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For a follicle to reach dominance, in mono-ovulatory species such as cattle,
requires the integration of a number of processesinvolving both extra-ovarian
signals and intra-follicular paracrine and autocrine regulators. Ovarian
transplant studies in both cattle and sheep demonstrated that it takes
approximately 4 months for primordial follicles to reach dominance.
Gonadotrophins are not a prerequisite for the continued growth of pre-antral
follicles, unlike antral follicles, but FSHdoes appear to stimulate development.
Local growth factors, such as IGFs and BMPs, are expressed throughout
follicle development and interact with gonadotrophins to stimulate
development. As follicles become dominant, there is a transfer of
dependency from FSH to LH. There are also differences in LH-
responsiveness of theca and granulosa cells during follicular development,
due to differential regulation and control by intricate local mechanisms altering
LH receptor (LHR) mRNA expression. In addition, both the BMP and IGF
systems can modulate the proliferative and differentiative responses of both
granulosa and theca cells to gonadotrophins. There is a significant interaction
between BMPs and the IGF system in regulating follicular development. A
range of factors, including nutrition, will also determine the fate of the growing
follicle and the quality of the oocyte. Nearly all follicles regressand apoptotic
cell death throughout follicular development is an underlying mechanism
of cell loss during follicular atresia. Several markers of follicular atresia have
been identified including IGFBPs.There is a significant correlation between
the presence of low molecular weight IGFBPsin bovine follicular fluid and
caspase-3activity of granulosa cells in individual follicles. In conclusion, it is
the interaction between extra-ovarian and intra-ovarian factors that determine
the fate of the follicle and the quality of the oocyte.

Introduction

Ovarian folliculogenesis is a lengthy and intricately regulated process marked by dramatic prolif-

eration and precisely orchestrated differentiation of both the somatic and germ cell elements.

Primordial follicles represent the source from which follicles will be recruited for growth through-

out life, with paired ovaries of an individual containing around 100,000-250,000 of these follicles
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at birth (human: Gougeon 1996; sheep: Turnbull et al. 1977). Once follicles have been initiated to
grow, the granulosa cells proliferate to form multilaminar structures (pre-antral follicles) which
subsequently form a fluid filled space (antrum) and a well differentiated theca layer. Follicular
development in sheep and cattle takes around 4-5 months with the majority of this time (3-4
months) being spent in the pre-antral stagesof development (Cahill 1981; Gougeon 1996; Turnbull
et al. 1977). When the follicle reaches a diameter of 200-400 pm, the antrum develops (Turnbull
et al. 1977) and this is followed by widespread atresia (50-70% for follicles over 1 mm) so that the
vast majority (>99%) of follicles fail to ovulate.

It is widely accepted that control of the terminal stages of folliculogenesis lies primarily with
the pituitary gonadotrophins, FSH and LH, combined with the differential expression of somatic
cell-derived growth factors that modulate the action of gonadotrophins at key points during the
process of follicle development (Campbell et al. 1995; Webb et al. 1999). Communication
between the oocyte and the surrounding somatic cells (Carabatsos et al. 2000), via a range of
locally produced growth factors, is essential for the coordinated development of both cell types
(Eppig 2001), making folliculogenesis a highly synchronised process. These local growth factor
systems include the insulin-like growth factor (IGF) system (Webb et al. 1999), the inhibin/activin
system (Knight & Glister 2001) and the bone morphogenetic (BMP) system (Shimasaki et al. 2003;
Knight & Glister, 2006). In addition, recent studies also suggest that the oocyte, rather than being
purely a passenger within the follicle, secretes numerous factors that modulate follicle develop-
ment and ovarian function. Known oocyte-secreted factors include growth differentiation factor-9
(GDF-9) (Dong et a/. 1996) and BMP-15 (Aaltonen et al. 1999; Dube et al. 1998) as well as factors
in the germline alpha (FIG41)(Huntriss et al. 2002; Soyal et al. 2000) and c-kit receptor (Driancourt
et al, 2000; Reynaud et al. 2000; Reynaud et al. 2001; McNatty et al. 2007 this supplement).
However the temporal pattern and quantity of secretion of these factors has yet to be determined.

Ovarian follicular growth is therefore a developmental process during which the follicle pro-
gressively acquires a number of properties at a specific time and sequence, each of which is an
essential prerequisite for further development. The orderly expression of these somatic and oo-
cyte-derived factors, or "intrafol Iicular cascade", is thought to be essential for the development of
the follicle to an ovulatory size, the subsequent production of an ovulatory signal and the release
of a fully developmentally competent oocyte in response to that signal. Although some compo-
nents of this intrafol Iicular cascade have been elucidated, most have been studied in isolation and
the relative importance and temporal relationships between known and novel regulatory factors at
different stagesof follicle development remain to be elucidated. In this review we will examine
recent advances in this area with respect to follicle development in sheep and cattle, concentrating
primarily on the factors regulating antral and dominant follicle development.

Pre-antral follicle development

Intra-ovarian factors

Mechanisms regulating the activation and subsequent growth of primordial follicles have been
reviewed in detail, particularly in relation to sheep (McNatty et al. 2007 this supplement) and so
will not be reviewed here. In a number of species, aswell as for the initiation of primordial follicle
growth, the continued growth of pre-antral follicles is dependent upon the secretion of a range of
local factors including GDF-9, BMPs, activins, inhibins, basic fibroblast growth factor (bFGF) and
epidermal growth factor (EGF)(Knight & Glister 2001; Smitz & Cortvindt 2002; Webb et al. 2003;
Hunter et al. 2004). As will be discussed, only studies identifying genetic mutations in sheep have
been carried out (see Hanrahan et al. 2004; McNatty et al. 2007). However, Armstrong et al.
(2002a) demonstrated that bovine pre-antral follicles express mRNAs encoding both IGFBP-2, -3
and type 1 IGF receptor. EGF, also stimulates pre-antral follicle growth (Gutierrez et al. 2000;
Saha et a/. 2000).



Antral follicle development and oocye quality 143

Studies in our laboratory have also examined fetal ovaries for evidence of local regulatory
systems operating during oogenesis. BMP-6 and BMP receptors (BMPR) IA, IB and ll have been
shown to be present in bovine fetal ovaries between 2-9 months of gestation (Dugan et al. 2004;
Fouladi-Nashta et al. 2005). The presence of both the ligand (BMP-6) and the receptors at this
early stage illustrates the presence of a fully functional BMP system early in development. The
expression of BMP-6 appears to be localised both in the oocyte, with the intensity of staining
increasing with fetal age, and also in granulosa cells from 6 months of gestation. These results,
together with results from post-natal bovine and ovine ovaries (Dugan et al. 2004), suggest that
expression of both the ligand and the receptors is present right through gestation, parturition and
into adulthood, since BMP-6 hasbeen shown to be abundant in both the oocyte and granulosa cells
of adult bovine follicles (Glister et al. 2004; Campbell et al. 2006). However, BMP-6, but not -2,
-4 or -7 mRNA expression has been detected in ovine oocytes of pre-antral follicles (luengel et al.
2006). Interestingly, Fatahei et al. (2005) was only able to immunolocalise BMP-2 and BMP-4 in
bovine oocytes and theca cells of adult antral follicles, whereas BMPRII was observed in oocytes
from the primordial stage. The functional significance of the expression patterns of components of
the BMPs in domestic ruminants is unknown, but in the absence of knock-out models in this
species, some inferences may be drawn from naturally occurring mutations.

McNatty et al. (2007) has reviewed the effect of null mutations of the oocyte secreted factors
GDF-9 and BMP-15 in sheep. These studies show that these factors are essential for normal pre-
antral follicle development. In contrast, the FecB mutation in the BMPRIB receptor, whilst induc-
ing precocious maturation of ovulatory follicles (seelater), has not been shown to have had a major
effect on pre-antral follicle development, although some changes suggesting precocious develop-
ment have been detected (McNatly et al. 1986). At present, the available evidence suggeststhat
the FecB mutation results in a down-regulation in BMP signalling (Fabre et al. 2003) and therefore
it appears likely that signalling through this receptor system is not of major importance during pre-
antral follicle development, although it is possible that significant redundancy exists. The abun-
dant expression of the BMPRIA receptor tends to support this possibility.

Research into the functional role of local regulatory systems during early folliculogenesis in
ruminants and other mono-ovulatory species is severely hampered by the lack of physiological
culture systems that will allow normal follicle and oocyte development from the primordial/pri-
mary stages of development through to antrum formation with high efficiency. Although signifi-
cant advances have been made over recent years in this regard (Gutierrez et al. 2000; Fortune et
al. 2000; McCaffery et al. 2000, Picton et al. 2003), existing systems remain sub-optimal and it is
a research priority to develop in vitro model systems for these species.

Extra- ovarian factors

It is generally agreed that gonadotrophins are not involved in the initiation of follicle growth from
the primordial follicle pool. FSH receptor (FSHr) mRNA is detected in follicles with only one or
two layers of granulosa cells (Bao & Garverick 1998) and both in vivo (Campbell et al. 2000) and
in vitro (Gutierrez et al. 2000) studies have demonstrated that FSH can accelerate the rate of pre-
antral follicle development. Expression of LH receptor (LHr) mRNA is first detected when the
theca interna forms around the granulosa cells (Bao & Garverick 1998), presumably stimulating
androgen precursor production. This is supported by a range of steroidogenic enzymes, these
include cytochrome P450 side chain cleavage (P450scc), cytochrome P450 17a-hydroxylase
(P450c17), and 3R-hydroxysteroid dehydrogenase (38-HSD) mRNAs which are first expressed soon
after formation of the theca interna (Bao & Garverick 1998), with cytochrome P450 aromatase
(P450arom) being localised solely to granulosa cells. Steriod enzyme protein information is very
limited, although mRNA expression patterns agree with recent results showing that both small (KJ
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Dugan, tvl Lopez-Bejar, DG Armstrong and R Webb, unpublished observations) and larger (Tho-
mas et al. 2001) pre-antral follicles are capable of producing oestradiol early in development.

Additional functional investigation into the role of gonadotrophins and their interaction with
other extra-ovarian factors in vivo have utilised ovarian autografts treated with bovine somatotroph in
(BST). In this model system, early follicle development is synchronised through the loss of grow-
ing follicles during graft re-vascularisation. In addition these studies in both sheep and cattle, in
which gonadotrophin and insulin/IGF concentrations were modulated, showed that BST had a
marked effect on the growing follicle population and that there was a clear interaction with gona-
dotrophic status (Campbell BK, Armstrong DG, Telfer EEand Webb R, unpublished observations).
Thus, under normogonadotrophic conditions in hem i-ovariectomised sheep (FSH: 1.1 +0.1 ng/ml),
BSTtreatment had a negative effect on the relative proportion of secondary/tertiary, pre-antral and
antral follicles, whereas under hypergonadotrophic conditions (ovariectomised; FSH: 5.3+ 0.6 ng/
ml) there were less secondary and tertiary follicles, but more late pre-antral and antral follicles in
BST-treated animals (Campbell BK, Armstrong D & Telfer E, unpublished observations). Whilst
confirming our previous data (Campbell et al. 2000) that gonadotroph in levels influence the rate of
pre-antral follicle development, these findings also support the hypothesis that the IGF system
represents a key determinant of successful follicle and oocyte development during stagesof pre-
antral follicle development. Our current view is that exposure of the developing follicle and
oocyte to the potent proliferative and differentiative actions of the IGFs is modulated through the
abundant local expression of IGF-BP2 during the pre-antral stages of development (Webb et al.
2003; 2004) and findings from follicle culture studies support this hypothesis (Walters et al. 2006).
These findings therefore demonstrate possible interactions between extra-ovarian hormones and
intra-ovarian growth factors in the control of these early stages of follicle development.

Antral follicle development

Extra-ovarian factors

The formation of a fluid filled cavity or antrum occurs at a diameter of —200-400pm in sheep and
cattle (Turnbull et al. 1977). In hypophysectomised sheep antral follicle development continues to
a diameter of 2-4 mm. This stage of follicle development is commonly referred to as the gonadot-
roph in-responsive phase in recognition of the fact that while FSH can accelerate the rate at which
these follicles grow, the presence of FSH is not an essential requirement (Webb et al. 1999),
certainly for sheep. In contrast, antral follicle growth from 2-4 mm in diameter is under gona-
dotrophic control (Campbell et al. 1995), with each wave of follicular growth being preceded by
a transient increase in FSH secretion (Adams 1999; Souza et al. 1997). The antral follicle stage
marks the transition point from a proliferative to a differentiative phenotype for the follicular
somatic cells and is accompanied by a decrease in mitotic index, a marked increase in the rate of
follicular atresia (Turnbull et al. 1977) and marked changes in gene expression (Webb et al. 2003).
Changes in the expression patterns of mRNAs for both gonadotrophin receptors (FSHrand LHr) and
steroidogenic enzymes, including P450scc, P450c17 and P450arom, and 36-HSD (Bao et al. 1997;
Webb et al. 1999) occur at this stage of development. An increase in follicular diameter to around
—5mm in diameter is characterized by induction of mRNA expression for P450scc and P450arom
in granulosa cells. As follicles grow further there is increased expression of mRNA for P450scc and
P450arom in granulosa cells and P450c17 in theca cells.

FSH infusion in cattle, in which pituitary gonadotrophin secretion had been significantly re-
duced by GnRH agonist (GnRHa) or GnRH immunisation, has been shown to stimulate follicle
growth up to 8.5 mm in diameter (Crowe et al. 2001; Garverick et al. 2002). Also infusion of FSH
in cattle can induce an increase in mRNA expression for P450scc and P450arom in granulosa cells
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in small (1-4mm) follicles (Garverick et al. 2002). Interestingly, although there is a seven-fold

variation between cattle in the maximal number of follicles > 3mm in diameter during follicular

waves, there appears to be high repeatability of numbers of follicles > 3mm in diameter during

follicular waves within individual dairy cattle (Burns et al. 2005). This supports further the pres-

ence of a tightly regulated compensatory mechanism that regulates follicle growth as well as

ovulation rate in sheep and cattle.

The development of methods to detect and increase the number of the gonadotroph in-respon-

sive and gonadotrophin-dependent antral follicles is of immense practical significance for the

application of assisted reproduction technologies in domestic species and in humans. The number

and health of the antral follicle population represents the so-called "ovarian reserve" of antral

follicles that will respond to ovarian stimulation protocols employing exogenous gonadotrophins

(MackIon & Fauser 2005). Conceptually, all ovarian stimulation protocols work on the principle of

artificially increasing circulating FSH concentrations for a protracted period of time by administer-

ing gonadotrophin preparations that contain varying concentrations of FSH and LH. This treatment

recruits and stimulates a variable proportion of the gonadotrophin-responsive follicles present in

the ovaries to an ovulatory stage. The oocytes within these follicles can be retrieved by ultra-sound

guided ovum pick-up (OPU) prior to ovulation or flushed from the oviducts following ovulation.

An exogenous ovulatory stimulus such as hCG (in humans) or GnRH (in cattle) is usually delivered

to induce the final maturational changes in the follicles and oocytes prior to OPU. Irrespective of

species, aggressive and unphysiological ovarian stimulation regimes produce oocytes of variable

developmental competence (Kan itz et al. 2002; Macklon et al. 2006). In human ART, indicators of

ovarian reserve such as FSH concentrations, antral follicle counts, inhibin B and anti-mullerian

hormone (AMH) concentrations are used increasingly to try and predict ovarian response to treat-

ment and design suitable ovarian stimulation regimes (Macklon & Fauser 2005; Visser et al. 2006;

Yong et al. 2003). In domestic ruminants, whilst such individual treatment is impractical, there

have been an increasing number of reports in the literature of the use of GnRH-analogues to

enhance the response to ovarian stimulation (Berl inguer et al. 2006; Gonzalez-Bulnes et al. 2004;

Lopez-Alonso et al. 2005). These enhanced responses seem to occur due to an accumulation in the

number of follicles at the gonadotroph in-responsive to gonadotrophin-dependent threshold in ani-

mals rendered hypogonadotrophic by GnRH-analogue treatment. However, whilst oocyte or em-

bryo number may be enhanced by such GnRH-analogue treatment, some authors have reported

poor embryo quality with these types of stimulation regimes (Berlinguer et al. 2006; Gonzalez-

Anover et al. 2004; Lopez-Alonso et al. 2005). It is not known whether these effects on embryo

quality reflect high rates of atresia in this pool of arrested gonadotrophin-responsive follicles or

inadequacies in the gonadotrophin-stimulation regimes in these studies.

The development of follicles does not depend solely on gonadotroph ins, but also the interac-

tion with a range of local and circulating growth factors. For example, we have previously reported

that treatment with BST, through increasing circulating insulin and IGF concentrations, can in-

crease both the number of gonadotroph in-responsive follicles and their quality (Gong et al. 1991;
1993; 1997) and that embryo yield can be enhanced by stimulation of these follicles to the ovula-

tory stage using exogenous BST prior to FSH treatment (Gong et al. 2002).

Intra - ovarian factors

Utilising in vitro culture systems, a wide range of local factors, including members of the TGF6

superfamily, FGFs and EGF/TGFcc have been shown to be involved in the regulation of early antral

follicle growth (Webb et al. 2003; 2004; Buratini et al. 2005). For example, BMP localisation

studies have been carried out in adult sheep (Souza et al. 2002) and cattle (Glister et al. 2004). In
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line with rodent species (Shimasaki et al. 2004), and as discussed previously, there appears to be
a functional BMP system within the ovary, with several BMPs being implicated as paracrine/
autocrine regulators of ovarian follicle development. In cattle, BMP-4 and -7 have been
immunolocalised to theca cells and BMP-6 has been immunolocalised to oocytes and granulosa
cells (Glister et al. 2004) and BMPRIB and II to granulosa cells, theca cells and denuded oocytes
from bovine antral follicles (Glister et al. 2004; Fatahei et al. 2005). As discussed for pre-antral
follicles, in sheep, BMPRIA, IB and II receptors have been localised to the granulosa and theca
cells of growing follicles (Souza et al. 2002) and BMP-6 is strongly expressed in the oocyte and
granulosa cells, with weak expression in the theca cell layer of antral follicles (Campbell et al.
2006). The action of BMPs also appear to be modulated by a range of binding proteins e.g.
follistatins; (see Lin et al. 2006; Knight & Glister 2006), although more detailed study is required.

Functionally, BMP-2, -4, and -6 have been shown to augment FSH-stimulate oestradiol and
inhibin A production by cultured granulosa cells in sheep (Souza et al. 2002; Campbell et al.
2006). Similarly BMP -4, -6 and -7 have stimulated oestradiol, inhibin —A,activin —Aand follistatin,
but without FSH, in bovine granulosa cells (Glister et al. 2004). Conversely, BMPs in both cattle
(BMP-4, -6 and -7: Glister et al. 2005) and sheep (BMP-2, -4 and -6: Campbell et al. 2006) are
potent inhibitors of thecal androgen production. However, in sheep these BMPs have also been
shown to stimulate thecal cell proliferation in vitro so that at very low doses total androgen produc-
tion is actually increased by BMPs. Overall, these data suggest that BMPs are acting as both
autocrine and paracrine factors to enhance ovarian steroidogenesis.

Recent studies utilising in situ hybridisation in sheep have confirmed that oocytes express
mRNA for BMP-6, but failed to show mRNA expression for BMP-2, -4 and -7 in any cells of non-
atretic ovarian follicles (Juengel et al. 2006). These data therefore suggest that BMP-6, like BMP-
15 and GDF-9, is an oocyte secreted factor that is the primary mediator of paracrine interactions
with ovarian somatic cells. These results, however, conflict with those of Souza et al. (2002) who
reported mRNA expression for BMP-2, -4, -6 and -7 in whole ovary from this species following
Northern analysis. Further studies are therefore required in both sheep and cattle to confirm the
tissue specific expression of potential ligands for the BMP receptors.

As an augmenter of somatic cell differentiation, the BMPs have a similar role to the IGF-system
(Webb et al. 2003; 2004). Glister et al. (2004) demonstrated that BMP-4, -6 and -7 enhanced IGF-
induced secretion of oestradiol, inhibin-A, activin-A and follistatin by bovine granulosa cells, but
did not examine the interaction with the level of FSH stimulation. In contrast, recent data from
sheep shows clearly that the BMPs are ineffective in stimulating granulosa cell differentiation in
the absence of FSH, but do reveal a clear interaction between the level of IGF and BMP exposure
in terms of the induction of aromatase activity (Campbell et al. 2006; Fig. 1). Thus, in this species
both BMP and IGF act to augment FSH-stimulated cellular differentiation. Furthermore, bovine
granulosa cell culture studies have recently suggested that FSH and oestradiol can down-regulate
the expression of BMPRII (Jayawardana et al. 2006) and hence are possibly involved in the selec-
tion of bovine follicles. Moreover utilising ovarian tissue from ewes with the FecB mutation of
BMPRIB showed that the mutation resulted in an increased response of both granulosa and theca
cells to BMPs, gonadotroph ins and IGF-I stimulation (Campbell et al. 2006). The increased respon-
siveness of ovarian somatic cells to these factors could account for the precocious maturation of
antral follicles in FecB mutants, which is characterised by the development of aromatase activity
and LH receptors by granulosa cells of antral follicles at markedly smaller diameters than in wi Id-
type ewes (Driancourt et al. 1985; McNatty et al. 1985; 1987). These in vitro observations are
therefore consistent with the profound effect of the FecB mutation in inducing precocious matura-
tion of ovarian follicles (Webb et al. 1999; 2003) and hence deregulating the normal follicle
selection mechanisms operating in this species.
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Fig. 1 A. Effect of increasing doses of oFSH in the presence of either 10 ng/ml insulin (full
triangle), insulin and 5 ng/ml BMP-6 (open circle), insulin and 10 ng/ml IGF-1 LR3 (closed
circle) and insulin, BMP-6 and IGF-1 LR3 combined (open squares) on ovine granulosa
cell in vitro oestradiol production. The column represents overall mean production in the
presence of all factors, but in the absence of FSH. Asterix indicate significant difference
from zero dose of FSH with *P <0.05, **P <0.01 and ***P < 0.001. t indicates signifi-
cant difference between BMP and IGF supplementation alone compared to the combined
treatment at a given dose of FSH with BMP-6 and IGF-I LR3 P< 0.01.

B. In vitro oestradiol production by ovine granulosa with increasing doses of BMP in the
presence of 10 ng/ml insulin and FSH (open square), insulin, FSH and 0.1 ng/ml IGF-1 LR3
(full diamond), insulin, FSH and 1 ng/ml IGF-1 LR3 (open circle) and insulin, FSH and 10
ng/ml IGF-1 LR3 (closed triangle). Note that the in vitro oestradiol production data are
pooled from cultures utilising BMP-2, -4 and -6 due to similar responses to the three BMPs.
A marked interaction between dose of BMP and IGF-1 is clearly evident from the data
(P< 0.05), with a flattening of the BMP dose response curve with increasing dose of IGF-1.
Asterix indicate significant difference from zero dose of BMP within each dose of LR3 IGF-
1 with *13< 0.05, **P <0.01 and ***P< 0.001. After Campbell et al. 2006.
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As well as for the BMPs, the 1GFsare also involved in local control mechanisms. It is around
the time of antrum formation that IGF-II mRNA is first detected in thecal tissue in cattle. Type
1 IGF receptor and a range of IGFBPs (IGFBP-2, -3 and -4) have also been detected at this stage
of development (Armstrong et al. 1998; 2000). Despite contradictory evidence on the produc-
tion of IGF-1 by ovine and bovine granulosa cells (Webb et al. 2003; 2004), there is general
agreement that IGF-11,produced by theca cells, is the major intrafollicular IGF ligand regulat-
ing the growth of bovine antral follicles (Yuan et al. 1998; Armstrong et al. 2000; Webb et al.
1999), acting through the type 1 IGF receptor (Lucy 2000). Despite the major site of IGF-II
production being the thecal cells, Spicer et al. (2004) demonstrated that the stimulatory effects
of IGF-Il on thecal cell steroidogenesis, from large bovine follicles (> 7.9mm), is mediated via
1GFtype 1 receptors.

The ovarian 1GF system also appears to interact directly with the oocyte. Small follicles
from cattle offered high energy diets had significantly reduced expression levels of mRNA
encoding IGFBP-2 and -4 (Armstrong et al. 2001), potentially regulating the bioavailability of
IGF and hence influencing oocyte developmental potential. Concentrations of 1GF-1that are
optimal for follicle growth in vitro were seen to be detrimental to oocyte maturation (McCaffery
et al. 2000). Hence, over-stimulation by IGFs, and possibly insulin, may be detrimental to
oocyte quality (Armstrong et al. 2001). It appears that nutritionally induced changes in both
circulating concentrations of insulin and IGF-I and the ovarian IGF system are important for
follicle recruitment. However, these changes may also be detrimental to the quality of the
oocyte within the growing follicle (Adamiak et al. 2005).

In conclusion, it is clear that the antral follicle stage is a transitional phase during which the
follicle becomes increasingly dependent on the pituitary gonadotrophins as the rate of somatic
cell proliferation declines and the cells differentiate and develop the ability to secrete increas-
ing amounts of ovarian steroids and peptides. The control of this phase of development there-
fore involves complex interactions between local factors, many of which we now know are
derived from the oocyte, other extra-ovarian factors circulating in the blood and the pituitary
gonadotrophins. An outstanding characteristic of this follicle class is their heterogeneity and
this reflects the fact that antral follicles each form their own micro-environment that will trans-
duce gonadotrophic signals differentially. A positive response to a given level of gonadotrophic
input will therefore ensure progression of a small number of individual follicles to the next
large antral and/or dominant stage. The majority of follicles that reach this stage of develop-
ment, however, will be unable to elicit a positive response to gonadotrophins and will be lost
through the process of atresia.

Dominant follicle

Extra-ovarian factors

The precise mechanism for the selection of dominant follicles remains to be fully elucidated, but
does involve the action of gonadotrophins as well as locally produced factors. As discussed, both
FSH and LH exert their effects on follicular somatic cells via specific membrane bound receptors
that exhibit alternate patterns of expression. It is well established that the granulosa cells of large
oestrogenic (dominant) antral follicles in sheep and cattle develop LH receptors, (Webb & England
1982; Ireland & Roche 1982; Bao & Garverick 1998; Webb et al. 1999; 2003) and it is now
generally accepted that this event is critical to the process of follicle selection in mono-ovulatory
species. It has been suggested that after the emergence of a follicular wave it is oestradiol and
inhibin, produced by the growing and selected follicles that acts to suppress the secretion of FSH
(Webb et al. 1999; 2003) resulting in the rapid deviation in the size of the future dominant follicle
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and the largest subordinate follicle (Kulick et al. 1999). Thus the presence of LH receptors (LHR)
on granulosa cells is thought to allow a follicle to switch its gonadotrophic dependence from FSH
to LH and attain dominance over a follicular cohort which remains FSH-dependent. Indeed Hamp-
ton et al. (2004) demonstrated that while FSH can support bovine follicular growth to > lOmm, LH
increasesandrogen production and expression of P450c17. Interestingly, changes in expression of
mRNA for LHR in granulosa cells was not associated with changes in LH pulsatility and it was
P450c17 mRNA expression, rather than aromatase activity, that was the most sensitive indicator of
androgen production by thecal cells and oestrogen production by granulosa cells.

Study of the LHR in sheep and cattle has shown that LHR mRNA is highly polymorphic and a
number of splice variants have been described. These isoforms vary due to deletion of all or part of
two variable coding regions: one located between exon 3 and exon 7 and the other between exon
9 and exon 11, incorporating the first 266 basesof exon 11 (see Fig. 2A). To avoid confusion we
have designated these 5 " and 3 variable deletion sites (VDS) respectively. Several studies con-
centrating on the 3 "VDS have described four mRNA isoforms, which are expressed in the ovary of
large domestic ruminants and several other species and these have been designated 'A, B, F, and
G' isoforms in sheep, (Bacich et a/. 1999), but appear to have corresponding isoforms in a number
of other species including cattle, pig, rat and humans (Kawate & Okuda 1998; Loosfelt et al. 1989;
Reinholz et al. 2000). Full LHR functionality, which includes ligand specificity and nuclear
signalling capacity, can only be conferred by the translation of the undeleted mRNA splice variant
member of the 'A' form family. This form encodes an LH/hCG specific ectodomain (exons 1 to
10), and a membrane-bound nuclear signalling endodomain (exon 11); . Members of the 'B' and
'G' variant family mRNAs are truncated due to an early stop codon being included when part of
exon 11 is spliced out resulting in an open reading frame shift. Putative proteins would therefore
not incorporate any of the endodomain and would thus be soluble. The 'F' variant family loses
exon 10 only and do not undergo frame shift. Therefore putative 'F' form LHR proteins should
retain Iigand specificity, and incorporate transmembrane and intracellular signalling regions. How-
ever to date no role has been suggested for either this soluble form or any of the putative proteins
encoded by the various LHR mRNA isoforms and studies in our laboratory have shown no consis-
tent change in the ratio between these isoforms during somatic cell differentiation in sheep either
in vivo or in vitro (Marsters et al. 2007). This suggests that alternative splicing of the common
precursor LHR primary RNA is regulated so as to produce a constant molar ratio between the
mature transcripts. Thus the regulation of LHR expression in ovarian somatic cells requires further
work to determine the biological role of the different splice variants.

To date several surveys of LHR mRNA in follicular somatic cells during the antral phase have
been published, and provide valuable insights into the complexities of antral follicle develop-
ment. The results of classic LH-binding (Carson et al. 1979; Webb and England 1982; Ireland &
Roche 1982; Peng et al. 1991) and in situ hybridisation studies (Xu et al. 1995), demonstrated that
granulosa cells from large pre-ovulatory follicles have LH-binding capacity. Furthermore LHR
mRNA expression has been detected by RT-PCRin both granulosa and theca cells throughout the
antral phase of follicle development in sheep (Abdennebi et a/. 2002) and cattle (Robert et al.
2003) and is markedly upregulated in granulosa cells from large, highly oestrogenic pre-ovulatory
follicles (Bao et al. 1997). Moreover, recent findings suggestthat post- transcriptional regulation of
LHR may involve LHR mRNA-binding proteins (LRBPs)that induce rapid degradation (Kash &
Menon 1999). These workers have identified an LRBP binding site adjacent to the transcription
start site and demonstrated that LRBP/LHR mRNA complexes are more rapidly degraded than
unencumbered LHR mRNA thereby limiting time for translation. More work is therefore re-
quired to examine the mechanisms regulating the transcription and translation of LHR mRNA in
the somatic cells of ovarian follicles in domestic ruminants.
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Fig. 2. A. Schematic representation of the LH receptor full size mRNA showing the posi-




tions of the 5 " and 3 " variable deletion sites (VDSs) and other important loci. Also shown


the alternative splicing of the 3 " VDS which determines the variant families (A, F, B and G).

B. Semi-quantitative comparison of total LH receptor mRNA expression in theca cells (TC)

and granulosa cells (GC) taken from small bovine antral follicles (3-5mm) and cultured for

96 hrs in serum-free media + gonadotrophins (LH and FSH respectively). Expression was

determined by RT-PCR. Asterisks denote individual statistical significances (*, P<0.05;
**, P <0.01) between the + gonadotrophin treatments. After Marsters et al. 2007.
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Recent studies using somatic cells induced to differentiate in vitro have revealed important
differences in the way that follicle stimulating hormone receptors (FSHR) and LHR expression

are regulated. Granulosa cell FSHR expression appears to be constitutive from the primary

stage of follicle development through to the dominant follicle. We have previously reported

that FSHR expression in cultured granulosa cells declined rapidly in the period after plating

and, in the presence of optimum doses of FSH and IGF-1, increase rapidly prior to induction of

aromatase activity and gene expression (Marsters et al. 2003). Removal of FSH, but not IGF
from culture media, however, results in a marked attenuation in this recovery in FSHR expres-

sion and the absence of aromatase indicating that FSH positively regulates expression of its

own receptor in granulosa cells (Marsters et al. 2007). Further, expression of LHR in granulosa
cells follows a similar pattern that parallels aromatase expression, confirming that induction of

LHR in granulosa cells is an FSH dependent phenomenon that occurs concurrently with acqui-

sition of the ability to secrete oestradiol. Conversely, LHR expression in cultured theca cells

exhibits a similar profile, but is markedly up-regulated in the absence of LH in the media,

indicating that thecal LHR expression is negatively regulated by LH in this species (Marsters et
al. 2007; Fig. 2b).

At a more functional level, infusion studies in cattle have demonstrated that FSH alone, or in

combination with LH, can stimulate follicles to develop to the preovulatory stage and these

preovulatory follicles are capable of ovulating in response to hCG (Webb et al. 2003). Further-
more, adequate pulsatile LH support appears to be required to maintain the ovulatory compe-

tence of large follicles (>9 mm in diameter) when FSH concentrations are decreased. These

studies also indicated that gonadotrophins are significantly involved in the control of ovulation
rate. This is supported by the finding that cattle with three dominant follicles had higher FSH

concentrations than cattle with two dominant follicles, with cattle with a single dominant

follicle having the lowest mean FSH concentration (Lopez et al. 2005). These data in cattle are
comparable with those generated using a similar model in sheep and agree with our current

understanding of the role of declining FSH and subsequent LH support in selection of the

dominant follicle. The results of recent experiments utilising a GnRH-antagonist suppression

model confirm that LH is an essential requirement for normal ovulatory follicle development

and subsequent luteal function, but show that a pulsatile mode of LH stimulation is not required

by the ovulatory follicle for normal dominant follicle development and luteal function (Campbell
et al. 2007; Fig. 3). These data suggest therefore that as well as an FSH threshold being neces-

sary for the support of gonadotrophin-dependent follicles, a threshold concentration of LH is

required for normal steroidogenesis and development of the dominant follicle. In addition to

these direct effects of LH on dominant follicle development, LH, by modulating both oestra-

diol and inhibin A secretion by the ovulatory follicle, can also indirectly control the level of

pituitary FSH release and hence the fate of FSH-dependent follicles.

Dominant follicles, even in the first follicular wave of the oestrous cycle, are mature enough

to ovulate and corpora lutea (CL) can be generated experimentally by treatment with a number

of factors including hCG (Price & Webb 1989), GnRH (Mee et al. 1991; 1993) and GnRH
analogues (Twagiramungu et al. 1995). However the CL appears to be impaired with reduced
progesterone production (Webb et al. 1992). In addition to impaired CL function, Perry et al.
(2005) demonstrated that administration of GnRH to induce ovulation likely initiates a preovu-
latory gonadotrophin surge before some dominant follicles attain physiological maturity. Also

GnRH-induced ovulation of follicles that are physiologically immature had a negative impact

on pregnancy rates and late embryonic/fetal survival. It was suggested (Perry et al. 2005) that
these observations in cattle may have implications for human assisted reproductive procedures.
However there appears to be an optimum duration of ovulatory follicle development since an
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increased duration from the time of emergence (or dominance) to oestrus is associated with

reduced pregnancy rates following Al in dairy cows undergoing spontaneous oestrous cycles

(Bleach et al. 2004).

12 24 36 48 60 72 84 96 108

Hours after luteal regression

Fig. 3 Ovarian venous oestradiol (A) and inhibin A (B) and jugular venous FSH (C) concen-

trations in GnRH agonist suppressed ewes which received either no LH (n =8; closed

circles), pulsed LH (n =8; open diamonds) or constant LH (n =8; closed triangles) for 60 h

after induction of luteal regression followed by an ovulatory stimulus at that time. The

results demonstrate a key LH requirement for final maturation. However, these results also

demonstrate that both the oestradiol and inhibin A responses occurred whether LH was

given as a constant infusion or as pulses. After Campbell et al. 2007.

Other extra-ovarian factors are also involved in dominant follicle function. A large number of in
vitro studies have demonstrated the direct action of metabolic factors on granulosa and theca

cells (Webb et al. 1999; 2003; 2004; Armstrong et al. 2003). Bovine granulosa cells also

appear to be dependent on the presence of physiological concentrations of insulin (Gutierrez et

al. 1997) and furthermore, infusion of insulin into beef heifers increased the diameter of the

dominant follicle (Simpson et al. 1994). Dietary-induced increases in circulating concentra-

tions of insulin have also been correlated with increased oestradiol production in cultured
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granulosa cells from small antral (1-4mm) follicles (Armstrong et al. 2002b), demonstrating a

direct action of metabolic hormones throughout the later stages of follicle development. This is

supported by results of a study in post-partum dairy cows where insulin infusion increased

oestradiol secretion after 30h by the dominant follicle of the first postpartum follicular wave.

Interestingly these changes appeared not to be mediated through changes in pulsatile LH re-

lease (Butler et al. 2004), suggesting a direct effect of insulin on the follicle. However circulat-

ing free IGF-1 was also raised, which as discussed, could have increased the response of the

follicle to peripheral gonadotrophins resulting in increased aromatase activity by the dominant

follicle. Hence there appears to be an optimum concentration of insulin for follicle health,

since it has recently been demonstrated that hyperinsulinemia can occur in cattle and that this

condition is associated with impaired oocyte quality (Adamiak et al. 2005; 2006). Interestingly
in this study, there was an interaction between body condition and level of feeding, which

were cumulative, with both a positive and negative influence on oocyte quality as measured

by the ability of oocytes to develop to blastocysts, with high level of feeding having a benefi-
cial effect in animals of low body condition, but a detrimental effect in cows with a moderately

high body condition.

Intra - ovarian factors

As the selected follicle reaches dominance there are also changes in the expression patterns of

locally produced factors. For example, in healthy bovine follicles up to 9 mm in diameter,

IGFBP-2 and -4 mRNA expression are restricted to granulosa and theca tissue, respectively

(Webb et al. 2003; 2004). Indeed the conversion of a subordinate follicle to a future dominant
follicle has been associated with a transient increase in follicular fluid activin A and oestradiol,

but a decrease in IGFBP-2 (Armstrong et al. 1998; Ginther et al. 2002; Kojima et al. 2003). The
reduction in follicular fluid IGFBP-2 and -4 concentrations has been coupled to the increase in

oestradiol concentrations, in dominant follicles in cattle (Mihm et al. 2000). Hence, lower
amounts of IGFBP-2 and increased LH receptors in granulosa cells appear to be associated with

the establishment of the dominant follicle (Webb et al. 2003; 2004).
This reduction in IGFBPs has been associated with increased proteolytic activity (Mazerbourg

et al. 2000). The protease that degrades IGFBP-4 and —5 has been shown to be the pregnancy-
associated plasma protein —A (PAPP-A) (Monget et al. 2003). PAPP-A mRNA expression is also

more abundant in growing dominant bovine follicles than in non-selected small follicles (Fayad
et al. 2004). Furthermore it has been shown that PAPP-A is responsible for IGF-dependent

degradation of IGFBP-2 probably leading to increased IGF bioavailability (Monget et al. 2003).
Post-translational modification of IGFBPs are also known to occur and it has been demonstrated

that at least 51 isoforms of IGFBP are present in bovine follicular fluid (Nicholas et al. 2002),
but the physiological role of these isoforms has yet to be clarified.

Other locally produced growth factors include members of TGFR superfamily of ligands,

operating through Smad signalling pathways (Knight & Glister 2006). Certainly a range of

BMPs and associated factors are involved in follicular maturation as indicated by the marked
increase in ovulation rate in sheep with a range of mutations (McNatty et al. 2007 this supple-
ment). As with other stages of follicle development there is now evidence for a functional role

of BMPs in the dominant follicle, acting in concert with other locally produced factors and

gonadotrophins. However, the exact mechanisms through which all these growth factors oper-

ate and the degree of redundancy need to be elucidated.

In addition to known local factors, recent data derived from genetic array approaches (Mihm

et al. 2006) have revealed a large number of factors that may be associated with dominance in
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mono-ovulatory species. Some of these effects, such as the association of dominance with the

development of LH receptors on granulosa cells (Evans et al. 2004; Mihm et al. 2006) are well

established (Webb & England 1982; Xu et al. 1995), whereas many others have unknown

actions which may or may not be causally related to the attainment of dominance. Furthermore,

other factors of unknown identity have been described through the more conventional means

of the observation of a biological effect. One of the most intriguing of these activities, given

the increased understanding of the importance of oocyte secreted factors in controlling follicu-

lar development, is the observation that oocytes from a number of species release a potent

activity that is capable of inhibiting gonadotrophin-induced differentiation of granulosa cells in
vitro without markedly affecting cellular proliferation (pig: Brankin et al. 2003; cow: Glister et
al. 2003; sheep: Sfontouris 2004; Table 1). Comparison of the effect of culturing ruminant

granulosa cells with a single oocyte on cell number and oestradiol production, with the known

effects of candidate factors for this activity such as GDF-9, BMP-15, BMP-6 and TGFcc/EGF (see

Table 1), reveal that GDF-9/BMP-15 are possible candidates for this activity. This inhibitory

action is consistent with the sheep models in which ovulation rates are increased in heterozy-

gote carriers of null mutations (Hanrahan et al. 2004) and following immuno-neutralisation

(Juengel et al. 2004). The role of GDF-9/BMP-15 in the control of dominance is therefore

worthy of future investigation with a primary question being the mechanism whereby this

putative inhibitory moiety is controlled during selection.

Table 1: Comparison of the effects of co-culture of oocytes with granulosa cells from sheep and cattle on cellular


proliferation and oestradiol production under optimal conditions for induction of cellular differentiation (i.e. in


the presence of IGF-1 and FSH) with other known oocyte-secreted factors. After Glister et al. 2003; Campbell


et al. 2005.

Factor Proliferation Oestradiol production Reference

Oocyte co-culture (+FSH/IGF) None Negative Glister et a/. 2003





Stontouris 2004

BMP-6 (+FSH/IGF) None Positive Glister et al. 2004





Campbell et al. 2006

TGFa/EGF (+FSH/IGF) Positive Negative Glister et al. 2003





Campbell et al. 1996

GDF-9/BMP-15 (+FSH/IGF) None Negative Campbell et al. 2005

Follicular atresia

As discussed, atresia occurs throughout follicular development and apoptotic cell death is an

underlying mechanism of cell loss during follicular atresia (Tilly et al. 1991). Granulosa cell

apoptosis may occur early in the process of atresia in rodents, before other morphological or

biochemical changes are detected (Tilly et al. 1992), although in cattle a decline in intra-

follicular oestradiol production has been shown to precede apoptosis of granulosa cells (Austin

et al. 2001). The theca interna is also susceptible to cell death, with a reduced number of

P450SCC- positive cells in atretic follicles (Clarke et al. 2004). Indeed theses authors sug-

gested that the theca interna could be a site of initiation of atresia.

Atresia, along with follicular growth differentiation and ovulation are dependant on cyclical

remodelling of the extra cellular matrix (ECM). For example plasminogen activators and in-

hibitors, including protease nexin-1 (PN-1) have been associated with the process of atresia in

non-ovulatory dominant bovine follicles (Cao et al. 2006). In addition, gelatinolytic and

caseinolytic matrix metalloproteinase's (MMPs) which degrade the proteinaceous components

of the ECM are temporally and spatially regulated within the thecal and granulosa compart-
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ments of bovine follicles (Smith et aL 2005). Indeed, gelatinase A (MMP-2) activity was in-
creased in response to physiological concentrations of LH. The controlled degradation of ECM
proteins by MMPs and their inhibitors (TIMPs) may be essential for preserving a microenviron-
ment conducive to follicular function.

A number of markers of atresia have been used to assessfollicular status including caspases
(Fenwick & Hurst 2002), Fas and Fas-L (Quirk et al. 2000), TU NEL staining of granulosa cells
(Zeuner et al. 2003) and IGFBP-5 expression (Devine et al. 2000). Whilst several of these
markers have been used to identify atretic follicles, very little evidence of their subsequent use
as markers of oocyte quality exists (Nicholas et al. 2005). Unlike progression of apoptosis in
oocytes, that relies on caspase-2, apoptosis in granulosa cells from pre-antral to preovulatory
follicles is dependent upon the activity of caspases-3 and -7 (Matikai nen et al. 2001). In cattle,
it has been demonstrated that follicular atresia is accompanied by a considerable increase in the
lower molecular weight IGFBPs (Nicholas et al. 2005). Importantly, IGFBP-5 appears to be a
particularly good marker of atresia, since other IGFBPs are expressed at different stages of
follicular development, whereas IGFBP-5 is exclusive to atresia (Monget et al. 1998). Indeed,
it has recently been demonstrated that the IGFBP expression profile of follicular fluid can be
used to better predict oocyte developmental competence (Nicholas et al. 2005). A distinctive
IGFBP profile in follicular fluid of ovarian follicles has been demonstrated, with the dominant
bovine follicle containing only IGFBP-3 together with a high oestradiol content, whereas the
two largest subordinate follicles contain increased levels of IGFBP-2, -4 and the 29-31kDa
(IGFBP-5) band, concomitant with reduced oestradiol content (Fig. 4). Furthermore, an ex-
tremely significant correlation between 29-31kDa, (IGFBP-5) expression in follicular fluid and
caspase-3activity in the granulosa cells, measured in the same follicles, has been shown (Nicholas
et al. 2005; Fig. 4), demonstrating that IGFBP expression patterns can be used to group follicles
into healthy, early atretic and late atretic follicles. Furthermore, a higher proportion of oocytes
derived from follicles in early atresia progressed to the blastocyst stage after IVF (Fig. 4).

Gross morphological assessment of cumulus oocyte complexes is not an accurate method of
determining whether oocytes have been derived from healthy or atretic follicles (Nicholas et
al. 2005). Hence, selecting oocytes from follicles of defined quality using non-invasive mark-
ers, for example, IGFBP expression patterns, which can be performed rapidly enough to pre-
select the oocytes prior to IVF would be a major advantage. Selection of good quality oocytes
is also highly desirable for procedures that require extensive manipulations such as pronuclear
microinjection, intra-cytoplasmic sperm injection (ICSI)and nuclear transplantation, which need
to ensure a high developmental competence after embryo transfer. These results may enable an
improvement in IVF pregnancy rates from the current success rate of —30% by pre-selection of
oocytes on a more biochemically sound basis than by simple morphological evaluation, which
is currently used, and is a rather non-empirical method of assessment.

Conclusions

The final stagesof follicle development are driven by an absolute requirement for gonadotrophic
support (see Fig. 5). In addition, this requirement is developmentally regulated with dominant
follicles changing their reliance from FSH to LH support. The response of these follicles to
gonadotrophins is modulated by other extra-ovarian factors, such as insulin and IGF-1, which
also influence follicle development, oocyte quality and a panoply of locally produced growth
factors. This review has centred on those that have been studied in most detail, namely the IGF
and BMP systems. Limited, but rapidly increasing, information to date has already demon-
strated an interaction between these two important local regulatory systems (see Fig. 5). Fur-
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Fig. 4 Bovine granulosa cell caspase-3 activity, oestradiol 17B follicular fluid IGFBP-S and
concentrations (A), and (B) IGFBP content, visualised by Western ligand blot using
biotinylated IGF-II, in follicular fluid from ovarian follicles from synchronised heifers on
day 5 after oestrus and (C) the outcome of in-vitro fertilization on pre-selected oocytes from
non-synchronised animals. Adapted from Nicholas et al. 2005.

thermore, gene expression profiling approaches will identify additional novel and differen-

tially expressed genes within follicles. The challenge for the future, following identification of

these factors, will be the determination of their physiological role, in particular how they
interact with extra-ovarian factors. An increased understanding of these complex systems con-

trolling follicular development will result in the in vivo and in vitro production of better quality

oocytes resulting in enhanced embryo survival and pregnancy rates.
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Control of Follicle Selection and Dominance

Fig. 5 Diagram showing the role of gonadotrophins in antral follicle development and the

interaction with the follicular IGF and BMP systems. Note the additive effect of the IGF and

BMP systems on FSH stimulated follicular development. Adapted from Webb et al. 2003;

Campbell et al. 2006.
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