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Three regions of the ruminant oviduct play different roles in the progress
of sperm: the uterotubal junction, isthmus, and ampulla. The uterotubal
junction acts as a point of selection of sperm, requiring that sperm are
progressively motile and express specific proteins in order to enter the
oviduct. The isthmus stores sperm, preserving motility and viability until
ovulation. Sperm are stored in the isthmus by binding to its mucosa!
epithelium. In bovine sperm, binding to the oviductal epithelium is
promoted by proteins that are secreted by the seminal vesicles and coat
the heads of sperm by associating with plasma membrane phospholipids.
Putative oviductal receptors for the seminal vesicle proteins are members
of the annexin protein family. Release of sperm from the storage site in
the isthmus is gradual, which serves to ensure that sperm in the proper
physiological state reach the oocytes at the appropriate moment and also
to reduce incidence of polyspermic fertilization. The ampulla supports
fertilization and may participate in guiding sperm toward the eggs. Further
studies are needed to improve our understanding of the interactions
between sperm and the female reproductive tract, in order to develop
means to improve fertility in ruminants.

Introduction

Mammalian sperm travel a long distance relative to their size in order to reach the site of fer-

tilization in the oviduct. When sperm attempt to enter and pass through the oviduct, they are

subjected to selective processes to eliminate those of poor quality. Selective processes also

regulate the numbers of sperm that reach the fertilization site, thereby reducing the incidence

of polyspermic fertilization (Hunter et al. 1982, Hunter & Wilmut 1984). The oviduct acts as
well to support fertilization, for instance, by storing sperm and maintaining their viability during

storage. Furthermore, the timing of capacitation of sperm may be influenced by the oviduct in
order to ensure that capacitated sperm are available at ovulation.

Three regions of the oviduct, uterotubal junction, isthmus, and ampulla (Figure 1) play dif-
ferent roles in selecting and supporting sperm. In this review, the current understanding of the

roles of each region will be discussed, particularly with regard to ruminant reproduction.
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Fig. 1. Regions of the bovine oviduct. On the right, the regions of the bovine female tract

are shown (0, ovary; UH uterine horn; UB, lower uterine body). A. A frozen section of

the bovine uterotubal junction, stained with Periodic Acid Schiff to indicate mucopolysac-

charides, and counterstained with hematoxylin. Arrowheads indicate the oviductal lumen,

which is narrow and contains mucus. Arrows indicate uterine glands. B. A frozen section

of the oviductal isthmus, stained as for A. Arrowheads indicate the oviductal lumen. C. A

frozen section of approximately half of the diameter of the oviductal ampulla, stained as

for A. Arrowheads indicate the oviductal lumen. Preparation of these tissues is described

in Suarez et al. (1997).

The uterotubal junction regulates sperm passage into the oviduct

Regardless of the billions of sperm in the ejaculates of most ruminants, only a minority of sev-

eral thousand enters the uterotubal junction and passes through it. There may be only a small

window of opportunity for sperm to pass through the junction, due to the apparent ability of

the junction to close down. In the mouse, patency of the junction can be seen using transillu-

mination of the oviduct and the junction has been observed to close about an hour after mating

(Suarez 1987). Three morphological characteristics of the ruminant oviduct indicate that it may

do likewise. First, the connective tissue in the bovine junction wall is heavily vascularized and

engorgement of the vascular beds may act to compress the lumen (Wrobel et al. 1993). Second,
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the thick smooth muscle layer of the junction could contract to compress the lumen. Third, the
tube of the junction is bent into a sigmoidal shape and the muscular ligaments attached to the
junction could increase the flexure of the curve to further impede passage of sperm (Hafez &
Black 1969, Hook & Hafez 1968).

In the cow, the uterotubal junction is lined with mucosal folds that form channels ending
in cul-de-sacs rather than continuing into the isthmus (Figure 2) (Yaniz et al. 2000). When
muscular and/or vascular action compresses the lumen, these dead ends might form a plug.
On the other hand, when the uterotubal junction is not being compressed, the dead ends of
the channels could act more like funnels to direct sperm into the isthmus.
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Fig. 2. Scanning electron micrographs of the bovine uterotubal junction and isthmus. A.
The uterotubal junction is lined with mucosal folds that form channels ending in cul-de-

sacs. The bottom of the figure represents the prouterine end of the uterotubal junction.
B. Mucosa] folds in the lower isthmus form pockets in the wall. C. Bull sperm binding
primarily to cilia on the oviductal epithelium in the lower isthmus to form a reservoir.

Figure 2A and 2B are courtesy of Dr. JL Yaniz (Yaniz et al. 2000).

When the uterotubal junction is not being closed down by vascular and/or muscular action, the
junction is equipped with mechanisms to cause it to act as a point of sperm selection. There are
mucous secretions in the lumen of bovine uterotubal junction (Suarez et al. 1997) that might
filter out sperm with weak motility, as does mucus in the cervical canal (Katz et al. 1990).
Furthermore, based on null mutant mouse models, there is evidence that mouse sperm must
possess certain proteins in order to swim into the uterotubal junction (Nakanishi et al. 2004,
Yamaguchi et al. 2009). For example, calmegin is a spermatogenesis-specific chaperone protein,
and the sperm produced by calmegin knockout mice are unable to pass through the uterotubal
junction, despite having normal morphology and motility (Ikawa et al. 2001). A subsequent
study confirmed that each sperm must possess the proteins chaperoned by calmegin, because
when females were mated with chimeric males that produced a mixture of developing germ
cells in the testis that contained or were missing calmegin, the only sperm that entered into
the uterotubal junctions where those in which calmegin had been expressed during develop-
ment (Nakanishi et al. 2004). Calmegin is known to be required for the expression of ADAM3
(a disintegrin and metallopeptidase domain 3) on mature sperm, and sperm from male mice
deficient in ADAM3 are also unable to pass through the uterotubal junction (Yamaguchi et al.
2009). It is not yet known whether similar proteins are required for ruminant sperm to pass
through the uterotubal junction.
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In cattle (VanDemark & Moeller 1951), sheep (Mattner & Braden 1963), humans (Kunz et
al. 1996), and rabbits (Overstreet & Cooper 1978), a small fraction of sperm are transported
through the uterus and oviduct to the site of fertilization within a few minutes of mating. This
phenomenon, which has been called "rapid sperm transport", may be a consequence of mus-
cular contractions in the female tract that occur during mating, because it occurs too rapidly
for it to be the result of sperm swimming and it may not serve to bring competent sperm to
the site of fertilization (Hays & VanDemark 1953). For instance, rabbit sperm that underwent
rapid transport were found to have sustained damage and thus would be unlikely to fertilize
(Overstreet & Cooper 1978, Overstreet & Tom 1982). It is not known whether rapid transport
serves any purpose.

Sperm are stored in the isthmus

After sperm pass through the intramural portion of the uterotubal junction, most bind to the
epithelium in the extramural portion and/or the lower part of the isthmus of the oviduct to
form a storage reservoir. Oviductal reservoirs of sperm have been identified in a broad array
of mammals, including sheep (Hunter et al. 1982), cattle (Hunter & Wilmut 1984), mice (Su-
arez 1987), and hamsters (Smith & Yanagimachi 1991). There is evidence that binding to the
oviductal epithelium prolongs the motile life span of ruminant sperm. When sperm of cattle
(Chian et al. 1995, Pollard et al. 1991), sheep (Lloyd et al. 2008, Lloyd et al. 2009), or red deer
(Berg et al. 2002) were incubated with oviductal epithelium in vitro, higher percentages of the
sperm remained motile over time. The mechanism for sustaining motility has been proposed to
involve suppression of capacitation, because equine sperm showed delayed capacitation when
incubated with oviductal epithelium (Dobrinski et al. 1996). Elucidating the mechanism of
preservation of motility during storage might suggest new methods for storing sperm in vitro.

There is evidence that sperm at least begin to capacitate while in the oviductal isthmus (Smith
& Yanagimachi 1991). It is not fully understood how sperm become capacitated in the oviduct.
In vitro, it has been shown that capacitation involves loss of decapacitating factors including
cholesterol, a rise in intracellular Ca2+,and an increase in activity of a sperm-specific adenylyl
cyclase known as SACY (Sinclair et al. 2000). SACY activation results in increased cAMP,
which, in turn, activates protein kinase A (PKA) (reviewed by Visconti et al. 2002). Through a
poorly understood process, activation of PKA, a serine and threonine kinase, leads to increased
tyrosine phosphorylation of several sperm proteins (reviewed by Visconti et al. 2002), such
as testis-specific serine/proline-rich protein, calcium binding protein, and others (Platt et al.
2009). Studies in mice (Visconti et al. 1995) and cattle (Galantino-Homer et al. 1997) have
shown that protein tyrosine phosphorylation is correlated with capacitation, confirmed by the
ability of sperm to undergo induced acrosome reactions and to fertilize eggs in vitro. Most of
the roles of tyrosine phosphorylated proteins in sperm capacitation remain to be determined.

Bull sperm capacitation is facilitated in vitro when heparin is present (Parrish et al. 1988).
There is evidence that the effect of heparin on sperm is mediated by bovine seminal plasma pro-
teins (binder of sperm, BSP)(Manjunath et al. 2009) on the sperm surface, particularly PDC109
(also known as BSPA1/A2) (Manjunath & Therien 2002, Therien et al. 1997). BSPproteins are
produced by the bovine seminal vesicles and adhere to the sperm surface by associating with
phospholipids in the sperm plasma membrane (Desnoyers & Manjunath 1992). BSP proteins
are small in mass (14-30 kDa) and each contains a unique N-terminal domain followed by two
fibronectin type II domains (Calvete et al. 1999). The type II domains contain heparin binding
sites (Chandonnet et al. 1990) that could be responsible for the stimulation of capacitation
by heparin, and phospholipid binding sites that are responsible for binding the BSPsto the
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sperm surface (Wah et al. 2002). BSP homologs have been reported in other ruminant species,
including goats (Villemure et al. 2003), sheep (Bergeron et al. 2005), and bisons (Boisvert et

al. 2004), and some of the homologs have been demonstrated to bind heparin (Bergeron et al.
2005, Boisvert et al. 2004, Villemure et al. 2003).

The process of capacitation is considered to include hyperactivation of sperm motility.

Hyperactivated sperm display asymmetrical, high-amplitude flagellar beating patterns, caus-

ing vigorous, and sometimes circular, movement of free-swimming sperm (Suarez et al. 1983,
Yanagimachi 1970). Hyperactivated motility is required for the penetration of viscoelastic

substances in the oviduct (Suarez et al. 1991), such as mucus and the matrix of the cumulus

oophorus, and for sperm penetration of the zona pellucida (Stauss et al. 1995). Hyperactiva-
tion is triggered by a rise of intracellular Ca2', primarily from extracellular sources (reviewed

by Suarez 2008). In cattle, sperm can be induced to hyperactivate in vitro by procaine in the

presence of extracellular Ca2+ and therefore is presumed to operate by stimulating Ca2+ influx

(Ho & Suarez 2001, Ho & Suarez 2003). In mouse sperm, sperm-specific CatSper proteins are
known to form Ca2- channels in the plasma membrane of the principal piece of the flagel-

lum (Carlson et al. 2005, Jin et al. 2007). Sperm from CatSper-null mice do not hyperactivate
(Carlson et al. 2005, Jin et al. 2007, Qi et al. 2007) and cannot fertilize zona pellucida-intact
eggs (Quill et al. 2003, Ren et al. 2001).

BSPproteins play a role in sperm storage

In hamsters (DeMott et al. 1995), cattle (Lefebvre et al. 1997), and pigs (Wagner et al. 2002),
studies have shown that sperm-oviductal epithelium interaction is mediated by carbohydrate-

recognition mechanisms. Fucose, specifically in the Lewis-A trisaccharide, was identified to
be a key component of the receptor for bull sperm binding in the oviduct (Suarez et al. 1998).

Lewis-A was used in an affinity column to pull proteins from sperm extracts that would play a

role in binding sperm to the oviductal epithelium. The main protein identified by this method

was PDC109 (Gwathmey et al. 2003, Ignotz et al. 2001), which is one of the BSP proteins.
Gwathmey et al. (2006) later reported that two other BSP proteins (BSPA3 and BSP3OK), each

acting alone, can also induce sperm binding to oviductal epithelium in vitro. This leads to the

question: Why do bull sperm need three BSP proteins when they can bind to the oviductal

epithelium with any one of the BSP proteins alone? Key functions are often protected by re-

dundancy; however, this apparent redundancy may also provide more intricate control over

sperm movement out of the reservoir. Differences in the amino acid sequences of the three
BSP proteins result in different patterns of surface charges on the BSP molecules (Gwathmey

et al. 2006); therefore, it is proposed that each BSP molecule adheres to the surface of sperm

and binds sperm to the oviductal epithelium with different affinities and kinetics. Altogether,

the BSP proteins may act to provide a gradual release of sperm from the reservoir, in order to

ensure that sperm capacitate and reach eggs at the ideal time for fertilization and yet not too

many reach the egg at once, which might result in polyspermic fertilization. It is possible that

BSP homologs in other ruminant species are also involved in the formation of sperm reservoir;
however, this remains to be determined.

Oviductal annexins are possible binding partners of BSPproteins

When BSP proteins were used as bait to pull down oviductal ligands from a mixture of proteins


extracted from apical plasma membranes of bovine isthmic epithelium, four annexin proteins

(ANXA1, 2, 4, and 5) were captured (Ignotz et al. 2007). ANXAs comprise a large, diverse
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family of Ca2+- and lipid-binding proteins. In other cell types, there is evidence that ANXAs

serve as membrane scaffold proteins and are involved in vesicle transport and protein secre-

tion, but much of their functions and secretory pathways are still poorly understood (reviewed

by Rescher & Gerke 2004).

In support of the proposal that ANXAs are the oviductal receptors for sperm, all four ANXAs

were immunolocalized on the apical surfaces of oviductal epithelium (Ignotz et al. 2007).

Western blot analysis confirmed that oviductal ANXAs contain fucose, and sperm binding to

oviductal epithelium can be inhibited in vitro in the presence of ANXA antibodies (lgnotz et
al. 2007). There is also evidence that one of the ANXAs (ANXA2) is a sperm binding protein

on the porcine oviductal epithelium (Teijeiro et al. 2009). Like BSP proteins, ANXAs were also

found to bind to heparin (Ishitsuka et al. 1998, Shao et al. 2006). This interesting finding im-

plicates heparin, or a similar glycosaminoglycan, in the process of binding or release of sperm,

particularly since heparin-like molecules have been identified in oviductal fluid (Parrish et al.

1989) and have been shown to trigger release of bovine sperm from monolayers of oviductal

epithelium in vitro (Gualtieri & Talevi 2000).

Sperm movement beyond the reservoir to the ampulla

In cattle, sperm are stored in the isthmic region of the oviduct for 18-20 hours or more before

being released to ascend to the ampulla (Hunter & Wilmut 1984). The release of sperm from the

reservoir begins prior to ovulation, which occurs 28-31 hours after the onset of estrus in cattle

(Hunter & Wilmut 1984). It is unlikely that the release of sperm is due to the loss of binding

sites on the oviductal epithelium, as sperm can bind to oviducts from different stages of estrus

cycle (Lefebvre et al. 1995). Rather, it is likely that hormonal changes that trigger ovulation

also stimulate the release of factors in the oviduct that cause changes in sperm which enable

them to release themselves from the oviductal epithelium.

There is evidence that sperm release themselves from the reservoir by two mechanisms: hy-

peractivation and shedding of sperm surface proteins during capacitation. First, hyperactivation

was proposed to play a role in release of mouse and human sperm, (DeMott & Suarez 1992,

Pacey et al. 1995), because sperm were seen to hyperactivate before pulling away from the

epithelial surface. In addition, sperm from CatSper null mice, which are unable to hyperactivate,

fail to move beyond the sperm storage reservoir (Ho et al. 2009). It is not yet known whether

hyperactivation plays such a role in ruminants. Second, sperm may lose binding affinity for the

oviductal epithelium by shedding BSP proteins during capacitation. It has been reported that

bull sperm shed the BSP protein PDC109 during capacitation in vitro and capacitated sperm

are less able to bind to epithelium unless they are treated with purified PDC109 (Gwathmey

et al. 2003). Less is known of the roles of BSPA3 and BSP3OK; however, because capacitated

sperm lose binding affinity for the epithelium, one would predict that these two proteins are

also shed during capacitation. Because BSPA3 and BSP3OK differ from PDC109 in molecular

surface charges (Gwathmey et al. 2006), we predict that the kinetics of loss during capacita-

tion differs from that of PDC109. Differential loss of BSP proteins could serve to spread out

the release of sperm from the reservoir and thus assure that sperm reach eggs shortly after they

enter the oviduct, but that not so many reach eggs that polyspermy occurs.

After sperm are released from the reservoir, they are still required to travel a long distance

before they reach the fertilization site. Furthermore, as sperm move up the isthmus into the

ampulla, the diameter of the tube increases and the shape of the lumen becomes even more

complicated by elaboration of the mucosal folds that create narrow, labyrinthine passages (Fig-

ure 1). How sperm find their way to the egg is still largely unknown. It has been proposed that
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chemotaxis serves to guide sperm toward eggs (reviewed by Kaupp et al. 2008). The existence

of chemotaxis has been well documented in several species of marine invertebrates (reviewed

by H i ldebrand & Kaupp 2005); therefore, it has been hypothesized that chemotactic factors

direct mammalian sperm to eggs. In humans (Cohen-Dayag et al. 1995, Spehr et al. 2003,

Villanueva-Diaz et al. 1990) and rabbits (Fabro et al. 2002), sperm reportedly turn to swim up

a gradient of follicular fluid or putative chemotactic agents, indicating that chemotaxis plays a

role in mammalian fertilization; however, unlike the massive response shown by various species

of marine invertebrate sperm (Cook et al. 1994, Yoshida et al. 2003), only small percentages

of mammalian sperm (2-12% in humans) have shown this response in vitro (Gakamsky et al.
2008). In ruminant species, 8-10% of frozen-thawed bull sperm were reported to orient into

a gradient of follicular fluid (Gil et al. 2008). Some follicular fluid escapes from the oviduct

with the egg mass during fertilization and thus could be present in the ampulla to attract sperm

toward the site of fertilization.

Conclusions

Studies from different animal models have helped researchers to better understand the regulation

of sperm storage and movement in the oviduct; however, not much research has been done in

ruminant species other than Bos taurus. There is still much to be learned about how sperm entry

through the uterotubal junction is regulated, how sperm fertility is maintained during storage

in the oviductal reservoir, how sperm are released from the reservoir, and whether sperm are

guided toward eggs in the ampulla by chemotaxis. Such information could prove valuable for

developing new methods to improve sperm storage and the success rate of artificial insemina-

tion of domestic ruminants and endangered wildlife species.
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