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Evolution has shaped regulatory systems to improve the chance of
reproductive success in a somewhat unpredictable environment. One of
the more powerful regulators of reproductive function in both sexes is
metabolic status, defined as the availability of nutrients and energy to the
tissues. Here, we briefly review the basics of the relationship between

metabolic status and the activity of the system that controls pulsatile GnRH
and LH secretion. We then reflect on these relationships within the
framework of a model that comprises four interdependent 'dimensions':

1) genetic, 2) structural, 3) communicational, and 4) temporal. Using two
major examples, the male sheep and the post-partum dairy cow, we
illustrate aspects of each dimension that seemed to have evolved to limit
the risks associated with 'the decision to reproduce'. The results of recent
studies have also led us to include in our model the concepts of 'metabolic
memory' and 'nutrient sensing' to help explain some aspects of the
temporal dimension. Throughout the review, we propose directions for
future research that could shed light on pathways that have evolved to
ensure that animals are able to take the least risky 'decision'.

Introduction

In this review, we are looking at how nutrition influences reproduction, an old problem that has
been researched for decades and reviewed in detail many times (most recent: Butler 2005;
Blache et al. 2006; Robinson et al. 2006). In this instance, we are attempting to analyse the
issues from a different perspective —we will consider the multi-dimensional nature of an inte-
grated control system that has developed over an evolutionary timescale to ensure that an
animal has the best chance of reproductive success in an unpredictable environment. Of course,
for farmed ruminants, the environment is nowadays far more predictable than that with which
their ancestors had to cope before domestication. On the other hand, domestication has also led
to intense demands, such as selection pressure for increased milk production by modern dairy
cows, that greatly increase the energy requirements of the animals —in effect, this is an ex-
treme metabolic stressor that challenges the homeostatic processes developed during evolu-
tion.
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Before elaborating the notion of a multi-dimensional control system, we will first define
several basic concepts in the bioenergetics of reproduction, metabolic status, and their effects
on reproduction. Having set the scene, we will consider each of four 'dimensions' of what we
see as a 'decision-making system' that allows ruminants to optimise their reproductive success.
First, we will briefly look at the genetic dimension, one that sets the limits of responsiveness
to nutritional input to animals. Second, we will consider the structural dimension, a growing
list of organs and tissues involved in the linkage between metabolic status and reproduction.
The third dimension, the communication network of signalling pathways, will be treated in
greater detail. The fourth and final dimension is temporal so concerns the role of time on the
metabolism-reproduction relationship —and has led us to incorporate 'metabolic memory' and
'nutrient sensing' into our hypothetical control system (Cahill 1980; Obici & Rosetti 2003). To
illustrate these concepts, we will mainly use two examples, the male sheep that has been
acutely placed on a high plane of nutrition, and the high-output dairy cow that is undergoing a
dramatic change in energy balance in the early postpartum period. We will conclude by dis-
cussing the four-dimensional model as a conceptual framework upon which we can base further
study of the interactions between nutrition and reproduction. Most of the processes involved
are autonomic by nature but, to aid clarity of expression, we will occasionally risk the use of
anthropomorphic language (eg, 'decision to invest').

Basic concepts

Bioenergetics of reproduction

Energy costs are attached to all components of the reproductive process, from the expression of
specific behaviours, such as sexual or maternal behaviour, to the production of morphological
elements, such as gametes, fetuses and milk. In mammals, reproduction is energetically more
demanding for females than for males because of the requirements for gestational development
and the production of milk. The peaks in energy demand for reproduction also differ in timing
between the sexes, with the male investing most energy before fertilization, while females
invest most energy following fertilization, often with considerable delay (Horton & Rowsemitt
1992). For example, in grazing ewes, gestation costs only 3% of the daily energy expenditure
during the first 3 months but this builds rapidly to 20% during the last 2 months (Fierro & Bryant
1990). The energy requirement for dairy cows to ovulate a follicle, form a corpus Iuteum, and
maintain early pregnancy is minuscule compared with the requirement for lactation, which
requires up to 50% of the daily energy expenditure (Graham 1964; Fierro & Bryant 1990). For
the human female, it has been suggested that the reproductive axis will not be activated until
the energy requirements for pregnancy are already in storage (Frisch 1994) but, in a striking
contradiction of this logical concept, dairy cows have been successfully selected genetically for
their ability to conceive during lactation when their energy balance is negative.

The critical time point in the reproductive cycle seems to be when the animal makes an
'investment decision', accepts the risks inherent in procreation, and 'switches on' its reproduc-
tive system. Considering the energetic requirements, the relationship between the metabolic
and the reproductive regulatory systems needs to be highly tuned if the probability of success
is to be reasonable. As a natural illustration of this matching of potential future resources to
potential future demands, the energy regulatory systems of mammals are more strongly tied to
reproductive function in females than in males because of the much higher cost for reproduc-
tion paid by females.
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The concept of metabolic status

At any given time, for any given animal, the amount of energy available for reproduction
depends on the difference between the amount of energy expended, including the demands
for maintenance, and pool of disposable energy (Fig. 1). The pool of disposable energy in-
cludes the energy derived from feed intake plus the energy stored in body tissues, especially
adipose tissue, liver and muscle. The amount of expended energy varies according to the age
and the physiological status of the animal and it comprises the energy spent on functions that
are responsible for the maintenance of homeostasis, as well as energy spent on extra physi-
ological needs such asgrowth and reproduction. Most authors refer to 'energy balance' instead
of 'metabolic status'. The terms can be seen as interchangeable but 'metabolic status' includes
an integrative dimension that 'energy balance' does not.

Fig. 1: A schema describing the proposed relationships between photoperiodic, nutri-

tional and social cues and they ways that they interact with genotype and steroid feedback

in the control of hypothalamo-pituitary-testicular axis in the male sheep. Nutritional input

is via 'metabolic status', a reflection of the difference between energy expenditure and the

sum of energy available from food intake and from energy reserves, as measured by a

hypothetical 'metabolic sensor'. Redrafted after Blache et al. 2003.
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The neuroendocrine system — the fundamental controller of reproduction

A full reproductive cycle starts with the emergence of sexual activity in future parents and
finishes with emergence of sexual activity in the subsequent generation. The various phases of
the cycle differ in their duration between the sexes but the secretion of GnRH, and conse-
quently LH and FSH from the pituitary gland, are central to the process in both (Blache et al.
2002; Blache et al. 2003; 2006). Effectively, the 'decision' of an animal to reproduce or not is
implemented by the system, as yet not described, that controls the production of pulses of
GnRH —there is a threshold frequency of pulses above which males will produce sperm and
females will ovulate. Thus, during postpartum anoestrous in dairy cattle, pulsatile infusion of
LH decreases the time delay to first ovulation by stimulating follicular growth and steroidogen-
esis (Hampton et al. 2003). The system that controls GnRH secretion is also the final common
pathway via which gonadal activity is usually influenced by external factors (Fig. 1), including
socio-sexual cues, photoperiod and energy balance (review: Martin et al. 2004). That said, it is
important to note that tissues involved in the process of reproduction, including the pituitary
gland, gonads and mammary glands, can also respond independently to metabolic inputs, if not
to the extent of switching the reproductive process on or off.

Metabolic status and investment in reproduction

Because reproduction is very demanding energetically, metabolic status is arguably the most
powerful internal regulator of reproductive function and variation in metabolic status can pro-
foundly affect the reproductive cycle at almost any stage. In mature male sheep, an acute
increase in the intake of energy and protein induces, first, an increase in the frequency of
pulses of GnRH and LH, and then an increase in the tonic secretion of FSH (Martin et al. 1994).
An acute reduction of feed intake has the opposite effects (Martin & Walkden-Brown 1995).
Similarly, in the post-partum cow, the activity of the GnRH neurons is highly positively corre-
lated with energy balance, so pulse frequency increases when energy balance shifts from nega-
tive to positive values following an increase in intake or a decrease in expenditure (review:
Butler 2000; 2005). Dairy cows have been selected heavily for high milk production and show
a high level of nutrient utilisation and adipose tissue mobilization during early lactation, so the
impact of milk production on reproduction can be reduced by reducing milking frequency.
Reducing milking frequency to once daily increases the rate of spontaneous resumption of
oestrous cycles in anoestrous cows (Rhodes et al. 1998) independently of any direct effect of
diet (Patton et al. 2006), although the role played by Gn RH pulse frequency in determining the
length of postpartum anoestrus interval (PPAI) is yet to be proven directly.

A 4-dimensional linkage between nutrition and reproduction

Naturally, animals have evolved to increase their chances of reproducing and regulatory sys-
tems have evolved to fulfil that drive. We will now outline a framework within which we can
analyse the processes and relationships involved. Following an analogy with theoretical phys-
ics, we will consider the regulatory system as having four dimensions: genetic, structural,
communicational and temporal.

1) The genetic dimension

The effects of metabolic status and dietary manipulation on the reproductive axis differ be-
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tween genotypes in both sheep and cattle. This genetic dimension accounts for variations in the
responses to environmental inputs, whether they be natural (eg, photoperiod) or artificial (eg,
genetic selection for high milk production). In our review for the previous symposium in this
series, we suggested that photoperiod acts as a 'filter' of the effect of nutrition on the reproduc-
tive system and that this filtering effect depends on the genotype of the animal (Blache et al.
2003). This is because, in sheep, the effect of nutrition on the reproductive endocrine axis is
smaller in breeds that are very responsive to photoperiod than in breeds that are less responsive
(Hötzel et al. 2003; Martin et al. 1999; Martin et al. 2002). Similarly, a large body of work in
dairy cattle has shown that genotype affects the ability of cows to resume ovulation during the
postpartum period. Dairy cows in continuous calving systems that have not ovulated by 44 days
postpartum are defined as having a prolonged PPAI (Lamming & Darwash 1998). It seems that
the regulatory systems that control metabolism and energy balance can partition energy in
different ways in cows of different merit and, in high merit animals, reproductive function has
been de-prioritised in favour of milk production. This was clearly demonstrated in a study done
in New Zealand that compared the performance of Friesian cows bred from semen collected in
1970s and 1990s —over that 20-year period of selection, the postpartum anovulatory interval
increased from 7 to 12 days (McNaughton et al. 2003), despite the fact that selection for high
milk production was associated with a increase in dry matter intake (Veerkamp et al. 2003).
The genetic make-up of an animal, whether naturally or artificially acquired, is thus the first
regulatory step in the influence of metabolic status on reproductive function.

The structural dimension

Metabolic status involves inputs from several energy pools that depend on the activity of a
variety of organs so it is not surprising that recent decades of research have led to an increasing
number and diversity in anatomical sites involved in the relationship between nutrition and
reproduction. There has also been a parallel increase our understanding of the precise nature of
the role played by each regulatory organ. The brain and the gonads have always been seen as
the primary targets for nutritional input into reproductive function but we now accept major
roles for the pancreas, liver and adipose tissue (Fig. 2). For adipose tissue, this transformation
has been spectacular as it has been elevated from a passive storage site to a vital endocrine
organ that produces a number of signals (detailed below). Similarly, the digestive system is
also now implicated in the regulatory processes through which nutrition affects reproduction as
its endocrine output has been detected and identified. The digestive system also produces very
direct metabolic information in the form of energy metabolites (glucose, fatty acids) and amino
acids, as detailed in the final section below. In summary, every organ involved in the regula-
tion of the three compartments of metabolic status (intake, reserves, expenditure), is also in-
volved in generating signals that influence reproductive activity (Fig. 2) —some of these have
a very specific role (eg, the liver, an organ that processes first most of the circulating nutrients)
whereas others have a more general input (eg, the thyroid gland).

The communicational dimension

The successful implementation of a 'decision to invest' in reproduction depends on the systems
that regulate the reproductive axis, via changes in GnRH pulse frequency, responding accu-
rately to changes in metabolic status. These regulatory systems can be classified as endocrine,
neural and nutrient-based.



Fig. 2: Schematic summary of the potential relationships among the endocrine and neural

inputs into the systems that control the reproductive system and mediate the responses to

change in metabolic status. For clarity, we have omitted some hormonal systems (GH,

prolactin, oxytocin) that are also involved in the control of the metabolic status but do not

appear to exert any direct action on Gn RH secretion. Within the brain, the neurochemical

nature of the hypothetical 'metabolic sensor' that integrates the endocrine and neural

inputs is still not known. Kisspeptin is proposed as a possible final link between the

neuropeptide systems that respond to insulin and leptin, and perhaps adiponectin, and

the GnRH neurons. It should be noted that the pituitary gland might be involved in the

response of the reproductive axis to nutrition because it is responsive to many of the same

hormonal signals as the hypothalamus.

Endocrine systems linking metabolic status and GnRH secretion

Insulin

Insulin is affected by energy balance and seems to be involved in the control of reproduction in
male sheep because: 1) a high plane of nutrition leads to high concentrations of insulin in both
plasma and CSF (Miller et al. 1998; Zhang et al. 2004; 2005); 2) with a restricted diet or with
diabetes, a low dose of insulin infused into the third ventricle increases LH pulse frequency to
values similar to those seen in well-fed animals (Miller et al. 1995a; Miller et al. 2002; Tanaka
et al. 2000); 3) insulin receptors are present in the hypothalamus (Blache et al. 2002); 4)
following an acute increase in dietary allowance, the increase in insulin secretion coincides
with the increase in LH pulse frequency (Zhang et al. 2004). A central role for insulin in the
regulation of GnRH secretion is also supported by studies with neuron-specific, insulin receptor
knockout mice (Bruning et al. 2000).
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In cattle, there are also similar associations: 1) dietary restriction and negative energy bal-
ance reduce plasma concentrations of insulin; 2) during post-partum anoestrus, the dominant
follicle ovulates in response to restricted suckling only in cattle with high plasma concentra-
tions of insulin (Sinclair et al. 2002); 3) dietary manipulation that increases plasma concentra-
tions of propionate and insulin are also associated with a decrease in PPAI without any changes
in either milk production or energy balance (Gong et al. 2002).

Thus, the accumulated evidence strongly suggests a major role for insulin in the GnRH
response to variation in metabolic status, although, in dairy cattle, the evidence for this link is
more mixed (review: Butler 2005). For example, during early lactation, infusion of insulin,
associated with control of glycaemia, failed to stimulated LH pulse frequency, but did stimu-
late production of oestradiol by a direct action on the ovary (Butler et al. 2004). It appears that
insulin does not always stimulate GnRH secretion, especially in presence of strong negative
feedback.

Growth Hormone (GH)

The presence of mRNA for GH receptors in the hypothalamus and the pituitary gland (Kirby et
al. 1996; Lucy et al. 1998) suggests that GH could link nutritional inputs to gonadotrophic
outputs (Monget & Martin 1997). Energy balance certainly affects plasma concentrations of GH
under a wide variety of conditions (Bossis et al. 1999) but, in male sheep at least, it is not likely
to be involved in the stimulation of GnRH secretion because an increase in nutrition induces a
decrease in plasma GH concentrations (Miller et al. 1998).

Insulin -like growth factor -I (IGF -I)

In male sheep, circulating concentrations of IGF-I are affected by diet and peripheral adminis-
tration of physiological doses of IGF-I inhibits LH secretion, but this is probably through an
action at pituitary level rather than by a change in GnRH pulse frequency (Adam et al. 1998).
In addition, concentrations of IGF-I in CSF are not affected by diet (Miller et al. 1998) and we
have not be able to demonstrate that IGF -I infusion into the third ventricle affects LH pulse
frequency (Blache et al. 2000). It therefore seems likely that, in male sheep at least, IGF-I is
not heavily involved in the effects of changes in nutritional status on the brain's reproductive
centres. In the post-partum cow, plasma concentrations of IGF-I are negatively correlated with
extended PPAI and positively correlated with body condition and food intake (Beam & Butler
1999). Plasma IGF -I values decrease in food-restricted heifers and, in post-partum dairy cows,
IGF -I increases linearly up to the day of first ovulation (Beam & Butler 1997; Diskin et al.
2003). Also, IGF -I and its receptor have been found in the hypothalamus of the rat (Bohannon
et al. 1988; Schechter et al. 1994) so IGF -I might play a direct role in the control of GnRH
neurons and could be involved in the resumption of cyclicity in lactating cows (Beam & Butler
1997; Diskin et al. 2003). However, until this concept is tested directly in cattle, the informa-
tion from studies with rams leads us to conclude that it is unlikely.

Thyroid hormones

Thyroid hormones play a role in the control of seasonal reproduction in sheep, probably through
an input into endogenous cerebral rhythms (Karsch et al. 1995). However, in the mature male
sheep, the concentrations of thyroid hormones in plasma and CSF are not affected by the acute
elevations of nutrition that increase LH pulse frequency, suggesting that they play no role in
the rapid stimulation of the GnRH neurons (Miller et al. 1998; Zhang et al. 2004; 2005). In
lactating cows also, there is little or no change in thyroid hormones in relation to selection for
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milk production (Veerkamp et al. 2003). Overall, there is very little evidence for thyroid
hormones being important signals linking energy balance and reproduction. Arguably, this is
not surprising because the ubiquitous action of thyroid hormones is not compatible with a very
specific action on the reproductive axis.

Hormones secreted by adipocytes

Our view of the role played by adipose tissue in the management of metabolic status has
evolved from that of a passive energy reserve to that of a very active endocrine regulator of a
multitude of bodily functions, including food intake, metabolism, immunity, thermoregulation
and cardiovascular function, as well as reproduction (Ahima 2005; Cinti 2005; Kershaw & Flier
2004). Of the 20 or more endocrine products of adipose tissue, leptin appears to be the most
important regulator of reproductive activity in ruminants (review: Chilliard et al. 2005), al-
though leptin is also the most studied of the adipocyte hormones and future research might
reveal key roles for the others. The expression and release of leptin, and the sensitivity of
gonadal and brain tissues to leptin, are all altered by short- and long-term changes in metabolic
status. Moreover, numerous experiments in female and male sheep have shown that leptin can
affect the neuroendocrine systems that control the activity of the reproductive axis (review:
Adam et al. 2003; Ch iII iard et al. 2005). A recent study in dairy cattle has illustrated the close
link between leptin concentrations and LH pulse frequency during the post-partum period
(Kadokawa et al. 2006), although a triggering role for leptin in the termination of anoestrus it is
not always supported (Chagas et al. 2006). Indeed, the consensus of the large amount of leptin
literature is that the role of leptin is permissive rather than triggering, and this is logical be-
cause adipose tissue is only one of the three compartments of metabolic status.

Another interesting adipose hormone, adiponectin, has yet to receive the same interest as
leptin but perhaps should do so because it is exclusively produced by adipose tissue and, in
contrast to leptin, it stimulates energy expenditure without any effect on feed intake when it is
infused into the cerebral ventricle of the rat (Ahima 2005). In male rat pituitary cells in culture,
adiponectin reduces the expression of GnRH receptor and decreasesthe secretion of LH (Malagon
et al. 2006). However, an effect of adiponectin on the activity of the Gn RH neurons is yet to be
demonstrated.

Hormones secreted by the gastro -instestinal tract

A most interesting potential candidate in the regulation of reproduction by metabolic status is
ghrel in, a gut hormone that is the endogenous Iigand of the GH secretagogue (GHS) receptor.
In sheep, ghrel in secretion is inhibited by an increase in feed intake and stimulated by fasting
(Sugino et al. 2004). In rodents, the distribution of GHS receptors overlaps that of GnRH in the
arcuate nucleus (St-Pierre et al. 2003) and ghrel in decreases the secretion of LH (Fernandez-
Fernandez et al. 2004). Interestingly, ghrel in and GHS receptors are expressed in human and
rat testis (Tena-Sempere 2005) and ghrel in is found in most reproductive tissues in both male
and female sheep (Miller et al. 2005). In dairy cattle, Roche et al. (2006) measured plasma
ghrelin concentration, pre- and post-feeding, during peak lactation (75 days postpartum) in
animals of low and high genetic merit for milk production. High-merit cows produced more
milk, consumed more pasture, and had higher plasma concentrations of ghrel in and GH, than
low-merit cows. Itoh et al. (2005) reported a decline in ghrel in concentrations as cows pro-
gressed from early to mid- to late lactation, suggesting greater ghrelin production in cows
during negative energy balance. Clearly, this should be a high priority area for further study.
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Direct inputs by nutrients

Digestive processes lead to the production of critical nutrients, such as amino acids, fatty acids
(volatile or non-volatile) and carbohydrates, that flow into the circulation and can act as signals
in their own right. However, in ruminants there is no strong evidence that these molecules are
major regulators of the secretion of GnRH pulses. In female sheep, pulsatile LH secretion is not
affected by intravenous infusion of precursors of neurotransmitters of large-neutral amino acids
(Downing et al. 1995; 1996; 1997). In contrast, studies with rams suggest that fatty acids, a
major currency in energy transactions in ruminants, affect Gn RH secretion (Blache et al. 2000).
The role of glucose is less clear —in male sheep, intra-abomasal and intravenous infusions of
glucose failed to stimulate LH secretion (Boukh Iiq & Martin 1997; Boukh Iiq et al. 1996; Miller
et al. 1995b). In dairy cattle, however, twice-daily drenching with propylene glycol, a propi-
onate precursor and thus a source of glucose, can profoundly reduce PPAI in primiparous cows
in low body condition (Chagas 2003). Indicators of energy status (body condition score, milk
production, glucose, insulin, GH, IGF-I) were not altered by this treatment, but there was an
increase in LH pulse frequency and in ovarian activity and, consequently, earlier ovulation
postpartum. This suggests that there are nutritional inputs, perhaps some form of 'nutrient sens-
ing or signalling', that are not associated with whole body energy status but can nevertheless
stimulate the hypothalamic-pituitary-ovary axis in the early postpartum period (discussed fur-
ther below). Through such a pathway, nutrients could trigger an endocrine response that would
stimulate the reproductive axis. For example, it has been proposed the effects of propylene
glycol on resumption of ovulation post-partum are due to the stimulation of an insulin spike
(Miyoshi et al. 2001) that acts as a signal to increase LH secretion and therefore evoke ovula-
tion.

Interactions among the elements of the communicational network

Several levels of integration are needed because metabolic status at any given time depends
on the status of all three key compartments —intake, storage and expenditure. The necessary
interactions are managed by several hormonal systems, perhaps best exemplified by leptin
secretion because it is affected by intake and expenditure as well as storage (mass of adipose
tissue). In turn, leptin can stimulate the activity of three other endocrine systems involved in
controlling the reproductive axis: i) pancreatic insulin in fasted cattle, albeit only at a low dose
(20 pg/kg: (Zieba et al. 2003); ii) pituitary GH in female sheep (Henry et al. 2001) but appar-
ently not normal-fed cattle (Zieba et al. 2005); and iii) thyroid hormones (Flier et al. 2000). In
addition, leptin secretion is affected by other inputs, such as the products of digestion and
absorption and autonomic neural activity. The autonomic effects are evident in the responses to
challenges with beta-adrenergic analogues that decrease Iepti n sensitivity and stimulate Iipol y-
sis (Penicaud et al. 2000).

It is important to note that the ultimate level of integration is within the central nervous
system (Fig. 2). The brain mechanisms involved in the sensing of metabolic status and in the
connection of metabolic status to Gn RH neuronal activity are poorly understood. Some sort of
'metabolic sensor' is thought to be localised in the arcuate nucleus and median eminence
because receptors for leptin and insulin are found in these areas (Blache et al. 2002; Chilliard et
al. 2005). The search for links between the GnRH cells and the neurons containing insulin and
leptin receptors is continuing and there are many candidate intermediaries (see Blache et al.
2006). Orexins were initially among the most promising because of their sensitivity to energy
balance (Taylor & Samson 2003) but intracerebral injections of orexin A or B inhibit GnRH
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activity in mature Merino rams (Blache et al. 2003) so their relevance is questionable. On the
other hand, we need to continue investigating the roles of the orexinergic pathways because
high intakes of energy and protein dramatically reduce the expression of orexin receptor 2 in
the paraventricular nucleus (Blache et al. 2006). We now need to test whether this change in
sensitivity to orexins is linked to a change in reproductive activity or a change in food intake.

Recently, a new neuropeptide, kisspeptin, has been shown to stimulate GnRH and FSH
secretion in male rodents (Gottsch et al. 2004; Irwig et al. 2004; Navarro et al. 2005) and to
stimulate GnRH and LH secretion in female sheep (Messager et al. 2005). Importantly, the
kisspeptin receptor is found in over 75°/0of GnRH neurons in male rats (Irwig et al. 2004) and
kisspeptin can be seen as major player in the processing of inputs into the systems that regulate
GnRH secretion (Dungan et al. 2006). Interestingly, the Iigand acts through a membrane recep-
tor so kisspeptin pathways could mediate the rapid responses of the GnRH system to acute
changes in metabolic status. Research is needed to test whether kisspeptin secretion or expres-
sion is regulated by energy balance.

The interactions among peripheral signals (insulin, leptin, ghrel in, adiponectin) and the neu-
roendocrine systems (kisspeptin) need to be revealed if we are to understand the integratory
role of the brain in the process that leads to the 'decision to reproduce'.

4) The temporal dimension

In this section, we consider the dynamic aspects of the responses to nutritional inputs, the
effects of time per se, as seen in the effects of photoperiod and fetal programming, and, finally,
the concepts of 'metabolic memory' and 'nutrient sensing', as we attempt to integrate the four
dimensions into a unified theoretical framework.

Dynamics of responses to change in nutrition

In the ram, the response of the Gn RH neurons to an abrupt change in nutrition is initially rapid
and robust, but then fades over the next few weeks (Martin et al. 1994; Zhang et al. 2004). The
rapidity of these responses is also consistent with the autonomic nervous system being in-
volved at both brain and adipose levels. This could involve input from the digestive viscera to
the brain via the vagus nerve, as is the case for satiety responses following a meal (Woods et al.
2004). Some nutrients that are absorbed very quickly, such as some volatile fatty acids, could
also be involved in this rapid response. In fact, plasma concentrations of insulin increase about
3 h before the start of GnRH response to the initial increase in intake (Zhang et al. 2004).

In contrast, the long-term effect of nutrition on the ram testis, measured on a scale of several
weeks, seemsto be independent of changes in the primary, GnRH-based, control system (Hötzel
et al. 1995). The mechanism involved has not been studied further but, again, leptin might be
implicated because, in the rat at least, the testis contains leptin receptor and leptin can inhibit
testicular steroidogenesis (Tena-Sempere et al. 1999; Tena-Sempere et al. 2001).

On an annual timescale, the role of nutritional inputs, as well as the types of response to
those inputs, can vary substantially, especially in genotypes that experience seasonal changes
in appetite (Rhind et al. 2002). Some suggestions have been forwarded for control systems that
might implement these strategies: i) ghrel in expression in sheep testis responds to changes in
photoperiod (Miller et al. 2005); ii) leptin secretion varies among seasons (Al ila-Johansson et
a/. 2004); iii) brain expression of relevant neuropeptides is affected by photoperiod (Adam et
al. 2000); iv) adipocytes receive sympathetic and parasympathetic innervations, at least in the
Siberian hamster, a seasonal animal (review: Bartness et al. 2002) —the sympathetic input
controls several functions (eg, Iipolysis, regulation of adipocyte number) including, most inter-



Nutritional inputs into reproduction 133

estingly, the secretion of leptin (Bartness et al. 2002); v) there are autonomic nervous projec-
tions from the adipocytes to the brain (Bartness et al. 2005), a connection that could provide
metabolic information rapidly and directly to the reproductive centres (Fig. 2).

Metabolic memory

In both sheep and cattle, previous metabolic status influences the reproductive response of the
animals to an increase in energy availability. With respect to adipose stores, mature rams in
low body condition, but not rams in high body condition, show a robust and repeatable increase
in LH pulse frequency in response to an increase in intake. In low body condition rams, the
leptin response is also blunted but the response to insulin is not (Zhang et a/. 2005). These
observations suggest that i) neither insulin nor leptin are necessary for inducing an increase in
GnRH pulse frequency in response to an increase in food intake, and ii) leptin secretion does
not always respond to an influx of nutrients. In contrast, in mature, grazing dairy cows calving
in good body condition, pre-calving dry matter intake has no effect on PPAI or on post-calving
plasma concentrations of leptin, IGF-I, or GH (Roche et al. 2005). In contrast, in first lactation
heifers that have a low body condition score (4 on a scale of 10) 6 weeks prepartum, there are
clear responses to an ad-libitum intake in the pre-partum period, in both metabolic hormones
and LH pulse frequency (Chagas et al. 2006). One group of heifers in this study calved with
low body condition and also received ad libitum feed postpartum, but they did not respond to
postpartum feeding and they had low LH pulse frequency and also a longer PPAI. Together,
these three studies in cattle and sheep (Chagas et al. 2006; Roche et al. 2005; Zhang et al.
2005) are consistent with the notion of a 'metabolic memory' that modulates the stimulatory
effect of nutrient intake according to the level of either energy reserves or energy expenditure
(Fig. 3).

Metabolic memory
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Time
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Fig. 3: A schema describing the potential influence of a 'metabolic memory' (here, an

increase in body reserves) on the stimulatory effect of the nutrient influx (via 'nutrient

sensing'). On the left panel, the energy reserves are low and the 'nutrient sensor' is able to

stimulate the hypothetical 'metabolic sensor' in the brain and thus the GnRH pulse genera-

tor. With time, the level of energy reserves may increase, as shown in the right panel, and

the input from the nutrient sensor is decreased. Note: nutrients might be still able to

stimulate gonadal function by pathways that are GnRH-independent.
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Recently, the processes that might underpin 'metabolic memory' have been investigated in
sheep and cattle and the data suggest that leptin and insulin are central to the concept (Chilliard
eta/. 2005). For example, leptin stimulates LH secretion from pituitary explants of normal-fed
but not fasted cows (Amstalden et al. 2003). With respect to energy expenditure, insulin in-
creases leptin secretion in sheep maintained in their thermoneutral zone but not in sheep
enduring cold stress (Asakuma et al. 2003). In addition, growth factors, such as insulin and
growth hormones, also affect leptin secretion in whole animal studies and in isolated adipocytes
(Chil Iiard et al. 2005), and could therefore also be part of 'metabolic memory'. Other endo-
crine factors secreted by adipose tissue or by the digestive system might also be involved: for
example, several metabolic effects have been described for adiponectin in rodents, such as
increased insulin resistance and fatty acid oxidation, and reduced glucose output by the liver
(review: Diez & Iglesias 2003). These interactions between endocrine systems and nutrient
supply may effectively act as a sort of peripheral integratory mechanism that complements the
brain's integratory mechanisms, with the combination being responsible for 'metabolic memory'.

'Nutrient sensing'

Short-chain fatty acids and glucose might also contribute to the 'metabolic memory' because
they are known to regulate leptin secretion in cultured ruminant adipocytes (review: Chil Iiard
et al. 2005). However, glucose is not always stimulatory in ruminants —for example, intrave-
nous injection of glucose does not stimulate leptin secretion (Kauter eta/. 2000) but infusion of
glucose modifies the post-prandial pattern of leptin secretion in sheep carrying an extra copy of
the GH gene (Kadokawa et al. 2003). However, in ruminants, volatile fatty acids (acetate,
propionate, butyrate) are the main nutrients absorbed from the anterior digestive tract and they
are converted to heavier fats for deposition via a well-known pathway of fatty acid synthesis. In
rodents, fatty acids are directly involved in the regulation of leptin gene expression and leptin
secretion (Shirai et al. 2004), and studies using cell culture have led to the development of a
model to explain the mechanism by which glucose regulates leptin secretion from adipocytes
(Mueller et al. 1998; Shirai et al. 2004). In this model, glucose, after being metabolised into
pyruvate, acts on leptin gene expression and leptin secretion via the malonyl-coenzyme A
fatty acid synthesis pathway, a crucial pathway in intracel Iular signalling in adipocytes (Shirai
et al. 2004). Should a similar pathway exist in ruminants, it would allow volatile fatty acids
produced by the digestive system, such as acetate (Annison et al. 2002), to regulate leptin
secretion. Interestingly, a recent paper suggested that propionate does not stimulate leptin
secretion in lactating cows (Bradford et al. 2006), in contrast to the results obtained in sheep
(Lee & Hossner 2002). This difference could be caused by differences in metabolic status, and
differences in the responsiveness of adipocytes to short chain fatty acids. This issue needs to be
resolved by further research.

Finally, nutrients might also be able to act directly on components of the reproductive axis
—for example, both acetate and butyrate can modulate the responsiveness of the anterior
pituitary gland to leptin, so pituitary tissue could also be a site of interaction between hor-
mones and nutrients in the control of reproductive function. Conversely, pituitary hormones
might affect the activity or responsiveness of adipose tissue because cultured adipocytes ex-
press receptors for several pituitary hormones, including LH, FSH and GH (Schaffler et al.
2005). These receptors need to be investigated but they could be part of a descending pathway
which regulates the activity of the adipocytes, not only according to metabolic status, but also
according to the 'decision to reproduce'
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Conclusions

The 'decision to reproduce' is controlled by a range of factors and, amongst them, variation in
metabolic status is one of the most important, especially for animals that have evolved in an
environment where food supply is not predictable. Making a successful 'decision' depends on
the integration of a large amount of information coming from a large number of organs. Over
the last decade, the number and role of pathways involved in the link between metabolic status
and reproductive activity has increased, and each pathway is acting in conjunction with the
others. The latest developments suggest that the responses to each pathway vary with time so
that, to fully understand the relationship between nutrition and reproduction, the temporal
dimension (on scales of hours to years, or even a generation) should be considered because
ruminants seem to be able to partition their energy, either from reserves or from nutrient
intake, according to their metabolic history.
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