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family of Ca?*- and lipid-binding proteins. In other cell types, there is evidence that ANXAs
serve as membrane scaffold proteins and are involved in vesicle transport and protein secre-
tion, but much of their functions and secretory pathways are still poorly understood (reviewed
by Rescher & Gerke 2004).

In support of the proposal that ANXAs are the oviductal receptors for sperm, all four ANXAs
were immunolocalized on the apical surfaces of oviductal epithelium (Ignotz et al. 2007).
Western blot analysis confirmed that oviductal ANXAs contain fucose, and sperm binding to
oviductal epithelium can be inhibited in vitro in the presence of ANXA antibodies (Ignotz et
al. 2007). There is also evidence that one of the ANXAs (ANXA2) is a sperm binding protein
on the porcine oviductal epithelium (Teijeiro et al. 2009). Like BSP proteins, ANXAs were also
found to bind to heparin (Ishitsuka et al. 1998, Shao et al. 2006). This interesting finding im-
plicates heparin, or a similar glycosaminoglycan, in the process of binding or release of sperm,
particularly since heparin-like molecules have been identified in oviductal fluid (Parrish et al.
1989) and have been shown to trigger release of bovine sperm from monolayers of oviductal
epithelium in vitro (Gualtieri & Talevi 2000).

Sperm movement beyond the reservoir to the ampulla

In cattle, sperm are stored in the isthmic region of the oviduct for 18-20 hours or more before
being released to ascend to the ampulla (Hunter & Wilmut 1984). The release of sperm from the
reservoir begins prior to ovulation, which occurs 28-31 hours after the onset of estrus in cattle
(Hunter & Wilmut 1984). It is unlikely that the release of sperm is due to the loss of binding
sites on the oviductal epithelium, as sperm can bind to oviducts from different stages of estrus
cycle (Lefebvre et al. 1995). Rather, it is likely that hormonal changes that trigger ovulation
also stimulate the release of factors in the oviduct that cause changes in sperm which enable
them to release themselves from the oviductal epithelium.

There is evidence that sperm release themselves from the reservoir by two mechanisms: hy-
peractivation and shedding of sperm surface proteins during capacitation. First, hyperactivation
was proposed to play a role in release of mouse and human sperm, (DeMott & Suarez 1992,
Pacey et al. 1995), because sperm were seen to hyperactivate before pulling away from the
epithelial surface. In addition, sperm from CatSper null mice, which are unable to hyperactivate,
fail to move beyond the sperm storage reservoir (Ho et al. 2009). It is not yet known whether
hyperactivation plays such arole in ruminants. Second, sperm may lose binding affinity for the
oviductal epithelium by shedding BSP proteins during capacitation. It has been reported that
bull sperm shed the BSP protein PDC109 during capacitation in vitro and capacitated sperm
are less able to bind to epithelium unless they are treated with purified PDC109 (Gwathmey
et al. 2003). Less is known of the roles of BSPA3 and BSP30K; however, because capacitated
sperm lose binding affinity for the epithelium, one would predict that these two proteins are
also shed during capacitation. Because BSPA3 and BSP30K differ from PDC109 in molecular
surface charges (Gwathmey et al. 2006), we predict that the kinetics of loss during capacita-
tion differs from that of PDC109. Differential loss of BSP proteins could serve to spread out
the release of sperm from the reservoir and thus assure that sperm reach eggs shortly after they
enter the oviduct, but that not so many reach eggs that polyspermy occurs.

After sperm are released from the reservoir, they are still required to travel a long distance
before they reach the fertilization site. Furthermore, as sperm move up the isthmus into the
ampulla, the diameter of the tube increases and the shape of the lumen becomes even more
complicated by elaboration of the mucosal folds that create narrow, labyrinthine passages (Fig-
ure 1). How sperm find their way to the egg is still largely unknown. It has been proposed that
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chemotaxis serves to guide sperm toward eggs (reviewed by Kaupp et al. 2008). The existence
of chemotaxis has been well documented in several species of marine invertebrates (reviewed
by Hildebrand & Kaupp 2005); therefore, it has been hypothesized that chemotactic factors
direct mammalian sperm to eggs. In humans (Cohen-Dayag et al. 1995, Spehr et al. 2003,
Villanueva-Diaz et al. 1990) and rabbits (Fabro et al. 2002), sperm reportedly turn to swim up
a gradient of follicular fluid or putative chemotactic agents, indicating that chemotaxis plays a
role in mammalian fertilization; however, unlike the massive response shown by various species
of marine invertebrate sperm (Cook et al. 1994, Yoshida et al. 2003), only small percentages
of mammalian sperm (2-12% in humans) have shown this response in vitro (Gakamsky et al.
2008). In ruminant species, 8-10% of frozen-thawed bull sperm were reported to orient into
a gradient of follicular fluid (Gil et al. 2008). Some follicular fluid escapes from the oviduct
with the egg mass during fertilization and thus could be present in the ampulla to attract sperm
toward the site of fertilization.

Conclusions

Studies from different animal models have helped researchers to better understand the regulation
of sperm storage and movement in the oviduct; however, not much research has been done in
ruminant species other than Bos taurus. There is still much to be learned about how sperm entry
through the uterotubal junction is regulated, how sperm fertility is maintained during storage
in the oviductal reservoir, how sperm are released from the reservoir, and whether sperm are
guided toward eggs in the ampulla by chemotaxis. Such information could prove valuable for
developing new methods to improve sperm storage and the success rate of artificial insemina-
tion of domestic ruminants and endangered wildlife species.
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