a disproportionately important role
in placental development (Reik et al. 2003; Fowden et al. 2006b). In particular, the imprinted
Igf2 -H1 9 gene locus has been shown to affect both trophoblast morphology and nutrient trans-
fer (Reik et al. 2003; Coan et al. 2008b). Deletion of the placental specific PO transcript of the
Igf2 gene causes placental growth retardation but increases placental efficiency in association
with up-regulation of placental glucose and amino acid transfer and of placental expression of
Slc2a3/GLUT3 and Slc38a4, an isoform of the System A amino acid transporters (Constancia et
al. 2002; 2005). During late gestation, expression of this Igf2P0 transcript is altered in conjunc-
tion with changes in nutrient transfer by maternal dietary manipulations and when placental
growth is restricted naturally (Coan et al. 2008a&b; 2010). Collectively, these studies suggest
that placental Igf2 has a major role as an environmental sensor and adapts placental phenotype
to help support fetal growth in mice.

Both IGF-II and IGF-I are expressed in ruminant placenta, particularly early in gestation, as is
the primary IGF receptor, IGF1R (Wooding & Burton 2008). In ovine placentomes, expression
of the IGFs, IGF1R and their binding proteins is altered in a regional and temporally specific
manner by environmental factors including hyperthermia, maternal GH administration, over-
nutrition and both acute and chronic under-nutrition at various stages of pregnancy (Osgerby
et al. 2004; McMullen et al. 2005; de Vrijer et al. 2006; Gnanalingham et al. 2007; Wright
et al. 2008; Yiallourides et al. 2009). Indeed, the smaller the placenta the higher the IGF-II
abundance in moderately nourished ewes (Osgerby et al. 2003), which suggests that placental
IGF-II may act to enhance growth of the compromised placenta, as occurs in mice (Coan et al.
2008b). In addition, both under and over-nutrition alter the intracellular signalling pathways
downstream of IGF1R in ovine placentas (Zhu et al. 2007; 2009), which has implications for
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placental protein synthesis, cell proliferation and expression of nutrient transporters, independ-

ently of IGF concentrations (Jansson & Powell 2007).
At the chromatin level, epigenetic regulation of gene expression can occur by changes in

DNA methylation, histone modifications and/or siRNA abundance (Gluckman et al. 2009). In

somatic tissues, changes in DNA methylation and histone modifications have been observed
in the promoters of key metabolic genes in the adult offspring of rats malnourished or gluco-

corticoid treated during pregnancy, which parallel alterations in gene expression and enzyme
activity (see Burdge et al. 2007). Changes in hepatic DNA methylation have also been observed

in rat and sheep fetuses of mothers fed methyl deficient diets (Rees et al. 2000; Sinclair et al.
2007). In part, this may be due to reduced hepatic activity of DNA methytranferase responsible
for maintaining DNA methylation during cell replication (Lillycrop et al. 2007). Even less is
known about these processes in the placenta. When histone H3 trimethylation is prevented in

mice by deletion of a specific histone methytransferase, vascular development of the definitive

hemochorial placenta is impaired as embryonic blood vessels fail to invade the labyrinthine

layer, resulting in embryonic lethality at 11.5 days (Hu et al. 2010). Similarly, inhibition of

DNA methylation by 5-azacytidine administration to pregnant rats, leads to a small placenta
at term with impaired development of the labyrinthine trophoblast (Serman et al. 2007). Hy-

pomethylation and biallelic expression of the H19 gene locus is also seen in the overgrown
placenta of cloned cattle (Curchoe et al. 2009). In addition, hypomethylation of the imprinting
control region of the IGF2/H19 domain, or of the domain itself, has been observed in placentas

of growth restricted human infants in some but not all studies (Tabano et al. 2010; Bourque et
al, 2010). Genes involved in DNA methylation and histone modifications are down-regulated

in mouse placenta after maternal hypoxia and protein deprivation during the second half of
pregnancy but whether this alters the methylation status of any of the other affected placental

genes remains unknown (Gheorghe et al. 2010). Maternal undernutrition was not associated

with altered methylation of the promoter regions of the Igf2 or S1c38a4 genes in the mouse
placenta, despite changes in their expression in late gestation (Coan et al. 2010).

Conclusions

Environmental factors have an important role in programming the placental phenotype (Figure

2). They may act, directly, on placental development or, indirectly, through changes in the

maternal endocrine environment (Figure 2). Together, they programme the nutrient transfer

capacity of the placenta by altering its size and morphology, its transport characteristics and its

endocrine function. In turn, these placental adaptations affect the fetal endocrine environment

and the absolute and relative quantities of nutrients supplied to the fetus with consequences
for intrauterine development and offspring phenotype (Figure 2). They also alter maternal ad-

aptation to pregnancy and the allocation of maternal resources to feto-placental development.

The memory of early environmental events can, therefore, be transmitted to the fetus long after

the original insult through the placental epigenome. Thus, the placenta is not just a passive
conduit for nutrients but adapts its nutrient transfer capacity dynamically during environmental

challenges to optimise fetal acquisition of nutrients for growth given the prevailing nutrient

avai labi I ity.
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