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The ovine conceptus releases interferon-T (IFNT), which prevents
upregulation of the endometrial estrogen receptor (ESR1) and,
consequently, oxytocin receptor (OXTR), thereby disrupting pulsatile
release of prostaglandin F2a (PGF) in response to oxytocin. IFNT,through
paracrine action on the endometrium, protects the corpus luteum (CL)
during maternal recognition of pregnancy. Pregnancy also induces IFN
stimulated genes (ISGs) in peripheral blood mononuclear cells (PBMCs),
which is interpreted to reflect a "prompted" antiviral and immune cell
response peripherally in ruminants. IFNT was recently demonstrated to
be released from the uterus in amounts of —200 pg (2 x 107 U)/24 h via
the uterine vein and to induce ISGs in the CLduring maternal recognition
of pregnancy. Delivery of recombinant ovine (ro) IFNT into the uterine
vein in a location that is upstream of the utero-ovarian plexus from Day
10 to 17 maintained serum progesterone concentrations and extended
normal 16-17 d estrous cycles to beyond 32 d. It is concluded from these
studies that IFNT is released into the uterine vein and initiates a peripheral
antiviral response to protect pregnancy from maternal viral infection. It
also may have endocrine action through inducing luteal resistance to PGF
and longer-term survival of the CL and maintenance of pregnancy.

Introduction

The timing of release and composition of signals from the conceptus are critical for maintenance
of the CL and pregnancy. For example, transferring a Day 5-9 embryo into the uterus of Day 5
estrous cycling ewes extends luteal lifespan (Moor & Rowson 1966b). Ifa Day 12-13 embryo
is transferred into a recipient ewe later than 12 d post-estrus, the chances of the pregnancy
surviving to term are drastically reduced (Moor & Rowson 1964, Moor & Rowson 1966a).
Therefore, the uterus must receive and respond to a signal from the conceptus by Day 12, after
which time it becomes unable to maintain pregnancy. In ewes with one surgically isolated
uterine horn, only the CL ipsilateral to the gravid horn survived (Moor & Rowson 1966a),
suggesting that the embryo has a local effect on the gravid uterus. Embryos transferred to an
isolated horn of ewes with CL on both ovaries only maintained the CL on the side ipsilateral
to the embryo (Moor & Rowson 1966a). These experiments were interpreted to indicate that
a "local unilateral relationship between the embryo and the corpus luteum" existed and that a
systemic response to the conceptus was not necessary to maintain early pregnancy. Hansen et
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al. reported an interestrous interval of 19 d when conceptuses were flushed on Day 13 and an
extension to 35 d when flushed on Day 17 (Hansen et al. 1985). These data are interpreted to
mean that signals from the conceptus are necessary by Day 12-13 and need to continue until
Day 17 to protect the CL from lytic release of uterine-derived PGF.

The major conceptus secretory protein was initially termed protein X and is secreted dur-
ing Days 10-12 (Godkin et al. 1982, Bazer & Roberts 1983). Protein X, was renamed ovine
trophoblast protein-1, and later IFNT as reviewed in (Bazer et al. 1991, Roberts et al. 1992).
Peak secretion of IFNT from the ovine conceptus occurs between Days 15-17 of pregnancy
(Hansen et al. 1985, Ashworth & Bazer 1989, Roberts 1989). IFNT acts through the Type I
interferon receptor which shares two subunits, IFNAR1 and IFNAR2. These subunits are ex-
pressed in the luminal epithelium, sub-luminal glandular epithelium, and stroma of the ovine
uterus in Day 14-15 cyclic and pregnant ewes (Rosenfeld et al. 2002). Paracrine action of IFNT
on the endometrium has been shown to alter (ewe) (Zarco et al. 1988a, Zarco et al. 1988b)
or attenuate (cow) (Meyer et al. 1995) luteolytic pulses of PGF (based on detection of PGFM).
Nonpregnant ewes secrete PGF in a pulsatile fashion, while pregnant ewes have a more con-
stant, slowly increasing pattern in the release of PGF (Peterson et al. 1976, Zarco et al. 1988b).
However, more PGF is found exiting the uterus through the uterine vein in Day 13 pregnant
vs cyclic ewes (Wilson et al. 1972). This antiluteolytic mediation in release of PGF from the
endometrium during pregnancy is regulated by conceptus-derived IFNT.

Because the release of PGF from the endometrium is not completely ablated and the CL
produces PGF (Silva et al. 2000), several groups have described the CL of pregnancy to be more
resistant to lytic effects of PGF compared to the CL of the estrous cycle (lnskeep et al. 1975,
Mapletoft et al. 1976, Pratt et al. 1977, Silvia & Niswender 1984). Exactly why and how this
luteal resistance to PGF occurs during pregnancy is unknown. Also, whether the actions of
intraluteal PGF or PGF that continues to be delivered into the uterine vein need to be blocked
during early pregnancy is unknown. This review examines endocrine action of pregnancy
in ruminants. It is proposed that endocrine release of IFNT into the uterine vein upregulates
peripheral antiviral and immune cell responses, which when further challenged with viral in-
fection, immediately respond and protect the pregnancy. A second endocrine action of IFNT
during early pregnancy is proposed through induction of interferon-stimulated genes (ISGs) in
the CL, which contributes to luteal resistance to PGF.

Luteal cells and luteolysis

Late in the ovine luteolytic process (Day 16), release of progesterone diminishes because of
PGF action on large luteal cells. Oxytocin release by large luteal cells and action of oxytocin
on small luteal cells further inhibits secretion of progesterone and stimulates intracellular levels
of calcium and apoptosis (Niswender et al. 2007). PGF also is released from large luteal cells,
possibly through a PG transporter (SLCO2A1), and binds PGF receptor (PTGFR) on large luteal
cells to further stimulate oxytocin release, increases in intracellular calcium concentrations and,
consequently, death of the CL (Davis et al. 2010). Luteolysis may also include PGF activation
of protein kinase C (PKC) and RAF/MEK1/ERK-mediated increase in early growth response 1
(EGR1) and transforming growth factor B (TGFB1) (Hou et al. 2008) as well as repression of
insulin like growth factor (IGF-1) and cell-survival responses (phosphoinositide 3-kinase; PI3K
and protein kinase B; Akt) (Arvisais et al. 2010).
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Paracrine action of IFNT

Ruminant conceptuses are free-floating in the uterus during maternal recognition of pregnancy.
Thus, paracrine action of IFNT regulates endometrial gene expression and indirectly induces
anti luteolytic responses (Godkin et al. 1984a, Godkin et al. 1984b). In addition to the classical
JAK/STAT pathway (Hansen et al. 1999, Perry et al. 1999, Binelli et al. 2001, Pru et al. 2001b),
Type I IFN also activates PI3K and Akt pathways (Rani et al. 2002, Badr et al. 2010). IFNT
silences up-regulation of ovine ESR1 (Spencer et al. 1995, Spencer & Bazer 1996, Fleming et
al. 2001) and, consequently, OXTR (Spencer & Bazer 1996, Chen et al. 2006) in the endome-
trium. Decreased transcription of the OXTR is likely due to the decrease in ESR1 caused by
IFNT, as OXTR is not directly regulated by IFNT (Fleming et al. 2006). Suppressed ESR1and
OXTR in the endometrium causes alteration (ewe) (Zarco et al. 1988a, Zarco et al. 1988b) or
attenuation (cow) (Meyer et al. 1995) of luteolytic pulses of PGF (based on detection of PGFM).

Several ISGs have been identified in the ruminant uterus such as 2', 5'-oligoadenylate
synthetase (OAS) (Mirando et al. 1991, Schmitt et al. 1993, Johnson et al. 2001), myxovirus
(influenza virus) resistance (Mx) (Ott et al. 1998), and IFN-stimulated gene 15 (ISG15) (Naivar
et al. 1995, Austin et al. 1996, Johnson et al. 1999b). One conserved primate (Bebington et
al. 1999a, Bebington et al. 1999b, Bebington et al. 2000), mouse (Austin et al. 2003, Bany &
Cross 2006), and bovine (Austin et al. 1996, Hansen et al. 1997, Johnson et al. 1998, Perry
et al. 1999, Thatcher et al. 2001) uterine response to pregnancy is induction of the ubiquitin
homolog, ISG15. ISG15 mediates processes such as RNA splicing, chromatin remodeling/
polymerase ll transcription, cytoskeletal organization and regulation, stress responses, transla-
tion and viral replication (Malakhova et al. 2003, Giannakopoulos et al. 2005, Zhao et al.
2005, Takeuchi et al. 2006).

Intrauterine delivery of rolENT delays return to estrus

Because IFNT acts locally on endometrial release of PGF, models were developed in sheep to
test effects of intrauterine infusion of IFNT on interestrous interval. Intrauterine infusion of 50pg
native IFNT twice daily extended interestrous interval to 27 d (Vallet et al. 1988). Intrauterine
infusion of 340 pg rolFNT for 8 d extended return to estrus from 25-64 d in four out of five
ewes (Marta] et al. 1990). Likewise, intrauterine infusion of 1.4 x 10 U/d rolFNT from Day
10-18 delayed return to estrus to 33+14 d (Green et al. 2005). These studies were interpreted
to mean that IFNT acted in paracrine action to extend the luteal phase by attenuating pulses
of PGF and, thereby, protect the CL through antiluteolytic action. Importantly, the potential
entry of exogenous IFNT from the intrauterine infusion studies was not evaluated in the context
of endocrine action through its potential direct impact on the maintenance of CL function.

Endocrine action of IFNT

Systemic delivery of rolENT induces hyperthermia, but has varied impact on fertility

Delivery of Type I IFN, via intramuscular or subcutaneous injection also was examined by
several groups for capacity to extend interestrous interval and increase fertility (Nephew et
al. 1990, Martinod et al. 1991, Schalue-Francis et al. 1991, Davis et al. 1992). These studies
employed mg quantities of rIFN administered through twice daily injections (subcutaneous),
which may not reflect physiological levels of IFNT released by the uterus. These quantities
(mg) of rIFN induced hyperthermia, and no effect or a decline in fertility. For example, Ott
and colleagues (Ott et al. 1997) observed an induction of mild hyperthermia following sub-
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cutaneous injections of 2, 4 or 6 mg rIFNT on Day 12 post estrus. These investigators also
injected 1, 2 or 4 mg rolFNT/d on Days 11-15 and described a modest delay in onset of estrus
after adjusting for previous length of estrous cycle. These doses of rolF NT were subsequently
reduced to 2 x 107 U (200 pg) in intrauterine deliveries to avoid hyperthermia and high death
loss of ewes (Spencer et al. 1999).

Subcutaneous (Spencer et al. 1999) and intramuscular injection (2 mg) (Chen et al. 2006) of
rolFNT given between Days 11-17 stimulated ISG15 expression within the ovine CL. Chen and
colleagues (Chen et al. 2006) reported an inter-estrus interval of 32.7 d in ewes that received
intrauterine infusions of 200pg rolFNT, but an average interval of only 17 and 22 d in ewes that
were injected i.m. with 200pg or 2 mg rolFNT, respectively. These investigators also described
an increase in endometrial ISG15 expression in response to infusion of rolFNT and injection of
2 mg rolFNT, but not following injection of 200 pg rolFNT. None of these systemic methods
of rolFNT treatment prolonged return to estrus for more than a few days.

Induction of ISCs in blood cells during early pregnancy

Until recently (Oliveira et al. 2008, Bott et al. 2010), IFNT was thought to be sequestered within
the uterine lumen and not present in peripheral circulation in high enough concentrations to
be detected. Although, IFN-alpha has been shown to suppress tumor necrosis factor a and
IFN7-stimulated prostaglandin production by cultured luteal cells (Pate 1995). Likewise, culture
of luteal cells with IFN-alpha and in concentrations of progesterone similar to those observed
during early pregnancy also suppressed IFNly-induction of MHC class II glycoproteins. Pate
(1995) concluded from these studies that a signal similar to trophoblast-derived IFNT might
reach the ovary and act directly to protect the CL.

ISGs such as MX1 (Ott et al. 1998), ISG15 (Johnson et al. 1999a, Johnson et al. 1999b) and
OAS-1 (Johnson et al. 2001) have been shown to be upregulated in uterine cross sections as
deep as the myometrium. For this reason, IFNT was suspected to induce a secondary mediator
in the myometrium. This secondary mediator of IFNT action was called an "interferon-medin"
(Spencer et al. 1996).

PBMCs from pregnant sheep have increased concentrations of ISGsmRNA (Yankey et al. 2001)
compared to nonpregnant sheep, which also is the case in cattle (Han et al. 2006, Gifford et al.
2007). Presence of ISGs in extrauterine tissues such as jugular PBMCs provoked study of ISGs
in uterine vein and uterine artery blood aswell as the CL (Oliveira et al. 2008, Bott et al. 2010).
Concentrations of ISG15 mRNA in jugular vein on Day 15 of pregnancy were similar to uterine
vein and artery ISG15 concentrations suggesting endocrine induction of ISGs through the pres-
ence of the conceptus and release of either IFNT or an interferon-med in from the uterus.

Very little is known about the genes that are regulated in blood cells during early pregnancy
and no studies have been done to compare blood and endometrial gene expression in response
to pregnancy. We hypothesized that several genes would be upregulated by pregnancy on
Day 18 of bovine pregnancy in endometrial and blood cells. Several hundred endometrial
(674 genes upregulated and 721 downregulated 1.5 fold; P < 0.05) and blood cell (375
genes upregulated and 784 downregulated 1.2 fold; P < 0.05) genes were differentially
expressed based on pregnancy status on Day 18 of pregnancy (United States Patent Applica-
tion: 20100035270 and Fig. 1). Upregulated ISGs in endometrium (Fig. 1) were similar to
other reports using microarray (Klein et al. 2005), (Bauersachs et al. 2006, Chen et al. 2006,
Bauersachs et al. 2008) and conventional molecular biology approaches (Johnson et al. 1999a,
Pru et al. 2001a, Rempel et al. 2005).
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Fig. 1. Hypothetical model of conceptus-induced preemptive maternal resistance to viral infection. Panel A

contains fold changes and identities for genes described in Panel B. Cows were artificially inseminated on Day

0. Presence of a conceptus was confirmed on Day 32 post Al by using ultrasound. Blood was collected from

lactating Holstein Dairy cows 18 days following Al (4 pregnant and 3 nonpregnant cows) and processed to

purify RNA for microarray screening according to the QiaAMP procedure (Qiagen, Inc.). Because of excessive

costs in collecting the uterus from lactating dairy cows, Angus-Gelbvieh beef cows were used for endometrial

studies. Endometrial RNA was isolated from cows on Day 18 of pregnancy (3 cows; conceptus identified)

or the estrous cycle (3 cows; not inseminated) following slaughter and submitted for microarray analysis. The

bovine Affymetryx gene chip was screened at the University of Colorado Health Sciences Center (UCHSC) DNA

Microarray Core facility. Data were analyzed using GCOS and GeneSifter software. Statistical significance was

determined using the West calculated from Robust Mu ltichip Average data (Irizarry eta/. 2003). A 1.5-fold cut off

was used to identify all differentially expressed genes in endometrium. A 1.2-fold cut off was used to identify all

differentially expressed genes in blood because there were fewer affected genes in the blood and identification

of shared gene expression between blood and endometrium was one primary focus of the experiment. Panel

B provides hypothesized role of IFNT in activating a peripheral maternal antiviral response. IFNT is released

from the conceptus that initiates a local (i.e., paracrine) type I IFN response through up-regulation of ISGs,

chemokines, and other genes in the endometrium and myometrium before exiting the uterus by the uterine

vein. In endocrine fashion, IFNT then transcriptionally upregulates ISGs and genes involved in activation of

T cell and antigen presenting cells (APC) such as macrophages and dendritic cells. The conceptus, therefore,

coordinates both local and systemic immunomodulatory events that allow the mother to cope with potential

viral infections as more aggressive cytotoxic responses that may be detrimental to the histocompatibly distinct

embryo are concomitantly curbed.
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Virus induces retinoic acid-induced gene I (RIG-I) and melanoma differentiation-associated
protein 5 (MDA-5) which contain RNA helicase domains that bind viral dsRNA and response

elements that activate interferon regulatory factors (IRF3 and IRF7), which then induce synthesis

of Type I IFN. Several other ISGs are induced to regulate viral infection such as OAS-1, which

activates endoribonuclease to degrade virus; protein kinase R (PKR) to phosphorylate eukaryotic

initiation factor (elF)-2, which in turn inhibits translation and replication of virus; and ISG15

(Lenschow et al. 2007) and MX (MacMicking 2004). This pathway of genes is known to be
required for cellular resistance to viral infection. Likewise, several indicators of T cell activation

in blood cells were identified.

Homer protein homolog 2 (HOMER2)was a major downregulated gene in both endometrium

and blood in response to pregnancy. In T cells, HOMER2 is upregulated after T cell activation
(Diehn et a/. 2002), however it is considered a negative regulator of T cell activation and pro-

duction of IL-2 (Huang et al. 2008). A downregulation of HOMER2 would allow better access
for stimulation of nuclear factor of activated T cells (NFAT) by calcineuron (Huang et al. 2008).
Other indicators that T cells are activated in response to IFNT include upregulation of many

T cell receptor (TCRA, TCRB, TCRG) components such as T cell surface glycoproteins CD3D,

CD3E and CD8. IRF7 is a key regulator of Type I IFN-dependent activation of CD8 positive

T cells (Honda et al. 2005). Both CD8 and IRF7 were upregulated in blood in response to

pregnancy. CD8 is known to function as a co-receptor with TCR when interacting with major

histocompatibility complex (MHCI) on target cells.
Type I IFNs also induce MHCI on many cell types and activate not only T cells, but also

natural killer cells. Based on the microarray data, MHCI was upregulated in blood cells from
Day 18 pregnant when compared to nonpregnant cows and is normally upregulated in profes-

sional antigen presenting cells such as dendritic cells and tissue macrophages. The apparent

upregulation of blood cell MHCI in response to pregnancy is based on hybridization to probe

sets in the microarray and may have been caused by different MHC haplotypes that were

expressed by the limited number of cows used in this study (Davies et al. 1994). However,
beta-2-microglobulin (B2MG) was upregulated in endometrium, but not in blood cells, which

might reflect expression of this binding partner for MHCI in tissue followed by homing or

translocation of pre-antigen presenting blood cells. Following viral infection of these cells,

massive upregulation of RIGI and MDA5 RNA helicases would assist in degrading viral RNA.

Processing of viral coat proteins and presentation of antigen would be facilitated through existing
upregulation of MHCI and B2MG as well as enhancing the presence of activated CD8 T cells.

Upregulation of CD8 and TCR activated T cells and MHCl/B2MG antigen presenting cells

could be detrimental because the conceptus expresses foreign antigens that would clearly be

recognized by these cells. However, in ruminants at this very early stage of pregnancy, the

conceptus has developed only very peripheral adhesion complexes to the uterine lumen with

no penetration of the basement membrane of the endometrium. For this reason, the uterine
lumen remains isolated from any circulating T cells. Also 82MG and MHC class I genes are
silenced in ovine endometrial lumina] epithelium and trophectoderm even though they are

upregulated in other endometrial layers (Choi et al. 2003). Very few immune cells are local-

ized to the endometrium during this stage of pregnancy in ruminants (Vander Wielen & King

1984). This might be caused by lack of specific chemokine receptors on these cells and/or

lack of endometrial production of chemokines that would specifically recruit these cells to the

endometrium. Alternatively, this could be accounted for by increased expression or presence
of immune cell repulsive factors.

However, we described macrophage inflammatory protein (CXCL2) (Hansen et al. 1999) and
granulocyte chemotactic protein-2 (CXCL6) (Teixeira et al. 1997) to be induced by pregnancy
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and IFNT in bovine endometrium. Also, other groups demonstrated that CXCL9, CXCL10,
CXCL11 and CXCR3 are localized to the maternal-fetal interface in sheep during early preg-
nancy (Imakawa et al. 2006). Likewise, monocyte chemotactic protein (Asselin et a/. 2001)
and IFN-gamma inducible protein 10 (Nagaoka et al. 2003) have been shown to be expressed
in endometrium in response to pregnancy. Based on enclosed microarray analysis, chemokine
receptor mRNA concentrations were not upregulated in blood cells from Day 18 pregnant when
compared to nonpregnant cows. Chemokine ligand 5 (CCL5) was the only major chemokine
mRNA that was significantly upregulated in blood. Likewise, only three chemokine ligands,
CCL8, CXCL10 and CCL5 were extensively upregulated in the endometrium. CCL5 induces
recruitment of T cells to the lung following viral lung disease (Cul ley et al. 2006). CCL8 is
chemotactic for monocytes and CD8+ as well as CD4+ T cells (Taub et al. 1995) and might
recruit these cells to the endometrium in the event of infection. However, if the associated
chemokine receptors are not differentially expressed on these T cells, then very few of these
cells would be actively recruited to the endometrium, unless there was a maternal-peripheral
infection with virus. Because these maternal antiviral T cells and antigen presenting cells are
activated through exposure to Type I IFN from the conceptus, they would immediately be re-
cruited to the endometrium where a first or last line of defense would be established to inhibit
virus from passing through the endometrial basement membrane and infecting the conceptus
(Fig. 1).

Direct endocrine action of 1FNT on the corpus luteum

Endocrine release of conceptus -derived IFNT into the uterine vein. Lymph nodes draining the
uterus (iliac) and the head (submandibular) from Day 15 pregnant ewes were examined and
found not to differ in ISG gene expression (Antoniazzi et al., unpublished results); suggesting
that IFNT was not released into uterine lymphatic drainage and this was not a pathway through
which IFNT induced PBMC ISGs. This also was consistent with previous reports describing no
antiviral activity in lymph draining the uterus during pregnancy (Lamming et al. 1995). However,
Godkin and co-workers demonstrated that infusion of radiolabeled IFNT into the uterine lumen
resulted in escape of very low levels into the blood (Godkin et al. 1984a). Schalue-Francis
(Schalue-Francis et a/. 1991) described antiviral activity in the uterine vein, although levels
reported were very low. For these reasons we re-examined the uterine vein as a source for
endocrine delivery of IFNT. Antiviral activity was evaluated in uterine vein blood from Day
15 pregnant sheep, which revealed significant amounts of Type I IFN (---200pg124h) on Day
15 of pregnancy (Oliveira et al. 2008). Also, pre-adsorption of uterine vein blood from Day
15 pregnant ewes with antibody against rolFNT significantly reduced antiviral activity (Bott
et al. 2010). It was concluded from these studies that IFNT is released into the uterine vein
on Day 15 of pregnancy. Other than Day 15, the timing and concentration of IFNT in uterine
vein blood is unknown and is a focus of ongoing study.

Endocrine induction of ISGs in large luteal cells. ISG15 mRNA concentrations were
uregulated in CL from Day 15 pregnant compared to nonpregnant ewes (Fig. 2) (Oliveira et
al. 2008, Bott et al. 2010). ISG15 protein and conjugation of ISG15 to targeted proteins also
were upregulated in CL in response to pregnancy. ISG15 was predominantly localized to
large luteal cells on Day 15 of pregnancy, with less, but significant localization to small luteal
cells. Also, large luteal cells isolated on Day 10 of the estrous cycle and cultured with rolFNT
for 24 h showed significant induction of ISG15 (Oliveira et al. 2008). Finally, IFNAR1 and
IFNAR2 mRNA are expressed in the ovine CL (Antoniazzi et al., unpublished results). It was
concluded from these studies that in addition to extensively characterized paracrine action on



332 T.R. Hansen et al.

the endometrium, IFNT also likely has direct endocrine action on extrauterine tissues such as
blood cells and the CL.

Fig. 2. Western blot of ISG15 (15-kDa) and its conjugates (A, B), immunohistochemical
localization of ISG15 in CL (C) and induction of ISG15 following culture of isolated large
luteal cells (Day 10 of estrous cycle) with 100 ng/ml rolFNT for 24 h (D). Both free and
conjugated ISG15 were induced (*; P < 0.05) by pregnancy and in response to culture
with rolFNT (a, b; P < 0.05). Imunohistochemical staining for ISG15 was upregulated
in cross-sections from CL on Day 15 of pregnancy (C: top right panel). Panel C Upper
left: no primary antibody control. Localization of ISG15 was most intense in large luteal
cells (lower panel in C; white arrows). For more details please see (Oliveira et a/. 2008).
Copyright 2008, The Endocrine Society.

Endocrine delivery of 200 pg rolFNT/d into the uterine vein for 7 d delayed return to estrus.
Release of IFNT into the uterine vein on Day 15 of pregnancy was estimated previously to be
— 200 pg/d (Oliveira et al. 2008). For this reason, osmotic pumps loaded to deliver 200 pg/d
into the uterine vein for seven consecutive days were surgically installed. Estimated blood
volume in sheep was 3.48 L based on average weight of 60 kg and blood volume of 58 ml/kg.
Thus, on Day 15 of pregnancy, systemic levels in circulation would stabilize around 2.4 ng/
ml/h. This is biologically relevant considering the dissociation constant (Kd) of 3.7 x 10-10M(Li
& Roberts 1994) and estimated 50% occupancy of the receptor at 6.3 ng IFNT/ml.

Osmotic pumps delivering 200 pg rolENT into the uterine vein/d were surgically installed on
Day 10 of the estrous cycle in sheep (Fig. 3). Eighty percent (4/5) of ewes infused with rolFNT for
7 d had extended estrous cycles and luteal phase serum progesterone concentrations through 32
d (Bott et a/. 2010). In the nonresponder ewe, serum progesterone concentrations were declining
at the time of installation of the pump, which was interpreted as onset of luteal regression prior
to endocrine delivery of rolFNT. To our knowledge this is the first report of such small endocrine
concentrations of IFNT to induce a significant long-term delay in return to estrus.

There was no effect of 24 h endocrine delivery of rolFNT into the uterine vein starting on
Day 10 of the estrous cycle on serum progesterone concentrations (Fig. 4) (Bott et al. 2010). A
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sub-luteolytic dose of PGF (4 mg/58 kg), described previously to cause a significant decline in
serum progesterone without complete luteolysis (Silvia & Niswender 1984, Silvia & Niswender
1986, Silva et al. 2000, Bott et al. 2010), was injected 12 h following delivery of rolFNT into the
uterine vein. PGF caused a significant decline in serum progesterone concentrations within 6 h,
even in ewes with 12 h pre-exposure to delivery of rolFNT into the uterine vein. However, by
8-12 h after injection of PGF serum progesterone returned to concentrations in rolFNT-infused
ewes that were intermediate and not different from BSA-or rolFNT-infused ewes in the absence
of PGF injection. Endocrine delivery of IFNT also induced upregulation of ISG15 mRNA in the
endometrium and the CL. This "recovery" in serum progesterone concentrations was suggested
to reflect induction of luteal resistance to PGF through endocrine delivery of IFNT.

Fig.3. Osmotic pump delivery (Left Panel) of 200pg rolFNT (2 x 107 IU)/d rolFNT or BSA
for 7 d into the uterine vein caused extension of the estrous cycle and maintenance of
serum progesterone concentrations (Right Panel) in 80% of ewes. Shaded bar represents
time of osmotic pump infusion (Days 10-16). Adapted from Bott et al. 2010.

Intraluteal prostaglandins

Concentrations of 15 hydroxyprostaglandin dehydrogenase (PGDH) and prostaglandin-endop-
eroxide synthase 2 (PTGS2) mRNAs increase in CL on Day 13 of pregnancy compared to the
estrous cycle suggesting that the CL of pregnancy is better able to degrade endogenous PGs in
the face of increased synthesis via PTGS2 (Silva et al. 2000). This upregulation of PTGS2 might
contribute to reduced luteal sensitivity to PGF through shifting biosynthesis to PGE2 (Costine
et al. 2007) through PGE synthase (PTGES).

PGDH, PTGES, PGFS, and PTGS2 mRNA concentrations did not change following 24 h
infusion of IENT into the uterine vein (Bott et al. 2010). This was interpreted to suggest that
IFNT does not induce luteal resistance through inhibiting mRNAs encoding intraluteal biosyn-
thesis of PGs, at least on Day 10 of the estrous cycle. SLCO2A1 facilitates transport of PGs
across membranes (Chan et al. 1998, Schuster 1998, Endo et al. 2002, Schuster 2002). PGF is
transported through SLCO2A1 in the ovine endometrim (Banu et al. 2008) and through counter-
current exchange in the utero-ovarian plexus (Lee et al. 2010). One action of IFNT might be
to downregulate SLCO2A1 in the utero-ovarian plexus and thus disrupt delivery of PGF to the
CL. SLCO2A1 may also regulate release of PGF from large luteal cells during autocrine activa-
tion of PTGFR to induce luteolysis (Niswender et al. 2007). Downregulation of SLCO2A1 in
large luteal cells might impair release of PGF and, consequently, autocrine action of PGF on
large luteal cell apoptosis. Another target in the CL for development of resistance to luteolysis
is downregulation of the PGTFR. However, it has been reported that PTGFR mRNA auengel
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Fig. 4. Endocrine delivery of IFNT into the uterine vein protects the CL from PGF through

attenuating the decline in serum progesterone (A) and possibly through induction of ISGs in the

endometrium (B) and CL (C). BSA or rolFNT (200 pg/24h) were infused into the uterine vein in

24 ewes (12 ewes per treatment). Half of these ewes were injected with PGF (4mg/58 kg bw)

12 h later. Panel A describes a decrease in serum progesterone concentrations 6 h following

PGF regardless of infusion treatment. However, in rolFNT infused ewes, serum progesterone

concentration increased after 6 h to levels not different from controls. Data are the mean (n =6

ewes per treatment) + SE. Significant differences (P < 0.05) in treatments and time are denoted

with different letters. Endometrium and CL (Panel C) were collected and examined for ISG15

mRNA concentrations, which increased following endocrine delivery of rolENT. Means differ

(P < 0.05) when designated by different superscripts. Adapted from Bott et al. 2010.

et al. 1998), protein (Wiepz et al. 1992) and affinity constant (Wiepz et al. 1992) are not at-
tenuated during maternal recognition of pregnancy in sheep. These nicely designed studies
concluded that the mechanism through which the ovine CL achieves resistance to PGF during
early pregnancy does not involve PTGFR. Prostaglandin E2 receptor (PTGER2) is coupled to
the cAMP signal transduction pathway, which stimulates steroidogenesis and production of
progesterone in cultured human luteinized granulosa (Chandras et al. 2007). PTGER4 also is
a G-protein receptor coupled to cAMP as reviewed in (Sugimoto & Narumiya 2007), but to our
knowledge, functional coupling of this receptor subtype to synthesis of progesterone has not
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been studied in the CL. Upregulation of PGE2 receptors coupled to cAMP signaling in the CL
during pregnancy might also contribute to luteal resistance to PGF. Regardless of the specific
PTGERs involved, the general steroidogenic action of PGE2 has been extensively studied since
the first report that it induces adenylate cyclase in bovine CL (Marsh 1971).

Conclusions

IFNs were discovered as antiviral cytokines (Isaacs & Lindenmann 1957). Viral infection of a
pregnant cow can result in vertical transmission to the fetus (Casaro et al. 1971). A significant
upregulation of Type I IFN and ISGs has been described in PBMC following infection of preg-
nant heifers with bovine viral diarrhea virus prior to and following development of the fetal
immune system (Smirnova et a/. 2008, Shoemaker et al. 2009, Smirnova et al. 2009). This
defense to viral infection also is initiated through release of IFNT from the conceptus during
early pregnancy. Through prompting, but not completely activating maternal antiviral responses,
peripheral maternal resistance may protect the pregnancy in the event that viral infection occurs.

Why the ruminant conceptus produces IFNT, a Type I IFN, in amounts large enough to induce
systemic responses has been proposed to be related to maternal mediation of inflammatory and
immune responses that might be detrimental to the "foreign" conceptus (Roberts et al. 1992). A
variation in this theme is suggested herein, where the local endometrial and peripheral maternal
immune responses become primed during early pregnancy through conceptus-derived IFNT
to express ISCs that could more effectively recognize virus, mount an antiviral response and
consequently prohibit transfer of any maternal viral infection to the conceptus or fetus. This
antiviral mechanism is important in ruminants in context of the epitheliochorial placenta and
the lack of transport of maternal antibodies to the embryo or fetus and would facilitate more
rapid maternal defense to spread of viral infection to the unprotected pregnancy. Pregnancy-
induced antiviral mechanisms may also exist in other mammalian species despite different
modes of maternal recognition of pregnancy and implantation.

The CL required during pregnancy for 50 days in sheep and 6-8 months in cattle (Senger
2003). One critical early mechanism to protect this CL during maternal recognition of pregnancy
is the release of IFNT from the conceptus and paracrine action on the endometrium to disrupt
upregulation of ESR1,OXTR and luteolytic pulsatile release of PGF. IFNT also is released into
the uterine vein and has endocrine action on the CL as well as PBMC. It functions to induce
ISGs in the CL which are hypothesized to provide resistance to continued exposure to PGF
from the uterus as well as from the CL. The CL becomes resistant to PGF in response to preg-
nancy (Inskeep et al. 1975, Mapletoft et a/. 1976, Pratt et al. 1977, Silvia & Niswender 1984).
Mechanisms associated with resistance to PGF might include modification of PGF receptor
coupling to G-proteins, activation of PKC and associated apoptotic responses; endometrial (Banu
et al. 2008), uterine vein (Lee et al. 2010) and intraluteal transport of PGF through SLCO2A1
and upregulation of receptors and luteotrophic responses to PGE2 (PTGERs) (Antoniazzi et al.,
unpublished results). Type I IFN, which are closely related to IFNT, protect immune cells from
apoptosis through activating the PI3K6, Akt, Rho-A and NFKB (Badr et al. 2010). Cell death and
apoptotic genes are induced by PGF during luteolysis (reviewed in (Niswender et al. 2007)).
PGF-mediated induction of the PKC-Raf-MEK1-Erk pathway entails blocking the cell survival
Akt pathway (Arvisais et al. 2010). We suspect that endocrine action of IFNT might stabilize
the cell survival Akt pathway. Endocrine delivery of IFNT into the uterine vein induced a sig-
nificant extension of estrous cycles (>32 d) using the lowest amounts of IFNT to date that are
relevant in context of the Kd of the IFN type I receptor. Systemic delivery of similar biochemi-
cally relevant doses of IFNT might be tested in future experiments to improve embryo survival.
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