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such as hyperthermia, undernutrition and hypoxaemia (see Fowden & Forhead 2009), these
hormones may mediate, in part, the effects of environmental stimuli on the placenta. Indeed,
in natural conditions, the placental effects of many of these environmental factors are likely
to be multi-factorial as conditions such hypoxaemia and hyperthermia reduce food intake in
pregnant ewes (Alexander & Williams 1977; Jacobs et al. 1988; Regnault et al. 2005).

Even during adverse conditions, fetal weight is still directly related to placental weight
(Wallace et al. 2005; Quigley et al. 2008). However, often, the effects of these conditions are
more pronounced on the placenta than fetus (Table 1). When placental growth is restricted,
placental efficiency increases as more grams of fetus are produced per gram of placenta than
in normal conditions (see Fowden et al 2009). Greater placental efficiency is also seen with
maternal glucocorticoid treatment, multiple pregnancy and increasing parity of the ewe (Jensen
et al. 2002; Dwyer et al. 2005). Hardier breeds of sheep also tend to have higher placental
efficiencies than breeds evolutionarily adapted to better nutritional conditions (Dwyer et al.,
2005). These observations suggest that the placenta can adapt to the fetal nutrient demands for
growth and help maintain normal fetal growth when its own growth is compromised. These
adaptations may have a morphological or functional origin.

Ovine placentomes can be classified into 4 types, A to D, using their gross morphological
appearance (Vatnick et al. 1991). The smaller, rounder A and B type placentomes predominate
throughout gestation and, on average, account for about 60% or more of the total number
under normal conditions. The larger, flatter C and D type placentomes are less common but
increase in frequency during late gestation, although their numbers appear to decrease again
close to term (see Fowden et al. 2006b). In general, adverse environmental conditions during
the period of maximal placental growth lead to a shift from A-type placentomes to the more
everted types later in gestation (Table 1). While this shift is often associated with placental
growth restriction, changes in placentome frequency distribution have been observed without
any change in total placental weight in response to both environmental and hormonal stimuli
(Penninga & Longo 1998; Bloomfield et al. 2002). This has lead to the suggestion that the
presence of more C and D-type placentomes is an adaptation to increase placental efficiency
and the transfer of nutrients to the fetus (Heasman et al. 1998; Steyn et al. 2001; Vonnahme et
al. 2006). Certainly, in carunclectomized ewes with small placentas composed solely of large
D-type placentomes, the rate of glucose transfer to the fetus per gram of placenta is enhanced
relative to controls (Owens et al. 1987; 1989). However, in normal conditions during late
gestation, there is little, if any, evidence for changes in placental weight, efficiency or glucose
transfer with the frequency of C/D type placentomes (Figure 1A-C).

In late gestation, adverse conditions either have little effect on placentome distribution or
reduce the incidence of C/D placentome types (Table 1). This may be the consequence of
elevated cortisol concentrations as both maternal and fetal glucocorticoid treatment in late
gestation increases the frequency of A/B type placentomes (Jensen et al. 2002; 2005; Ward
et al. 2006). By tagging individual placentomes before fetal treatment, cortisol was shown to
decrease, or even reverse, the normal rate of placentome eversion with increasing gestational
age, consistent with the prepartum decline in C/D placentome frequency seen during the natural
fetal cortisol surge (Ward et al. 2006; Fowden et al. 2006b). Since placental glucose delivery
to cortisol infused fetuses per gram of placenta is higher in animals with proportionately more
A/B type placentomes (Figure 1D), the cortisol-induced slowing of the progressive ontogenic
shift towards more everted placentomes may be an adaptive response to help maintain the
fetal nutrient supply during late gestation (Ward et al. 2006). Thus, the gross morphology of
the ovine placenta may be functionally significant in nutrient transport when cortisol concen-
trations are high.
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Fig. 1. Mean (+ SE) values of A) total placental weight, B) placentome number, C) placental
efficiency measured as gram fetus per gram placenta and D) placental glucose transfer
calculated as umbilical uptake per gram placenta at the prevailing glucose concentration
gradient in single sheep fetuses either infused with cortisol (1-2mg/kg fetus/day, shaded
columns) or in the control state (saline infused or untreated, open columns) before delivery
at 127-131 days with respect to the frequency distribution of more everted C and D type
placentomes expressed as a percentage of the total placentome number (<10%, 10-
30%, >30%). * significant effect of treatment P<0.02 two-way ANOVA. In D) within
treatments, columns with different letters as superscripts are significantly different from each
other P<0.05 (two-way ANOVA). t significantly different from respective saline infused
placentome type (P <0.05, t-test). Number of fetuses in A), B) and C) are Controls; <10%
n=18,10-30%,n = 8; >30%, n= 11: Cortisol; <10% n = 7,10-30% n = 11, >30%
n = 6. In D) numbers are Controls; <10% n = 6, 10-30% n = 3, >30% n =5: Cortisol;
10% n =5, 10-30% n = 4, >30% n = 6. Data from Gardner et al. 2002; Ward 2002;
Ward et al. 2002; 2006 and Fowden, Forhead and Wooding, unpublished observations).
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Placental transport characteristics

For facilitated diffusion and active transport, placental nutrient transport capacity depends
not only on trophoblast surface area but also on expression of nutrient transporters per unit
area. Transplacental diffusion of nutrients into the fetal circulation is also determined by the
transplacental concentration gradient and the rate of nutrient utilisation by the utero-placental
tissues themselves (Hay 2006; Fowden et al. 2009). All of these factors change with gestational
age and during adverse intrauterine conditions (Regnault et al. 2005; Fowden et al. 2008). For
example, between mid and late gestation, there are increases in the placental abundance of
glucose transporter-3 (GLUT3), the transplacental glucose concentration gradient and in the
relative proportion of uterine glucose uptake transfered to the sheep fetus (Fowden 1997; Hay
2006). Since some of the glucose carbon used in utero is passed onto the fetus as lactate (Hay
2006), changes in placental lactate production towards term and during adverse conditions will
also influence the apparent glucose transfer capacity of the ovine placenta (Fowden 1997).

In late gestation, transplacental glucose transfer is altered by a range of nutritional and other
perturbations, although the extent to which these changes are due to genuine alterations in
the placental glucose transport capacity appears to depend on the specific insult (Table 2). For
instance, the small placenta of hyperthermic ewes transports more glucose per kg placenta than
controls, primarily as a result of an increased transplacental glucose concentration gradient
caused by fetal hypoglycaemia (Table 2). At the normal glucose concentration gradient, the
capacity for glucose transport per kg of hyperthermic placenta is actually 20-30% lower than
control due to reduced placental expression of the glucose transporters (GLUT), GLUT1 and
GLUT8 (Thureen et al. 1992, Regnault et al. 2003: Limesand et al. 2005). Conversely, the
weight specific glucose transfer capacity is increased in the small placenta of carunclectomised
ewes (Table 2). Similarly, 25-50% increases in placental glucose transfer capacity have been
observed with prolonged maternal hypoglycaemia or restricted dietary intake when the reduced
transplacental concentration gradient is taken into account (Table 2). These changes in glucose
transport are accompanied by altered patterns of placental GLUT1 and GLUT3 expression,
which are isoform specific and temporally distinct depending on the insult (Das et al. 1998;
2000; Bell et al. 1999; Dandrea et al. 2001). In contrast, when placental growth is restricted
by over-nutrition of young animals, there is no change in glucose transport capacity or GLUT
expression per gram placenta, despite the reductions in placental and fetal mass (Wallace et al,
2005). Fetal glucocorticoid over-exposure also has no effect on the weight specific capacity for
placental glucose transport or on placental GLUT1 and GLUT3 expression, although umbilical
glucose uptake per gram placenta is reduced as a result of increased uteroplacental glucose
consumption (Table 2). The ovine feto-placental unit, therefore, adopts different strategies to
help maintain a fetal glucose supply during adverse conditions depending on the specific insult.
This may relate, in part, to the degree of placental growth restriction and/or to the maternal
and fetal endocrine mileux.

Compared to the GLUTs, less is known about the regulation of amino acid transporters
in the ovine placenta during adverse conditions. There are at least nine different amino acid
transporter systems with distinct functional characteristics yet overlapping specificities that
function to actively accumulate amino acids in the placenta and, then, facilitate their passive
transfer into the fetal circulation (Regnault et al. 2005). Transplacental amino acid flux varies
with the specific amino acid and the maternal concentration. It is also affected by catabolism
and transamination of amino acids within the placenta itself (Regnault et al. 2005). In sheep,
changes in the transplacental amino acid transport have been observed in response to hyper-
thermia, undernutrition and maternal administration of GH, IGF-I and glucocorticoids (Liechty
etal. 1991; Liu et al. 1994; Ross et al. 1996; Harding et al. 1997; Timmerman et al. 2000). In
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