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Recently, Vonnahme et al. (2006) reported that Rambouillet/Columbia cross ewes from the
same two flocks as utilized in this study and subjected to the same nutrient restriction, exhib-
ited flock specific differences in placentomal growth, development, and efficiency in response
to maternal nutrient restriction from early to mid-gestation. Specifically, Vonnahme et al. (2006)
reported that in ewes adapted to harsh range conditions and limited nutrient availability (Baggs
ewes), placentomes advanced from type A to more efficient types B, C, and D by day 78 of
gestation. Further, this placentomal conversion by Baggs ewes in the face of a bout of undernu-
trition was shown to support normal fetal growth and maintain fetal blood glucose and amino
acid concentrations at normal levels (Wu et al. 2005). Conversely, ewes not accustomed to a
harsh environment or to periods of nutrient restriction (UW ewes) failed to convert type A
placentomes to types B, C, and D by day 78 and exhibited decreased fetal blood glucose and
intrauterine growth restriction (IUGR; Vonnahme et al. 2006). In addition, Kwon et al. (2004)
reported that essential amino acids were markedly reduced in the blood of these nutrient
restricted UW ewes when compared to UW ewes fed to requirement. Classification of placentomal
type is based on the scheme of Vatnick etal. (1991) and depends on placentome appearance as
follows: 1) caruncular tissue completely surrounding the cotyledonary tissue (type A), 2) coty-
ledonary tissue beginning to grow over the surrounding caruncular tissue (type B), 3) flat
placentomes with caruncular tissue on one surface and cotyledonary tissue on the other (type
(), and 4) everted placentomes resembling bovine placentomes (type D). As placentomes
progress from type A through type D, they increase in size, and exhibit a greater capillary
volume and arteriolar density (Ford et al. 2004), resulting in increased placentomal blood flow
(Ford et al. 2006). This adaptive mechanism among different but genetically similar, popula-
tions could provide valuable insight as to the etiology of the metabolic syndrome X. This
syndrome is linked to IUGR and is marked by glucose tolerance, insulin resistence, obesity and
hypertension, predisposing an individual to cardiovascular disease in later life (Latini et al.
2004; Reaven 2005). :

Maternal undernutrition has been shown to induce insulin resistance (a precursor to type Il
diabetes mellitus) in a variety of species including the rat, sheep, and human (Fowden and Hill
2001; and Schwitzgebel 2001; Simmons et al. 2001). The goal of this project was to compare
growth patterns and insulin and glucose responses of singleton female lambs born to nutrient
restricted and control Baggs and UW ewes to a glucose challenge.

Methods
Animals

All animal procedures were approved by the University of Wyoming Animal Care and Use
Committee. Ewes of similar breeding (Rambouillet/Columbia cross), age (4-5 years old) and
parity (2-3 lamb crops) were obtained from two different flocks for use in this study. The first
flock located near Baggs, Wyoming was adapted over 6-8 generations (~ 30 years) to a no-
madic existence, grazing a land mass of ~ 250 miles/year which ranged from desert terrain to
high mountain pastures with very limited nutritional supplementation (Baggs ewes). The sec-
ond flock was also maintained for 6-8 generations (~ 30 years) by the University of Wyoming,
and in contrast to the Baggs ewes, had arelatively sedentary lifestyle and consumed a diet from
birth that always met or exceeded their dietary requirements (UW ewes). Over the course of
two years, 60 Baggs ewes and 60 UW ewes were utilized for this study.

Ewes were checked for estrus twice daily and bred to an intact ram of the same breeding as
the ewes at first exhibition of estrus and 12 h later (first day of mating = day 0). Animals were
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Glucose Tolerance Test (GTT)

All selected singleton ewe lambs were removed from their mothers at 63 + 1 days of lactation, for
a 12 h period, then weighed and jugular veins were catheterized without anesthesia (Terumo® Sur-
flash 18 gauge x 2.5 inches long, Ann Arbor, MI), and using aseptic procedures. Lambs were
allowed approximately 60 min to recover before initiating a glucose tolerance test. At-15 and -5
min before administration of a bolus injection of glucose (0.25 g/kg of body weight in 20s, 50%
dextrose solution; Vedco; St. Joseph, MO), 5 mL blood samples were drawn from the venous
catheter and 2mL placed into tubes containing heparin and sodium fluoride (2.5 mg/mL ; Sigma)
and the remaining 3 mL placed into a vacutainer tube with no anticoagulant (5mL; Sigma, St.
Louis, MO) to establish baseline values of glucose and insulin, respectively. Additional blood
samples were collected at 2, 5, 10, 15, 30, 60, and 120 min after glucose injection. Catheters were
flushed with heparinized saline following glucose infusion and after each blood sampling. Hep-
arinized blood samples were stored on ice until centrifuged at 3000 x g for 10 min, and plasma
stored at -80°C until analysis; while the nonheparinized samples were allowed to clot for 24 h at
4°C before centrifugation at 3000 x g for 10 min, and serum stored at -80°C until subsequent
analysis.

Hormone assays

Glucose was analyzed using the Infinity™ (ThermoTrace Ltd, Cat. # TR15498; Melbourne, Austra-
lia) colorimetric assay modified in the following manner; plasma was diluted 1:5 in dH,O, and
10uL of diluted plasma was added to 300ul reagent mix. All samples were run in triplicate, and
sample analysis was completed using multiple assays. The intra-assay and inter-assay CVs were 5%
and 7%, respectively. Insulin was measured by RIA in accordance with manufacturer recommen-
dations (Coat-A-Count®, Diagnostic Products Corporation, Los Angeles, CA) and completed using
two assays. The intra-assay CV was < 5 %, while the inter-assay CV was < 3%. Fasted glucose
and insulin baseline values were ascertained from the -15 and -5 min samples.

Calculations and statistics

All data are presented as means + SEM and significance was accepted when P < 0.05, with P <
0.10 considered atrend. Areaunder the curve (AUC) was determined for insulin and glucose using
the trapezoidal rule with GraphPad Prism software (Version 3, GraphPad). Weight gain was calcu-
lated as the change in body weight between two consecutive measurements. Statistical compari-
sons between groups (nutrient restricted vs. control) were completed using independent t-test,
split-plot ANOVA where appropriate (SAS V8.2, SAS Inst. Inc., Cary, NC). Post hoc analysis was
performed as indicated with a LSD test.

Results
Maternal and fetal data

On day 28 of gestation, body weights of Baggs and UW ewes were similar averaging 75.23 +
3.05 kg. At the end of the treatment period on day 78 of gestation, control Baggs and UW ewes
had increased 7.21 + 0.70% in body weight, while nutrient restricted Baggs and UW ewes had
lost 8.32 + 0.51% of their day 28 weight. Weights and crown rump lengths of day 78 singleton
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