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Paracrine action of IFNT

Ruminant conceptuses are free-floating in the uterus during maternal recognition of pregnancy.
Thus, paracrine action of IFNT regulates endometrial gene expression and indirectly induces
antiluteolytic responses (Godkin et al. 1984a, Godkin et al. 1984b). In addition to the classical
JAK/STAT pathway (Hansen et al. 1999, Perry et al. 1999, Binelli et al. 2001, Pru et al. 2001b),
Type | IFN also activates PI3K and Akt pathways (Rani et al. 2002, Badr et al. 2010). IFNT
silences up-regulation of ovine ESR1 (Spencer et al. 1995, Spencer & Bazer 1996, Fleming et
al. 2001) and, consequently, OXTR (Spencer & Bazer 1996, Chen et al. 2006) in the endome-
trium. Decreased transcription of the OXTR is likely due to the decrease in ESR1 caused by
IENT, as OXTR is not directly regulated by IFNT (Fleming et al. 2006). Suppressed ESR1 and
OXTR in the endometrium causes alteration (ewe) (Zarco et al. 1988a, Zarco et al. 1988b) or
attenuation (cow) (Meyer et al. 1995) of luteolytic pulses of PGF (based on detection of PGFM).

Several ISGs have been identified in the ruminant uterus such as 2’, 5’-oligoadenylate
synthetase (OAS) (Mirando et al. 1991, Schmitt et al. 1993, Johnson et al. 2001), myxovirus
(influenza virus) resistance (Mx) (Ott et al. 1998), and IFN-stimulated gene 15 (ISG15) (Naivar
et al. 1995, Austin et al. 1996, Johnson et al. 1999b). One conserved primate (Bebington et
al. 1999a, Bebington et al. 1999b, Bebington et al. 2000), mouse (Austin et al. 2003, Bany &
Cross 2006), and bovine (Austin et al. 1996, Hansen et al. 1997, Johnson et al. 1998, Perry
et al. 1999, Thatcher et al. 2001) uterine response to pregnancy is induction of the ubiquitin
homolog, ISG15. 1SG15 mediates processes such as RNA splicing, chromatin remodeling/
polymerase Il transcription, cytoskeletal organization and regulation, stress responses, transla-
tion and viral replication (Malakhova et al. 2003, Giannakopoulos et al. 2005, Zhao et al.
2005, Takeuchi et al. 2006).

Intrauterine delivery of rolFNT delays return to estrus

Because IFNT acts locally on endometrial release of PGF, models were developed in sheep to
test effects of intrauterine infusion of IENT on interestrous interval. Intrauterine infusion of 50 yg
native IFNT twice daily extended interestrous interval to 27 d (Vallet et al. 1988). Intrauterine
infusion of 340 wg rolFNT for 8 d extended return to estrus from 25-64 d in four out of five
ewes (Martal et al. 1990). Likewise, intrauterine infusion of 1.4 x 107 U/d rolFNT from Day
10-18 delayed return to estrus to 33 + 14 d (Green et al. 2005). These studies were interpreted
to mean that IFNT acted in paracrine action to extend the luteal phase by attenuating pulses
of PGF and, thereby, protect the CL through antiluteolytic action. Importantly, the potential
entry of exogenous IFNT from the intrauterine infusion studies was not evaluated in the context
of endocrine action through its potential direct impact on the maintenance of CL function.

Endocrine action of IFNT
Systemic delivery of rolFNT induces hyperthermia, but has varied impact on fertility

Delivery of Type | IFN, via intramuscular or subcutaneous injection also was examined by
several groups for capacity to extend interestrous interval and increase fertility (Nephew et
al. 1990, Martinod et al. 1991, Schalue-Francis et al. 1991, Davis et al. 1992). These studies
employed mg quantities of rIFN administered through twice daily injections (subcutaneous),
which may not reflect physiological levels of IFNT released by the uterus. These quantities
(mg) of rIFN induced hyperthermia, and no effect or a decline in fertility. For example, Ott
and colleagues (Ott et al. 1997) observed an induction of mild hyperthermia following sub-
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cutaneous injections of 2, 4 or 6 mg rIFNT on Day 12 post estrus. These investigators also
injected 1, 2 or 4 mg rolFNT/d on Days 11-15 and described a modest delay in onset of estrus
after adjusting for previous length of estrous cycle. These doses of rolFNT were subsequently
reduced to 2 x 107 U (200 ug) in intrauterine deliveries to avoid hyperthermia and high death
loss of ewes (Spencer et al. 1999).

Subcutaneous (Spencer et al. 1999) and intramuscular injection (2 mg) (Chen et al. 2006) of
rolFNT given between Days 11-17 stimulated ISG15 expression within the ovine CL. Chen and
colleagues (Chen et al. 2006) reported an inter-estrus interval of 32.7 d in ewes that received
intrauterine infusions of 200 ug rolFNT, but an average interval of only 17 and 22 d in ewes that
were injected i.m. with 200 ug or 2 mg rolFNT, respectively. These investigators also described
an increase in endometrial ISG15 expression in response to infusion of rolFNT and injection of
2 mg rolFNT, but not following injection of 200 ug rolFNT. None of these systemic methods
of rolFNT treatment prolonged return to estrus for more than a few days.

Induction of ISGs in blood cells during early pregnancy

Until recently (Oliveira et al. 2008, Bott et al. 2010), IFNT was thought to be sequestered within
the uterine lumen and not present in peripheral circulation in high enough concentrations to
be detected. Although, IFN-alpha has been shown to suppress tumor necrosis factor o and
IFNy-stimulated prostaglandin production by cultured luteal cells (Pate 1995). Likewise, culture
of luteal cells with IFN-alpha and in concentrations of progesterone similar to those observed
during early pregnancy also suppressed IFNy-induction of MHC class Il glycoproteins. Pate
(1995) concluded from these studies that a signal similar to trophoblast-derived IFNT might
reach the ovary and act directly to protect the CL.

ISGs such as MX1 (Ott et al. 1998), ISG15 (Johnson et al. 1999a, Johnson et al. 1999b) and
OAS-1 (Johnson et al. 2001) have been shown to be upregulated in uterine cross sections as
deep as the myometrium. For this reason, IFNT was suspected to induce a secondary mediator
in the myometrium. This secondary mediator of IFNT action was called an “interferon-medin”
(Spencer et al. 1996).

PBMCs from pregnant sheep have increased concentrations of ISGs mRNA (Yankey et al. 2001)
compared to nonpregnant sheep, which also is the case in cattle (Han et al. 2006, Gifford et al.
2007). Presence of ISGs in extrauterine tissues such as jugular PBMCs provoked study of I1SGs
in uterine vein and uterine artery blood as well as the CL (Oliveira et al. 2008, Bott et al. 2010).
Concentrations of ISG15 mRNA in jugular vein on Day 15 of pregnancy were similar to uterine
vein and artery ISG15 concentrations suggesting endocrine induction of ISGs through the pres-
ence of the conceptus and release of either IFNT or an interferon-medin from the uterus.

Very little is known about the genes that are regulated in blood cells during early pregnancy
and no studies have been done to compare blood and endometrial gene expression in response
to pregnancy. We hypothesized that several genes would be upregulated by pregnancy on
Day 18 of bovine pregnancy in endometrial and blood cells. Several hundred endometrial
(674 genes upregulated and 721 downregulated = 1.5 fold; P < 0.05) and blood cell (375
genes upregulated and 784 downregulated = 1.2 fold; P < 0.05) genes were differentially
expressed based on pregnancy status on Day 18 of pregnancy (United States Patent Applica-
tion: 20100035270 and Fig. 1). Upregulated ISGs in endometrium (Fig. 1) were similar to
other reports using microarray (Klein et al. 2005), (Bauersachs et al. 2006, Chen et al. 2006,
Bauersachs et al. 2008) and conventional molecular biology approaches (Johnson et al. 1999a,
Pru et al. 2001a, Rempel et al. 2005).
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Fig. 1. Hypothetical model of conceptus-induced preemptive maternal resistance to viral infection. Panel A
contains fold changes and identities for genes described in Panel B. Cows were artificially inseminated on Day
0. Presence of a conceptus was confirmed on Day 32 post Al by using ultrasound. Blood was collected from
lactating Holstein Dairy cows 18 days following Al (4 pregnant and 3 nonpregnant cows) and processed to
purify RNA for microarray screening according to the QiaAMP procedure (Qiagen, Inc.). Because of excessive
costs in collecting the uterus from lactating dairy cows, Angus-Gelbvieh beef cows were used for endometrial
studies. Endometrial RNA was isolated from cows on Day 18 of pregnancy (3 cows; conceptus identified)
or the estrous cycle (3 cows; not inseminated) following slaughter and submitted for microarray analysis. The
bovine Affymetryx gene chip was screened at the University of Colorado Health Sciences Center (UCHSC) DNA
Microarray Core facility. Data were analyzed using GCOS and GeneSifter software. Statistical significance was
determined using the t-test calculated from Robust Multichip Average data (Irizarry et al. 2003). A 1.5-fold cut off
was used to identify all differentially expressed genes in endometrium. A 1.2-fold cut off was used to identify all
differentially expressed genes in blood because there were fewer affected genes in the blood and identification
of shared gene expression between blood and endometrium was one primary focus of the experiment. Panel
B provides hypothesized role of IFNT in activating a peripheral maternal antiviral response. IFNT is released
from the conceptus that initiates a local (i.e., paracrine) type | IFN response through up-regulation of 1SGs,
chemokines, and other genes in the endometrium and myometrium before exiting the uterus by the uterine
vein. In endocrine fashion, IFNT then transcriptionally upregulates ISGs and genes involved in activation of
T cell and antigen presenting cells (APC) such as macrophages and dendritic cells. The conceptus, therefore,
coordinates both local and systemic immunomodulatory events that allow the mother to cope with potential
viral infections as more aggressive cytotoxic responses that may be detrimental to the histocompatibly distinct
embryo are concomitantly curbed.
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the endometrium, IFNT also likely has direct endocrine action on extrauterine tissues such as
blood cells and the CL.
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Fig. 2. Western blot of ISG15 (15-kDa) and its conjugates (A, B), immunohistochemical
localization of ISG15 in CL (C) and induction of ISG15 following culture of isolated large
luteal cells (Day 10 of estrous cycle) with 100 ng/ml rolENT for 24 h (D). Both free and
conjugated ISG15 were induced (*; P < 0.05) by pregnancy and in response to culture
with rolFNT (a, b; P < 0.05). Imunohistochemical staining for ISG15 was upregulated
in cross-sections from CL on Day 15 of pregnancy (C: top right panel). Panel C Upper
left: no primary antibody control. Localization of ISG15 was most intense in large luteal
cells (lower panel in C; white arrows). For more details please see (Oliveira et al. 2008).
Copyright 2008, The Endocrine Society.

Endocrine delivery of 200 ug rolFNT/d into the uterine vein for 7 d delayed return to estrus.
Release of IFNT into the uterine vein on Day 15 of pregnancy was estimated previously to be
~ 200 ug/d (Oliveira et al. 2008). For this reason, osmotic pumps loaded to deliver 200 uyg/d
into the uterine vein for seven consecutive days were surgically installed. Estimated blood
volume in sheep was 3.48 L based on average weight of 60 kg and blood volume of 58 ml/kg.
Thus, on Day 15 of pregnancy, systemic levels in circulation would stabilize around 2.4 ng/
ml/h. This is biologically relevant considering the dissociation constant (Kd) of 3.7 x 10"°M (Li
& Roberts 1994) and estimated 50% occupancy of the receptor at 6.3 ng IFNT/ml.

Osmotic pumps delivering 200 pg rolENT into the uterine vein/d were surgically installed on
Day 10 of the estrous cycle in sheep (Fig. 3). Eighty percent (4/5) of ewes infused with rolFNT for
7 d had extended estrous cycles and luteal phase serum progesterone concentrations through 32
d (Bottetal. 2010). In the nonresponder ewe, serum progesterone concentrations were declining
at the time of installation of the pump, which was interpreted as onset of luteal regression prior
to endocrine delivery of rolFNT. To our knowledge this is the first report of such small endocrine
concentrations of IFNT to induce a significant long-term delay in return to estrus.

There was no effect of 24 h endocrine delivery of rolFNT into the uterine vein starting on
Day 10 of the estrous cycle on serum progesterone concentrations (Fig. 4) (Bott et al. 2010). A
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Fig. 4. Endocrine delivery of IFNT into the uterine vein protects the CL from PGF through
attenuating the decline in serum progesterone (A) and possibly through induction of ISGs in the
endometrium (B) and CL (C). BSA or rolFNT (200 ug/24h) were infused into the uterine vein in
24 ewes (12 ewes per treatment). Half of these ewes were injected with PGF (4mg/58 kg bw)
12 h later. Panel A describes a decrease in serum progesterone concentrations 6 h following
PGF regardless of infusion treatment. However, in rolFNT infused ewes, serum progesterone
concentration increased after 6 h to levels not different from controls. Data are the mean (n=6
ewes per treatment) + SE. Significant differences (P <0.05) in treatments and time are denoted
with different letters. Endometrium and CL (Panel C) were collected and examined for ISG15
mRNA concentrations, which increased following endocrine delivery of rolFNT. Means differ
(P < 0.05) when designated by different superscripts. Adapted from Bott et al. 2010.

et al. 1998), protein (Wiepz et al. 1992) and affinity constant (Wiepz et al. 1992) are not at-
tenuated during maternal recognition of pregnancy in sheep. These nicely designed studies
concluded that the mechanism through which the ovine CL achieves resistance to PGF during
early pregnancy does not involve PTGFR. Prostaglandin E2 receptor (PTGER2) is coupled to
the cAMP signal transduction pathway, which stimulates steroidogenesis and production of
progesterone in cultured human luteinized granulosa (Chandras et al. 2007). PTGER4 also is
a G-protein receptor coupled to cAMP as reviewed in (Sugimoto & Narumiya 2007), but to our
knowledge, functional coupling of this receptor subtype to synthesis of progesterone has not
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been studied in the CL. Upregulation of PGE2 receptors coupled to cAMP signaling in the CL
during pregnancy might also contribute to luteal resistance to PGF. Regardless of the specific
PTGERs involved, the general steroidogenic action of PGE2 has been extensively studied since
the first report that it induces adenylate cyclase in bovine CL (Marsh 1971).

Conclusions

IFNs were discovered as antiviral cytokines (Isaacs & Lindenmann 1957). Viral infection of a
pregnant cow can result in vertical transmission to the fetus (Casaro et al. 1971). A significant
upregulation of Type | IFN and ISGs has been described in PBMC following infection of preg-
nant heifers with bovine viral diarrhea virus prior to and following development of the fetal
immune system (Smirnova et al. 2008, Shoemaker et al. 2009, Smirnova et al. 2009). This
defense to viral infection also is initiated through release of IFNT from the conceptus during
early pregnancy. Through prompting, but not completely activating maternal antiviral responses,
peripheral maternal resistance may protect the pregnancy in the event that viral infection occurs.

Why the ruminant conceptus produces IFNT, a Type | IFN, in amounts large enough to induce
systemic responses has been proposed to be related to maternal mediation of inflammatory and
immune responses that might be detrimental to the “foreign” conceptus (Roberts et al. 1992). A
variation in this theme is suggested herein, where the local endometrial and peripheral maternal
immune responses become primed during early pregnancy through conceptus-derived IFNT
to express ISGs that could more effectively recognize virus, mount an antiviral response and
consequently prohibit transfer of any maternal viral infection to the conceptus or fetus. This
antiviral mechanism is important in ruminants in context of the epitheliochorial placenta and
the lack of transport of maternal antibodies to the embryo or fetus and would facilitate more
rapid maternal defense to spread of viral infection to the unprotected pregnancy. Pregnancy-
induced antiviral mechanisms may also exist in other mammalian species despite different
modes of maternal recognition of pregnancy and implantation.

The CL required during pregnancy for 50 days in sheep and 6-8 months in cattle (Senger
2003). One critical early mechanism to protect this CL during maternal recognition of pregnancy
is the release of IFNT from the conceptus and paracrine action on the endometrium to disrupt
upregulation of ESR1, OXTR and luteolytic pulsatile release of PGF. IFNT also is released into
the uterine vein and has endocrine action on the CL as well as PBMC. It functions to induce
ISGs in the CL which are hypothesized to provide resistance to continued exposure to PGF
from the uterus as well as from the CL. The CL becomes resistant to PGF in response to preg-
nancy (Inskeep et al. 1975, Mapletoft et al. 1976, Pratt et al. 1977, Silvia & Niswender 1984).
Mechanisms associated with resistance to PGF might include modification of PGF receptor
coupling to G-proteins, activation of PKC and associated apoptotic responses; endometrial (Banu
et al. 2008), uterine vein (Lee et al. 2010) and intraluteal transport of PGF through SLCO2A1
and upregulation of receptors and luteotrophic responses to PGE2 (PTGERs) (Antoniazzi et al.,
unpublished results). Type I IFN, which are closely related to IFNT, protect immune cells from
apoptosis through activating the PI3K3, Akt, Rho-A and NF«B (Badr et al. 2010). Cell death and
apoptotic genes are induced by PGF during luteolysis (reviewed in (Niswender et al. 2007)).
PGF-mediated induction of the PKC-Raf-MEK1-Erk pathway entails blocking the cell survival
Akt pathway (Arvisais et al. 2010). We suspect that endocrine action of IFNT might stabilize
the cell survival Akt pathway. Endocrine delivery of IFNT into the uterine vein induced a sig-
nificant extension of estrous cycles (> 32 d) using the lowest amounts of IFNT to date that are
relevant in context of the Kd of the IFN type | receptor. Systemic delivery of similar biochemi-
cally relevant doses of IFNT might be tested in future experiments to improve embryo survival.
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