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Preimplantation embryo development typically involves sequential
morphological events connecting embryonic cleavage, morula
compaction and blastocyst formation, and occurs in parallel with
transcriptional regulation, specifically, the maternal to embryonic
transition. The underlying homeostatic and metabolic mechanisms
governing embryo development are influenced by both genetic and
epigenetic factors that respond to environmental stimuli and may impact
development during later gestational and fetal growth. There is a renewed
interest in the identification and characterization of developmentally
important genes during embryonic and fetal development. Perturbations
in gene expression, resulting from environmental conditions, can have
serious consequences on further embryonic development, homeostasis
and disease pathogenesis. The bovine embryo is, however, capable of
tolerating and adapting to a wide range of conditions, although little is
known of the molecular fingerprint required for oocyte maturation,
fertilization and development to term. The genomic revolution united
with promising new technologies offer greater opportunity to elucidate

the mechanisms behind this well-orchestrated biological process. This
paper reviews the current literature on gene expression in the bovine
embryo with reference to environmental interference and the
development of new technologies to observe this biological process.
Defining the difference in molecular signalling between in vivo and in
vitro systems will undoubtedly improve the safety and efficiency of
assisted reproductive technologies. The future challenge is to devise
culture conditions that mimic the changing environment required by
developing embryos to allow the correct temporal and spatial expression
of a cohort of developmental genes in a manner similar to that seen in
vivo.
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Introduction

The initiation of mammalian embryogenesis is regulated by a complex network involving the
oocyte genome, transcriptome and proteome. In the absence of new transcription (Davidson
1986), completion of the first meiotic and mitotic cell cycles, gamete reprogramming (oocyte
and sperm) and the maternal to embryonic transition rely on transcripts and proteins made
during oocyte growth, as well as signal transduction events associated with maturation, ovula-
tion and fertilization (Knowles et al. 2003). During preimplantation development in the mouse,
an estimated 15,700 genes are expressed (Stanton et al. 2003), and it is likely that a similar
number will be expressed in other mammalian species. This preimplantation period culminates
in a synchronous and intricate discourse between the embryo and the receptive uterus, result-
ing in implantation and the pathway to further embryonic development (Wang & Dey 2006).

In vitro production (IVP) technologies provide an alternative source of oocytes and embryos
for both research and routine embryo transfer. Historically, IVP success has been primarily
gauged on the morphological assessment of the preimplantation embryo. However, while the
true developmental competence of any given embryo is a continuum that proceeds throughout
its Iifecycle, the attainment of full term development is a critical first milestone. This process
particularly in a uniparous animal, such as the bovine, is restricted by the long gestational
interval and the reliance on intensive recipient management programs, which requires signifi-
cant capital investment. The relevance is no more apparent then when IVP embryos upon
transfer to recipients show similar implantation rates when compared to in vivo embryos but
then undergo significant embryonic and fetal losses (Reichenbach et al. 1992). A proportion (up
to 30%) of the surviving animals also show increased birth weight and other anatomical abnor-
malities that have been described as the large offspring syndrome (Holm et al. 1996; Young et
al. 1998; Renard et al. 1999; Niemann & Wrenzycki 2000; Sinclair et al. 2000). While bovine
preimplantation embryos appear capable of tolerating and adapting to wide ranging environ-
ment stimuli, a relative short exposure to sub-optimal in vitro conditions can initiate a range of
downstream consequences (Wrenzycki et al. 2004).

The development of expression analysis techniques to examine the cohort of essential and
developmentally important genes during early mammalian development provides a useful
method to assess the normality of embryo development and to allow in vitro culture and
assisted reproductive technologies to be examined and improved without the requirement for
extensive in vivo testing. The interplay between the effect of microenvironment modifications
and epigenetic alternations at early stages of development suggest that limited in vivo testing
will still be required and not suppressed from future animal studies.

The consequence of temporal or spatial and qualitative or quantitative shifts in gene expres-
sion patterns can influence the well-orchestrated events controlling resumption of meiosis,
initiation of embryo cleavage, maternal to embryonic transition, and cellular differentiation
during and well beyond blastocyst formation.

What is becoming increasingly apparent is that the intrinsic quality of the oocyte plays a key
factor in the overall success of these events (Lonergan et al. 2003a). However, the molecular
fingerprint of an oocyte that is capable of undergoing maturation, fertilization and supporting
development to term is virtually unknown.

Defining this profile will likely require comparative gene expression studies involving single
embryo analyses, to account for the variability between embryos, with groups of embryos in
the same environment where the outcome is to increase the mean behaviour of the group. It
would appear however that many of the genes analysed (see Table 1) show consistent expres-
sion patterns as a consequence of environmental conditions in both the single and pooled
embryo studies. Modifications to culture conditions would necessitate a balance to the envi-
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ronmental response in the individual embryo against those required for a group of embryos,
that's even if correlations between morphological data and gene expression profiling are to be
established. Another way to discern this variability would be to analyse gene expression of
blastomeres following embryo biopsy. These analyses could be used to modify culture condi-
tions to the single embryo according to how it responds to the environment, although the
variability of gene expression between individual (or few) blastomeres is not known.

The continual development of highly sensitive techniques will enable the quantitative pro-
filing of transcriptomes and proteomes, which are necessary to regulate and coordinate events
from fol Iicu Iogenesis to early embryo development and are vital to improving the efficiency of
in vitro production systems (IVP) and assisted reproductive technologies. To date, research has
focussed on embryonic cleavage rates (Lonergan et al. 2000; Ward et al. 2001; Comizzoli et
al. 2003; Holm et al. 2003), developmental arrest (Yang & Rajamahendran 2002), develop-
mental competence of in vitro produced (IVP) embryos (Thompson 1997; Holm & Cal lesen
1998; Enright et al. 2000), embryo manipulation (Wrenzycki et al. 2001b), culture (Wrenzycki
et al. 2001a) and metabolism (Khurana & Niemann 2000; Thompson 2000), embryo genomic
activation (De Sousa et al. 1998a; Memili & First 2000), embryo sex (Avery et al. 1992; Xu et
al. 1992; Gutierrez-Adan et al. 2001), oocyte quality (Lonergan et al. 2003a), methylation
status (Bourc'his et al. 2001), protein synthesis (De Sousa et al. 1998b), species differences
(Wrenzycki eta/. 2002), transcript abundance (Watson et al. 2000) and the functional organiza-
tion of the nucleus and nucleolus (remodelling and reprogramming) (Hall eta/. 2005a; Corcoran
et al. 2006).

The degree to which embryo culture or manipulation influences gene expression and the
downstream consequences are beginning to be revealed. This review will briefly examine
gene expression studies in the bovine preimplantation embryo and the development of new
methodologies to elucidate optimal conditions for improving the developmental competence
of embryos generated from a variety of IVP systems.

In - Vitro production in the bovine

Despite ongoing improvements, the full potential of the IVP production system remains ham-
pered by the overall quality of the embryo when compared to those derived in vivo. This is
graphically demonstrated in Fig. 1 where embryo viability until weaning from in vivo and in
vitro production systems are shown from this group over a 5 year period (2000-2005).

Differences between in vivo and in vitro derived embryos have been reviewed extensively
(Thompson 1997; Enright et al. 2000; Niemann & Wrenzycki 2000; Lonergan et al. 2003a) and
the disparity between in vitro and in vivo embryos can be categorized to either the proportion
that reach the blastocyst stage of development or survival following embryo transfer. Around
35% of in vitro matured and fertilized (IVM/IVF) oocytes reach the blastocyst stage and around
40% survive to term following transfer when contrasted with over 70% and 60% for the in vivo
counterparts, respectively (Thompson 1997; Holm & Callesen 1998). Manipulation of IVP
embryos for the purpose of Somatic Cell Nuclear Transfer (SCNT) reduces the embryo viability
even further (Wrenzycki et al. 2004).

The source of variation has been attributed to a variety of causes including the processes of
in vitro maturation, site of and effect (quality) of sperm at fertilization, chromosome imbalance,
polyspermy, variation in pronuclei formation, incorrect moru la compaction/ blastocyst forma-
tion and sensitivity to cooling and freezing due to elevated lipid content (Thompson 1997;
Holm & Cal lesen 1998; Rizos et al. 2002b).
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Fig. 1: The developmental competence of bovine embryos derived from In Vivo and In

Vitro production (IVM/IVF and SCNT) systems.

Gene expression analysis in bovine oocytes and embryos

A variety of methods are available for investigating gene expression (see below) and their
sensitivity can detect qualitative and quantitative changes to transcriptional regulation during
oocyte growth, maturation and embryonic development. Data from these analyses has estab-
lished molecular expression profiles that may be a more accurate indicator of developmental
competence when compared to morphological and blastocyst development observations
(Leibfried & First 1979; de Loos et al. 1992). The morphological classification and grading of
bovine embryos (Lindner & Wright 1983) with minor modifications (Hasler 2001), and subse-
quently adopted by the International Embryo Transfer (www.iets.org), is the standard to which
all embryos are currently described. This practice is used extensively in both research and
commercial activities (Thompson 1997; Holm & Cal lesen 1998; Hyttel 2001). However it has
also become increasingly apparent, particularly with the development of SCNT, that morpho-
logical data does not correlate solely with developmental competence (see Fig. 1). To battle
this discrepancy, much research has recently focused on gene expression profiling in individual
oocytes and embryos.

The literature precludes that over 100 genes to date have been associated with developmen-
tally important processes in bovine preimplantation embryos from in vivo, in vitro produced,
such as genes involved in compaction/cavitation, metabolism, transcription/translation, DNA
methylation and histone modification, oxidative stress, response to or production of growth
factors, cytokine signalling, cell cycle regulation and apoptosis. The development of SCNT
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technology adds a further level of complexity to gene expression studies where the interrela-
tionship between incomplete somatic cell reprogramming and environmental constraints im-
posed by the in vitro production system need to be distinguished.

These categories of genes have been evaluated in bovine preimplantation embryos from in
vivo, in vitro produced and SCNT embryos, for reviews see (Corcoran et al. 2005; Nieman n &
Wrenzycki 2000; Lonergan et al. 2001; 2006; Niemann et al. 2002; Wrenzycki et al. 2004;
Wrenzycki et al. 2005a;b). Many genes in IVP (and SCNT) embryos have displayed aberrant
expression patterns compared with their in vivo counterparts. Both genetic and epigenetic
mechanisms (methylation and histone modifications) are thought to be involved in the differ-
ences in gene expression, regardless of the fact that the developing embryo appears capable of
enduring substantial dysregulation of both imprinted and non-imprinted genes (Humpherys et
al. 2001; Reik et a/. 2001). There are many steps associated with the IVP system including
maturation, fertilization, and culture and in addition to this, various manipulations are under-
taken for the production of SCNT embryos, all of which have the potential to further alter gene
expression patterns in the developing embryo. These noted alterations in gene expression
have been associated with the type of medium (maturation, fertilization and culture) and vari-
ous additive components (growth factors, serum, etc). Interestingly, epigenetic modifications
seem more prevalent in imprinted genes (Blondin et al. 2000; Ruddock et al. 2004). Many of
these differences are clearly established after 1 day of culture, underling the sequential interac-
tions between the environment and gene expression (Rizos et al. 2002a;b; 2003; Lonergan et
al. 2003b). Embryo manipulations involved in the production of SCNT embryos have also
resulted in varied gene expression patterns and may be associated with oxidative stress, im-
paired trophoblastic function, DNA methylation and X chromosome inactivation (Wrenzycki et
al. 2004). The establishment of diagnostic techniques using these predictive values of aberrantly
expressed genes as markers for embryo quality and viability is a critical step towards improving
the efficiency of each system. One of the first applications of a limited microarray in the bovine
showed 18 genes from a subset of intermediate-filament protein, metabolic, lysosomal-related,
stress related and major histocompatibility complex class I were differentially expressed be-
tween IVF and SCNT blastocysts. (Gutierrez-Adan et al. 2001).

A summary of genes detected in single and pooled bovine oocyte /embryo samples is pro-
vided in Table 1. However while a considerable body of work has been amassed on the expres-
sion of specific genes and the role of genetic and epigenetic reprogramming, there is a need for
greater understanding of the relationships between altered phenotypes, changes in both ge-
netic code and epigenetic patterns within the genome, and alterations in mRNA or protein
expression profiles and the downstream consequence for embryos generated from a variety of
IVP manipulations. Direct interventions are now required to modify specific epigenetic charac-
teristics to correlate with the biological processes associated with developmental competence,
including the correct mRNA and protein expression profiles (Lazzari et al. 2002; Fernandez-
Gonzalez et al. 2004; Farin et al. 2006).

Gene expression as an indicator of developmental competence

A number of studies have shown similar rates of ATP production, glucose metabolism, pyruvate
uptake and utilization between in vivo and in vitro produced embryos (Thompson 1997; 2000).

However, lower total cell counts in the blastocyst and skewed ratios between inner cell mass
and trophectoderm cells in IVP embryos highlight that significant developmental differences
exist, which may be reflected at the molecular and cellular level. Gene expression compari-
sons between in vivo, in vitro and SCNT embryos have identified a number of genes associated
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with developmental competence. These include the relative abundance of transcripts encoding
the al subunit of Na1/K1-ATPase (De Sousa et al. 1998c), impaired cavitation and blastocyst
formation induced by a decrease in expression of connexin (Cx43) in the IVP blastocyst (Rizos
et al. 2002a); absence of FGF4 expression in SCNT blastocysts (Daniels et al. 2000; 2001),
altered expression of lamin A/C and B following fusion and early cleavage that was restored by
morula stage in SCNT embryos when compared to IVF (Hall et al. 2005a). The developmental
competence of oocytes and embryos is influenced by the high expression of BcI-2 gene (anti-
apoptotic) and low expression of the Bax gene (pro-apoptotic), with the ratio of BcI-2 to Bax
expression considered a marker of embryo survival (Yang & Rajamahendran 2002). A recent
study examined 16 candidate genes associated with rapid cleavage in bovine two-cell em-
bryos, three genes (YEAF, IDH, H2A) were differentially expressed in the early cleaving em-
bryo and have the potential to be markers of developmental competence (Dode et al. 2006).

The majority of these studies report only steady state mRNA levels in gene expression
pathways; however, RNA biogenesis is a central multi-step process that must balance message
fidelity against steady-state levels of the mature RNA. An equally important area in the regu-
lation of gene expression in mammals is the role of transcription turnover (Milligan et al.
2002). However, relatively little is known of the consequence of environmental conditions to
affect transcription turnover and mRNA half-life leading to altered gene expression pathways in
the embryo. Few studies, in this under investigated area, show altered gene expression levels
in the embryo are due to changes in transcriptional activity.

Gene expression analysis strategies and DNA amplification

A variety of methods which are suitable for detecting gene transcription in preimplantation
embryos are provided in Table 2. Conventionally, methods for detecting gene transcripts have
included Northern Blotting, In Situ hybridization and RNAse Protection Assay. Limitations
include low overall sensitivity and the need for a high complementary DNA (cDNA) copy
number for successful analysis. Given the relative scarcity of mammalian preimplantation em-
bryos and the requirement to pool (100) embryos for sufficient RNA, that is not applicable for
analyses of rare constructs or for quantitative measurement in the individual embryo (Lechniak
2002).

Polymerase chain reaction

In contrast, the development of RT—PCRhas enabled the detection of mRNAs from low yields
of RNA obtained from single embryos (Bustin et al. 2005). However, the requirement to
reverse transcribe RNA into cDNA is influenced by a number of variables and even a small shift
in amplification efficiency may lead to exponential differences in the final PCRproduct (Gilliland
et al. 1990; Nicoletti & Sassy-Prigent 1996; Lechniak 2002).

The development of competitive (Auboeuf & Vidal 1997) and semi-quantitative, non-com-
petitive RT-PCR (Saric & Sydney 1997) strategies have addressed variability in amplification
efficiency. The first involves simultaneous co-amplification of target RNA with added exog-
enous synthetic RNA that competes with available reagents and primers. The constant ratio
between the two types of RNA allows the initial concentration (quantitation) of target RNA to
be determined. PCR products are distinguished by small deletions, modifications to restriction
sites or the addition of unrelated motifs to the synthetic RNA (Nicoletti & Sassy-Prigent 1996).
The second involves co-amplification of the target RNA and unaffected endogenous (GAPDH,
6-actin, rRNA) or exogenous rabbit (6-globulin) RNA using separate primers. Amplification in
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the linear range for the two primers allows the target RNA PCR products to be normalized
against control products (Gutierrez-Adan et al. 2000).

A further modification is Real-time PCRwhich detects mRNA during the exponential phase
of amplification and avoids the necessity for subsequent gel analysis (Bustin et al. 2005). The
assay uses unique florescent reporters (Molecular beacons (Marras et a/. 2006), SYBR Green
(Morrison et al. 1998) and TaqMan® probes (Heid et al. 1996)), which emit signals in direct
proportion to the PCR product during each round of amplification. While care must betaken to
optimize both the RNA isolation and RT—PCRconditions, it is possible to detect as few as 400
copies of mRNA (Gibson eta/. 1996). Internal, exogenous RNA (rabbit globin) and endogenous
RNA standards (GAPDH, g-actin and rRNA) are required during the amplification process to
normalize the RNA levels and to justify the observed variations. The application, including use
of various primers, detection limitations and benefits of each of the different systems have
been described in detail (Lechniak 2002; Wrenzycki et al. 2004).

Microarray for analysis of gene expression

The combination and convergence of a variety of technologies led to the development of
microarrays in the 1990s. This technology is being continually refined and its widespread adop-
tion has indicated that DNA microarrays are to become the main technological workhorse for
gene expression studies (Barrett & Kawasaki 2003; Kunz etal. 2004; Taylor et al. 2004; Ginsberg
2005). The sensitivity of the assay is high, with reports suggesting that this methodological
approach is sensitive enough to detect the presence of one mRNA copy per cell (Barrett &
Kawasaki 2003).

The sequencing of the >3 billion nucleotides in the human genome, and its extensive
characterization suggest it is comprised of approximately 30,000-40,000 genes. This wealth of
genomic information permits researchers to study thousands of genes simultaneously in the cell
or tissue type of choice. Subsequently, the (micro) genomic revolution of sequencing is being
extended to many different species, including the bovine (see Bovine genome sequencing
project paragraph thereafter). Several microarray platforms (seeTable 2) are highly suited to the
study of gene expression in the bovine preimplantation embryo. Of note are the cDNA arrays
(robotic printing), Short Oligonucleotides (25 bases, in situ synthesis) and Long Oligonucle-
otide arrays (40-80 base pairs, in situ synthesis and robotic printing) (Barrett & Kawasaki 2003).

The release of the bovine draft sequence and genome assembly has enabled the recent
development of high-quality bovine SNP marker arrays to map quantitative trait loci (QTLs)
which will result in a tool of significant value to cattle breeding. DNA differences detected
through genotyping will expand gene discovery for better meat and milk quality and produc-
tion, disease susceptibility and the discovery of elements responsible for phenotypic variation,
growth and development. With further development it is likely to be applicable to elucidating
the relationships between different populations of embryos.

While the application of microarray technologies continues to increase exponentially, it is
perhaps cautionary to note that few attempts have been made to replicate and/or compare
mRNA data across different platforms. In fact, some comparative cross-platform (and inter-
platform) analyses show considerable variations between analyses of the same tissue (Kothapal Ii
et al. 2002; Kuo et al. 2002). In addition, other methods (RT-PCR etc) have not been used to
confirm results. In an effort to address the standardization of both experiments and controls,
guidelines have been published to reduce confusion surrounding interpretation and replication
of microarray data (Brazma et al. 2001; Ball et al. 2002; Stoeckert et al. 2002).
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Bovine genome sequencing project

The bovine sequencing project is an international effort to sequence the genome of the cow
(Bos taurus). The bovine genome is similar in size to the genomes of humans and other
mammals, containing approximately 3 billion DNA base pairs (Gibbs et al. 2004).

The collaboration aims to produce a 15-fold coverage of the bovine genome and allow
detailed tracking of the DNA differences between a number of cattle breeds to assist discovery
of traits for better meat and milk production and to model human disease. The first draft of the
bovine genome sequence has been deposited into free public databases for use by biomedical
and agricultural researchers around the globe (GenBank (www.ncbi.nih.gov/Genbank) at NIH's
National Center for Biotechnology Information (NCBI), EMBL Bank (www.ebi.ac.uk/embl/
index.html) at the European Molecular Biology Laboratory's Nucleotide Sequence Database
and the DNA Data Bank of Japan (www.ddbj.nig.ac.jp).

Global Gene Expression using cDNA microarray technology

The wealth of sequence data will allow researchers to capitalize on gene expression studies
through the flexibility in choosing appropriate and specific arrays (Kurimoto et al. 2006; Vige
et al. 2006). The utility of the microarray platform in preimplantation embryonic development
has recently been demonstrated in both the mouse and bovine.

In the mouse, global changes in gene expression during fol Iiculogenesis (primordial to large
antral follicles) were examined for pathways that accompany the acquisition of meiotic and
developmental competence (Hosack et al. 2003). The highest degree of up-regulation and
down-regulation of gene expression (one third of transcripts exhibited a two fold change in
relative abundance) was observed between the primordial to primary follicle transition (Pan et
al. 2005). Subsequent transitions were about 10-fold less. Of particular interest in the primor-
dial to primary follicle transition, was the increased or decreased transcriptional activity of
specific regions (predominantly) on selected chromosomes. A phenomenon not observed at
later stages of oocyte or embryo development.

The changes in global patterns of gene expression during in vitro maturation of an oocyte
from either a primordial or secondary follicle stage displayed only a 4% and 2% difference
when compared to the in vivo counterparts, respectively. Additional findings revealed an over-
representation of genes involved in transcription of the commonly mis-expressed genes (1%)
(Pan et al. 2005).

Global patterns of gene expression that surround the development of preimplantation mouse
embryos have been examined with cDNA microarrays (Hamatani et al. 2004; Rinaudo & Schultz
2004; Zeng et al. 2004; Wang S. et al. 2005; Zeng & Schultz 2005). Results have confirmed
previous analyses showing similarities between oocytes and 1-cell embryos, most likely due to
the inheritance of mRNA from the oocyte, with major reprogramming of gene expression
associated with maternal to embryonic transition and a period of mid-preimplantation gene
activation, which precedes the dynamic morphological and functional changes that occur be-
tween the morula and blastocyst stage of development (Hamatani et al. 2004). Further analy-
ses during this maternal to embryonic transition revealed a network of genes associated with
Myc and its role in genome activation and reprogramming of gene expression, and Hdacl role
in the repression of gene expression through chromatin-mediated changes (Zeng et al. 2004;
Zeng & Schultz 2005). Global gene expression patterns in preimplantation embryos have been
altered by the type of culture medium. Microarray analysis has shown that genes involved in
protein synthesis, cell proliferation and transporter function are down-regulated as a conse-
quence of exposure to in vitro culture medium (Rinaudo & Schultz 2004; Wang et al. 2005).
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Microarray analyses have been applied to bovine embryo development (Sirard et al. 2005)
and recently a 7872 bovine cDNA microarray was use to compare the global gene expression
profiles of individual bovine SCNT blastocyst with their donor (somatic) cell and embryos
derived from IVF and artificial insemination. The gene expression profile of an individual
SCNT blastocyst indicated that it had undergone significant nuclear reprogramming from its
original somatic profile (donor cell) so that it unexpectedly resembled a naturally fertilized Al
embryo, more so than IVF embryo. Further analysis is required asto whether the consequence
of early-stage reprogramming errors (10/ of genes examined) have significant downstream ef-
fects to embryonic and fetal development (Smith et al. 2005). Another more recent study
comparing IVF and SCNT blastocysts across 5000 cDNAs could only detect a difference in
expression of KRT18, and SLC16A1. Further examination of transcript levels could not distin-
guish an NT from an IVF embryo. The unpredictability of gene expression on a global back-
ground of multiple gene expression changes argues for a predominantly stochastic nature of
reprogramming errors (Somers et al. 2006). The dynamic changes during global activation of
the embryonic genome have been recently examined using the Affymetrix bovine-specific
DNA microarray. In the MII oocytes, genes controlling DNA methylation and metabolism were
up-regulated. While during embryonic genomic activation (8-cell), those genes essential to the
regulation of transcriptoin, chromatin-structure adhesion and signal transduction were up-regu-
lated. Changes in gene expression during these critical development time points is expected to
provide unique chromatin structures that maintain totipotency during embryogenesis and per-
mit lineage-specific differentiation during post-implantation development. The consequence
of this dynamics has many implications for a number of assisted reproductive technologies
(Misirlioglu et al. 2006).

Future developments

While techniques that detect aberrant gene expression at the level of RNA in the single em-
bryo continue to improve, little is known of the consequence at the level of the proteome.
There is a need to develop diagnostic non-destructive solutions that permit the selection of
viable embryos following in vitro culture and assisted reproductive techniques (ie Somatic Cell
Nuclear Transfer). Several promising strategies are emerging and their application in cell biol-
ogy is eagerly awaited. Of particular note is the development of fluorescent techniques that
may enable researchers to determine the functions of proteins in individual cells.

Traditionally, florescent organic dyes conjugated with antibodies to the protein of interest
have allowed imaging of biological events in individual fixed and permeabilized cells. How-
ever, new classes of florescent probes have been developed from synergistic developments in
molecular biology, organic chemistry and material science that permit multiple functional analyses
(gene expression, protein trafficking, biochemical signals) in single cells using non destructive
imaging without significantly perturbing endogenous protein function (Giepmans et al. 2006).
Two techniques amongst others could be compatible with protein expression studies in the
oocyte and developing embryo.

Quantum dots (QD) are inorganic nanocrystals with intense and sustained fluorescence at
specific wavelengths. Specialized coatings have made QD water soluble (to prevent quench-
ing) and allow conjugation of protein targeting molecules (antibodies). The final size (QD +
biomolecule) prevents easy transport across intact cellular membranes, limiting application to
permeabilized cells or extracellular or endocytosed proteins. Further refinements addressing
the size limitation using single-molecule optoelectronics have also now been developed (Lee
et al. 2005).



358 N. T. Ruddock-D'Cruz et al.

Genetic Tagging or the construction of genetically encoded fluorophores covalently fused to
specific cytoplasmic or surface proteins by spontaneous attachment or enzyme ligation also
show potential for biological application. The most developed is the tetracysteine-biarsenical
system which modifies a target protein to identify it from the many other proteins inside live
cells. This specific protein is then fluorescently stained by membrane permeable non-fluores-
cent dye molecules that attach with picomolar affinity (Griffin et al. 1998). Small dithiol
antidotes are added simultaneously to reduce binding, toxicity and perturbations to endog-
enous proteins and their function (Martin et al. 2005).

Various modifications to these fluorescent approaches have allowed the study of single pro-
teins or complex endogenous pathways of proteins in a single cell (Sachs et al. 2005), protein
localization, diffusion and trafficking (Lidke et al. 2004), dynamic and conformational changes
in spatiotemporal resolution (Wallrabe & Periasamy 2005), protein-protein interactions (Gaietta
et a/. 2002), and by using Chromophore-activated light inactivation (CALI) to inactivate a
protein with greater spatiotemporal control than possible with genetic KO or RNA interference
approaches (Jay& Sakurai 1999).

Conclusions

In the bovine, as in the mouse and other species, the developmental competence of the preim-
plantation embryo can be influenced by the environment to which it is exposed. While it is
capable of tolerating various sub-optimal conditions, the timing and severity of aberrant gene
expression can initiate a range of downstream consequences for fetal and postnatal growth and
development. Two critical conditions affect the severity of gene expression. They are the
inherent quality of the oocyte which affects its ability to fertilise and form a blastocyst and in
vitro culture effects which may impair the quality of the blastocyst. The integration of new and
emerging genomic technologies allows researchers to profile the transcription patterns of thou-
sands of genes in single oocytes and embryos following in vitro maturation, fertilization, ma-
nipulation and culture. Microarray analyses, when properly standardized, will provide unprec-
edented levels of information at the molecular level and offer greater opportunity to elucidate
the requirements necessary for developmentally competent oocytes and/or embryos. In addi-
tion, the availability of new non-invasive florescent technologies that permit the examination
of proteins endogenous pathway is eagerly awaited. The potential benefits arising from this
knowledge include the ability to select viable embryos using non-invasive, quantitative assays
of markers for developmental competence and ultimately the manufacture of in vitro culture
conditions that properly mimic the correct temporal and spatial expression of a cohort of devel-
opmental genes in a manner similar to that seen in vivo.
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