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The components of ruminant seminal plasma and their influence on the
fertility of spermatozoa are reviewed. Seminal plasma can both inhibit
and stimulate sperm function and fertility through the multifunctional
actions of organic and inorganic components. These effects are now better
understood because the composition of the seminal plasma, including its
protein content and that of other structures, specifically membrane
vesicles, has been clarified. Spermatozoa gain motility and fertilizing
capacity as they transit the epididymis under the influence of factors
produced by that organ. At ejaculation, inhibitory (termed "decapacitation")
factors, sourced from the accessory sex glands, bind to the sperm surface.
The major proteins isolated and characterised in ram seminal plasma,
whose specific functions are yet to be determined, originate from the
vesicular gland and comprise a spermadhesin together with proteins with

fibronectin-ll domains. In vitro handling of spermatozoa in preparation
for artificial insemination (Al), involving processes such as dilution, cooling,
freezing, re-warming and sperm sexing by flow cytometric sorting, can
remove seminal plasma and may modify the proteins bound to the sperm
surface. This destabilises the membranes and may pre-capacitate the
spermatozoa, shortening their fertilizing I ifespan. These changes may
be reversible by seminal plasma fractions but responses differ depending
on the type of sperm pre-treatment. Fertility after Al of ruminant semen
may be improved if the role of seminal plasma proteins and their effect,
if added individually or in combination to spermatozoa at different stages
of preservation, or other manipulations such as flow cytometric sorting,
can be determined.

Introduction

A large number of components, mainly proteins but also membrane vesicles, have been iso-
lated and characterised in seminal plasma which have been associated with either positive or
negative effects on sperm function and fertility. It has been hypothesised that such compo-
nents, when added to spermatozoa, could either prevent or delay the natural maturation pro-
cess leading to capacitation and eventual cell death (Maxwell & Watson 1996). Other compo-
nents, particularly specific protein fractions, have been identified as anti-fertility or fertil ity-
enhancing agents and have been used, by detecting their presence in the seminal plasma, as
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indicators of the potential fertility of individual males (bulls: Killian et al. 1993; rams: Métayer
et al. 2001). Moreover, factors in seminal plasma, mainly cytokines, have been implicated in
conditioning the female reproductive tract, through the inflammatory response, to tolerate and
facilitate embryo development and implantation (reviewed by Robertson 2005). These roles of
seminal plasma in signalling in the female tract have been demonstrated to be important in
rodents, humans and pigs, but are beyond the scope of this review and will be mentioned only
where relevant to the survival or function of spermatozoa.

There has been considerable interest in the possibility of utilising seminal plasma, or its
specific beneficial components, in the maintenance of sperm viability during processing for
preservation or storage in preparation for artificial insemination (Al), or during other manipula-
tions associated with controlled breeding, such as sex sorting (Maxwell & Johnson 1999). These
processes usually involve the removal or dilution of seminal plasma from the semen, resulting
in the loss of motility, metabolic activity and fertilising capacity of spermatozoa, termed the
"dilution effect" by Mann (1954). Increasing understanding of cell physiology has led to the
development of buffered extenders, containing inorganic ions and organic components which
have partly alleviated the problem. Nevertheless, dilution of semen also reduces the concen-
tration of seminal plasma and any positive effect it may be having on sperm membranes.
Seminal plasma has been shown to reduce the dilution effect (Maxwell & Johnson 1999) and,
when added to highly diluted semen, increases the viability of spermatozoa (rabbits: Castel Iini
et al. 2000; cattle: Garner et al. 2001; sheep: Ashworth et al. 1994).

This review will examine the components of seminal plasma and their influence on the
fertility of spermatozoa. The effects of additional seminal plasma or substitutes on the func-
tional integrity and fertility of spermatozoa subjected to dilution, cryopreservation and sperm
sexing will also be discussed. The main species of interest will be sheep and cattle, but addi-
tional insight and emphasis may be given by referring to other domesticated animals, particu-
larly pigs and horses.

Composition of seminal plasma and its effect on fertility

The ejaculated semen of mammals comprises the spermatozoa suspended and generally swim-
ming in a liquid medium defined as seminal plasma (Vanquelin 1791). It was initially thought
that this medium was a simple filtrate of the blood that provided a nutrient-rich buffered ve-
hicle to convey the sperm cells from the male to the female genital tract, whereupon its
function ceased asthe spermatozoa swam free of the plasma and commenced interaction with
the fluids and cells of the female tract. Some components of the seminal plasma, such as the
gel fraction found in species like the human and pig, were thought to provide a temporary
physical means of retaining the spermatozoa in the female tract until they were able to estab-
lish themselves in sperm reservoirs, located further into the tract, preparatory to fertilisation
(Hunter 1981).

Further functions of the seminal plasma were soon recognised. It was found that its pres-
ence, or that of a similar replacement medium, was necessary to sustain sperm viability, even
for a short period of time, if the semen was held in vitro. Seminal plasma was not only a vehicle
for the spermatozoa but also provided metabolic support, particularly as an energy source. The
mixture of epididymal spermatozoa with seminal plasma activated their metabolic activity and
motility (Mann 1964), due either to provision of special activating substances, or to dilution of
inhibitory factors formerly contained in the epididymal secretion (Brooks 1990). The activation
of sperm motility during epididymal transit was found to be regulated by interactions among
the intracellular calcium ion concentration, cyclic AMP, adenosine and intracellular pH (Hoskins
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& Vijayaraghavan 1990) as well as the phosphorylation status of specific proteins (Huang &
Vijayaraghavan 2004).

As studies on the function and fertility of spermatozoa progressed, particularly with interest
in the preservation of spermatozoa for Al, it became clear that the role of seminal plasma was
more complex than that of a simple supportive or stimulatory medium. The contributions of the
secretions of the epididymis and the interactions between the spermatozoa and the cells of the
epididymis had profound effects on the maturity and function of the sperm cells (Cummins &
Orgebin-Crist 1971), rendering them fully functional and able to fertilise oocyres upon their
sequestration in the caudal epididymis.

At ejaculation, the accessory sex gland secretions contributed different components to the
seminal plasma depending on the species. The prostate, vesicular, ampullary, bulbourethral
and other minor glands located in the wall of the urethral canal showed great diversity (Mann
1964), even between closely related species (Mokkapati & Dominic 1977). The nature and
effects of the secretions of these glands are still not clearly understood and are enormously
variable between species. For example, the boar has large bulbourethral, prostate and vesicular
glands, whilst in the ram and bull the vesicular glands are still large but bulbourethral and
prostate are relatively small or disseminated. The simple explanation for these differences is
that the volume and concentration of spermatozoa in the ejaculate depends on the site of
semen deposition in the female tract and the length of copulation. The boar, for example,
deposits a large volume of semen containing a low sperm concentration into the voluminous
sow uterus during a lengthy ejaculation, whereas the bull and ram instantaneously ejaculate a
small volume of highly concentrated spermatozoa into the female vagina. These differences
have evolved to cope with different breeding strategies related to environmental influences.

Even within the same genus, however, the seminal plasma components can vary dramati-
cally. In Camel ids for example, the Dromedary and Alpaca, adapted to widely differing envi-
ronments, produce a viscous gel ejaculate that entraps the spermatozoa until liquefaction (a
process that can take several hours; Bravo et al. 2000) whereas the closely related Bactrian
camel ejaculate contains little or no gel (Zhao 2000). The reasons for these differences are
unclear but do not appear to be environmental or geographical adaptations.

Mann (1964) compiled what was known in the early 1960s from biochemical analyses about
the major inorganic and organic components of seminal plasma. The vesicular glands secreted
the largest volume in bulls and rams, with additional major contributions from the prostate and
bulbourethral glands in boars and stallions. Nevertheless, the testes, epididymides and other
accessory glands also contributed to the semen volume and, aswe now know, to the important
organic components of the seminal plasma and of the sperm membrane. The high water content
and the presence of inorganic ions, citric acid, sugars, organic salts, prostaglandins and a num-
ber of proteins maintained the osmotic pressure of the semen and the pH of seminal plasma
close to 7 in the bull and ram (Mann & Lutwak-Mann 1981). Seminal plasma also provided
energy sources in the form of sugars for anaerobic and aerobic respiration. Prostaglandins were
found in particularly high concentrations in ram seminal plasma compared with other species
(>40pg per ml) (Mann & Lutwak-Mann 1981). These were postulated as pharmacologic agents
to aid motility and transport of spermatozoa by stimulating muscular contractions of the female
tract. Prostaglandins may also have a role in the female tract as an inflammation-inducing
agent, in synergy with other seminal cytokines, to promote sperm and embryonic survival
(Robertson 2005). Unfortunately, it has not been possible to stimulate either sperm transport in
the female tract or fertility by adding prostaglandins to diluted ram semen before Al (Salamon
& Maxwell 1995a).

Seminal plasma was found to both stimulate and inhibit the function of the spermatozoa, not
surprising given our current understanding of the multifunctional nature of seminal plasma
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proteins. In the early work on capacitation, Chang (1951) and Austin (1952) showed that the
spermatozoa needed to be separated from the seminal plasma and spend a period of time in
association with the female tract in order to attain the capacity to penetrate and fertilise oo-
cytes. This suggested that some inhibitory factors, termed "decapacitation factors" (Chang 1957),
associated with the presence of seminal plasma needed to be removed as part of the process of
capacitation. In subsequent investigations, it was demonstrated that the capacity of spermato-
zoa to participate in fertilisation was inhibited by seminal plasma (Chang 1957). Moreover, the
fertilisable Iifespan of the spermatozoa in the female tract could be extended by their exposure
to the decapacitation factors present in seminal plasma (Dukelow et al. 1967).

Studies of the influence of seminal plasma components on fertility have recently focused on
changes occurring during epididymal transit and on the proteome contributed from accessory
sex gland secretions.

Epididymal components

The spermatozoa acquire the ability to fertilise homologous oocytes and display motility gradu-
al ly during epididymal transit. The increased fertility gradient results in caudal epididymal
spermatozoa with better fertility than ejaculated spermatozoa, which have been mixed with
the decapacitating proteins from the accessory sex glands (Dacheux & Paquignon 1980). Epid-
idymal transit requires approximately 10 days in the bull and ram. Besides structural changes,
spermatozoa undergo changes in the composition of the plasma membrane surface. For in-
stance, in ram spermatozoa the molar ratio of cholesterol to phospholipid increases in the
plasma membrane (Parks & Hammerstedt 1985), as well as changes in glycoproteins of differ-
ent molecular weight that bind to the sperm plasma membrane. These changes result from a
direct influence of a wide range of inorganic and organic constituents of the epididymal plasma
which have been described in the past (Mann & Lutwak-Mann 1981; Robaire & Hermo 1988)
and vary considerably between different regions of the epididymis. In recent times it has
become clear that the most important components influencing these changes are proteins.

The cartographies of secreted (secretomes) and present proteins (proteomes) in the epididy-
mal fluid, and their interactions with the maturing mammalian spermatozoa have been the
subject of much recent study (reviewed by Gatti et al. 2004). Significant regionalized varia-
tions in these fluid proteins along the epididymis are reflected in particular modifications of the
sperm plasma membrane domains. This appears to be achieved by degradation or liberation of
testicular components, the absorption and integration of secreted proteins and enzyme-medi-
ated changes to particular membrane proteins, such as by glycosylation or deglycosylation
(Dacheux et al. 2003). For example, 17- and 23-kDa proteins are restricted to the caudal
epididymis in the ram and can be directly integrated in specific domains of the sperm plasma
membrane. The immunolocalization of the 17-kDa protein on the ram sperm tail suggests that
it may have a role in sperm motility (Gatti et al. 2000).

Many testicular proteins in the seminal fluid, such as clusterin and transferin, disappear in
the transition from the rete testis to the caput epididymis. However, more than 100 different
proteins are secreted in the epididymal duct with most activity in the caput and corpus regions.
The main secreted proteins are similar in different species and enzymatic activities, capable of
controlling the sperm surface changes, are present in the fluid. These proteins are contained in
both soluble and particulate compartments such as exosome-like vesicles (epididymosomes)
and certain specific glycol ipid-protein micelles (Gatti et al. 2004). Eight and 6 proteins repre-
sent most of the total epididymal secretion in the ram and bull, respectively, but in some zones
only one protein can represent more than 50% of the secretion (Gatti et al. 2004). These
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proteins may be inserted and integrated into the sperm membrane during transit, with or with-
out proteolytic processing, such asclusterin and several cysteine-rich secretory proteins (CRISP),
respectively (Gati et al. 2004). Apart from the important role in regional modifications leading
to the acquisition of motility and fertilizing capacity, epididymal proteins may provide protec-
tion against reactive oxygen species and bacteria, act further down the epididymis and some
may be present in pro-forms that are activated after ejaculation (Dacheux et al. 2003). A num-
ber of other proteins present on the spermatozoon, which are redistributed or removed during
epididymal transit, such as fertilin, cyritestin and germinal angiotensin converting enzyme
(gACE), may also be important for fertility (Gatti et al. 2004).

How these different modifications in the compartments of the epididymis interplay to modify
spermatozoa into fertile gametes during their transit remains to be revealed but the surface-
modifying events appear to be critically important. Having acquired the capacity to fertilise,
the spermatozoa undergo further modification, under the influence of seminal plasma, to pre-
pare them for their transport from the site of deposition in the female tract at ejaculation to the
site of fertilisation in the oviduct.

Accessory sex gland components

Ejaculation results in the confluence of spermatozoa from the tail of the epididymis with vari-
ous secretions from the ampullary, bulbourethral, prostate and vesicular glands. The chemical
composition of the array of substances produced by these glands, and the volume of the ejacu-
late, are species-specific and can vary among individuals belonging to the same species. In
addition, any physiological, pathological or exogenous (seasonal) conditions which change the
secretory function of one or more accessory glands, can influence the amount of fluid produced
and the chemical composition of the seminal plasma. For example, changes in the abundance
of particular proteins in autumn compared with other times of the year (Smith et al. 1999;
Gundogan & Elitok 2004) have been correlated with seasonal changes in sperm quality param-
eters (Cardozo et al. 2006), freezability and resistance to cold shock in ram spermatozoa (POrez-
Pé et al. 2001a).

The vesicular gland produces most of the semen volume and is the major source of sperm-
surface modifying proteins in ruminants (Bergeron et al. 2005; Fernández-Juan et al. 2006). The
prostatic secretion has low protein content and the presence of free amino acids probably
results from a combined action of proteases and transaminases in the glandular tissue (Mann &
Lutwak-Mann 1981). In the ram and bull, the prostate is present as disseminated glandular
tissue within the wall of the pelvic urethra. It secretes fructose, citric acid as well as ergothio-
neine (Mann 1964). The tissues of the bulbourethral and prostate glands are major sites of local
immunoglobul in production (Foster et al. 1988) and the cells of the urethral and prostatic epi-
thelium also produce seroton in, somatostatin and chromogran in A, which are important for the
regulation of the emission of urine and/or semen and the inhibition of local exocrine and/or
endocrine secretions (Vittoria et al. 1990). The bulbourethral gland is distinguished by a high
content of a sialoprotein which plays an important part in the process of "gelation" of the semen
in humans and pigs (Mann 1964). There is no gel in ram, goat and bull semen but type A
lecithinase secreted by this gland may be involved in the fertility of spermatozoa (Corteel
1980).

While their inorganic components help to buffer the seminal plasma and maintain sperm
metabolism and osmolarity, the most important contributors to fertility and sperm function from
the vesicular glands in mammals are the proteins (Table 1). These fall into two main categories:
the spermadhesins or heparin-binding proteins (predominating in boar, stallion and ram) and
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those proteins that contain fibronectin type II (Fn-2) domains, usually termed BSP (bovine
seminal plasma) type proteins. The latter are the main proteins in bull seminal plasma (Bergeron
et al. 2005).

Table 1. Major proteins originating from the vesicular glands of man and farm animals.

Type of Protein Species

Spermadhesins Boar

Containing Bull
fibronectin
type-II domains

Name of Protein

AWN, AQN-1, AQN-3 and
PSPI/PSPII heterodimer

BSP-A1, BSP-A2, BSP-A1/A2
and BSP-30kDa
BSP-A1/A2 also known as PDC-109

References

Calvete et al. 1995
Varela et al. 1997

Reinert et al. 1996

Kraus et al. 2005

Bergeron et al. 2005

Dostalova et al. 1994
Tedeschi et al. 2000

Manjunath & Sairam 1987
Manjunath et al. 1987
Esch et al. 1983

Stallion HSP-7

Man Human spermadhesin-like protein
(HSA)

Ram Ram spermadhesin

Bull aSFP
Z13

Ram BSP-A1/A2-like protein
P14 and P20 (now RSVP 14 and
RSVP 20)
RSP-15, RSP-16, RSP-22 and
RSP-24 kDa

Boar pB1

Stallion HSP-1, HSP-2 and HSP-12 kDa
Fn-2 type protein

Goat GSP-14, GSP-15, GSP-20 and
GSP-22 kDa

Bison BiSV-16, BiSV-17, BiSV-18 and
BiSV-28 kDa

Jobim et al. 2005
Barrios et al. 2005 (Fernandez-Juan
et al. 2006)
Bergeron et al. 2005

Calvete et al. 1997

Calvete et al. 1995
Greube et al. 2004
TOpfer-Petersen et al. 2005

Villemure et al. 2003

Boisvert et al. 2004

A number of spermadhesins have been identified in boar seminal plasma (the AWN, AQN and
PSP proteins) but only one in stallions (HSP-7; Table 1). The boar spermadhesins are further
subdivided, depending on their ability to either bind heparin (AQN-1, AQN-3, AWN) or not
(PSP-I/PSP-11heterodimer; Calvete et al. 1994). Proteins homologous to spermadhesins have
been also found in human, ram (comprising about 40% of the protein according to Bergeron et

al. 2005) and bull seminal plasma (Table 1). Proteins containing Fn-2 domains were first
characterised in bull seminal plasma (BSP Al, A2, A3, A1/A2 and -30 kDa proteins). Similar
proteins have been identified in ram (comprising about 20% of ram seminal plasma protein
according to Bergeron et al. 2005), boar, stallion, goat and bison seminal plasma (Table 1).
There are also proteins with Fn-2 domains originating from the epididymis (Saalmann et al.

2001) but these may undergo modification or have only local activity related to sperm matura-
tion. There are significant homologies between the Fn-2 proteins identified to date in rumi-
nants; for example, between the ram RSVP14, the ram RSP15, the bovine PDC-109 and the
goat GSP-14/15 (Fernandez-Juan et al. 2006).

Another class of proteins, the CRISP proteins, have been identified in a number of species.
These proteins are expressed predominantly in the male reproductive tract and are implicated
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in processes ranging from spermiogenesis, post-testicular sperm maturation and capacitation to
oocyte-sperm fusion (Udby et al. 2005). It is also possible that they have a role in penetration
of the zona pel Iucida (Udby et al. 2005). They have not been implicated in the modification of
sperm function in ruminants.

Many of the spermadhesins and BSP proteins have only recently been isolated and
characterised in ruminant seminal plasma. An understanding of their roles in capacitation will
be important to the utilization of seminal plasma as a modifier of sperm function.

Seminal plasma proteins and capacitation

Seminal plasma proteins are thought to have roles that both prevent (decapacitate) and mediate
capacitation. Some vesicular gland proteins stabilise sperm membranes by binding firmly to
their surface at ejaculation. As in vivo fertilisation requires a destabilisation of the membrane,
as occurs during capacitation, this may explain why cauda epididymal spermatozoa are better
able to fertilise oocytes in vitro than their freshly ejaculated counterparts (Dacheux & Paquignon
1980; Nagai et al. 1984; Rath & Niemann 1997).

The stabilising proteins are thought to be of the spermadhesin family (Romao et al. 1997).
However, some of the BSP proteins may initially play a similar role in the early stages after
ejaculation. For example, the BSP proteins in ram and bull seminal plasma interact with cho-
Iine phospholipids on the sperm membrane, with high and low density lipoproteins and with
heparin, conferring on them multifunctional biological roles in membrane stabilisation
(decapacitation) and destabilisation (capacitation; Manjunath & Therien et al. 2001; Fernandez-
Juan eta/. 2006). On mixing with the spermatozoa at ejaculation these proteins induce choles-
terol efflux from the sperm membrane (Manjunath & Sairam 1987; Swamy 2004) resulting in
reorganisation of the membrane components and, through their binding with choline phospho-
Iipids, stabilise the membrane.

As spermatozoa reach the oviducts they are exposed to follicular and oviductal fluids which
contain high density lipoproteins (HDL) and heparin-like glycosaminoglycans (GAGs), the physi-
ological capacitation factors (Rodriguez-Martinez et al. 1998). The exact signal transduction
mechanism is still unclear but some BSPproteins enable spermatozoa to bind to the oviductal
epithelium (Gwathmey et al. 2003) and they may possibly be involved in the release of sper-
matozoa from the oviductal sperm reservoir as has been shown in pigs (Jelinkova et al. 2004).
Other BSPs may induce capacitation either via protein tyrosine phosphorylation (involving
interaction with GAGs) or not involving protein tyrosine phosphorylation (through interaction
with H DL; Thérien et al. 1998; 1999). BSP-A1/A2 (PDC-109) also modulates the effects of other
capacitation agents (heparin, progesterone and angiotensin II) by increasing the proportion of
acrosome-reacted bull spermatozoa (de Cuneo et al. 2004).

Pig and horse spermadhesins display carbohydrate-binding activity (Calvete et al. 1995) and,
like the BSP proteins, interact with the sperm surface on ejaculation. Because of their known
interactions with heparin and the zona pellucida, they may be involved in capacitation (Calvete et
al. 1995) and oocyte recognition (Töpfer-Petersen et al. 1998) or mediate sperm binding to the
oviductal epithelium (Topfer-Petersen 1999). The 15.5 kDaspermadhesin identified in ram semi-
nal plasma by Bergeron et al. (2005), which is 70°/a homologous with porcine AQN-1 (Roofer-
Petersen et al. 1998), may play a similar role in decapacitation (initially after ejaculation) and
capacitation or sperm binding to the oviducal epithelium as it does in the pig, although Barrios et
al. (2005) and Fernández-Juan et al. (2006) claim this "protective and restoring" role for RSVP14
and RSVP20 (Fn-2 domain proteins). This does not rule out other, yet to be elucidated, roles for
porcine, bovine and ovine spermadhesins in the preparation of spermatozoa for fertilisation.
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Further proteins have been identified with decapacitating activity. These either inhibit the
normal signal-transduction pathways associated with the initiation of capacitation and/or mask
zona pellucida Iigands on the sperm surface. ESP13.2 and PSP94, epididymal secretory pro-
teins, coat the surface of macaque spermatozoa and are released at capacitation: ESP13.2 inhib-
its sperm binding to the zona pel Iucida when added back to the sperm surface (Tollner et al.
2004). The porcine PSP-I/PSP-II spermadhesin heterodimer is able to preserve viability and
acrosome integrity, and blocks oocyte penetration by frozen-thawed but not fresh boar sperma-
tozoa (Caballero et al. 2004a), through the prevention of sperm-zona pel Iucida binding (Cabal-
lero et al. 2005). RSVP14 and RSVP15 in ram seminal plasma are suggested to have a
decapacitating role, stabilizing sperm membranes and protecting against cold shock when added
to ram spermatozoa (Perez-Pe et al. 2002; Barrios et al. 2005).

Recent work by Fraser and co-workers, studying mouse and human spermatozoa, has re-
vealed important roles for a number of small peptides found in seminal plasma, which act as
first messengers in the regulation of in vitro capacitation (reviewed by Fraser et 2006). These
capacitation-inducing proteins, including adenosine, angiotensin II, calcitonin and fertil isation-
promoting peptide (FPP),have been shown to stimulate cAMP production and protein tyrosine
phosphorylation in spermatozoa (mouse: Mededovic & Fraser 2004). Separate signal-transduc-
tion pathways, relevant to each peptide and involving specific receptors, have a common end-
point of increased production of the second messenger cAMP. With the exception of angio-
tensin II, which stimulates cAMP throughout capacitation, these signals result initially in ca-
pacitation but this is followed by an inhibition of both cAMP production and spontaneous
acrosome loss, so that the capacitated spermatozoa retain their fertilising capacity. The transi-
tion from stimulation to inhibition involves loss of decapacitation factors from sperm mem-
brane receptors, one of which has been identified in the mouse as phosphatidylethanolamine-
binding protein 1 (Gibbons et a/. 2005). It has been suggested that the actions of these first
messengers observed in vitro, may have significant implications for enhancing or preserving
fertilising capacity in vivo after the spermatozoa have been exposed to them at ejaculation
(Fraser et al. 2006). Whether these roles for small peptides in signal transduction mechanisms
leading to capacitation in mouse and human spermatozoa also operate in ruminant semen is yet
to be determined.

Fertility-associated proteins

There have been a number of attempts to correlate the fertility potential of spermatozoa with
the proteins present in the seminal plasma. The quantity of prostaglandin D synthase (PGDS;
Gerena et al. 1998) and the presence of clusterin in seminal plasma (Ibrahim eta/. 2000), both
originating in the epididymis, have been suggested to be correlated with bull fertility. The
former was later shown to be an unreliable marker as high fertility bulls had both high and low
PGDS concentrations (Fouchécourt et al. 2002). Killian et al. (1993) reported the presence of
four 'fertility-associated proteins' in bull seminal plasma (osteopontin, spermadhesin Z13, phos-
pholipase A2 and BSP-30) that may improve fertility after Al with commercial dairy bull se-
men. Furthermore, 'anti-fertility' factors reputed to be present in the seminal plasma may bind
to the sperm plasma membrane and reduce the fertility of high fertility bull spermatozoa (Henault
& Killian 1996). The 'fertility-associated proteins' identified by Killian et al. (1993) in bull
seminal plasma, reported to originate from the vesicular glands, are currently under testing for
commercial application by Genex Cooperative (Moura et al. 2005). Some proteins isolated
from stallion seminal plasma have also been positively correlated with fertility and may have
commercial application (Brandon et al. 1999).
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Gatti et al. (2004) hypothesized that abnormal gACE levels in ram seminal plasma (released
from spermatozoa during epididymal transit) could be an indicator of an interruption to sperm
maturation, asthe quantity of gACE is correlated with the number of spermatozoa. The correla-
tion of gACE activity with the number of spermatozoa in the ejaculates of young rams had been
confirmed (Métayer et al. 2001) and low gACE levels were associated with lower fertility (Gatti
et al. 2004). Anti-sperm antibodies (ASA) have also been identified, particularly those associ-
ated with infertility in men. For example, Carlsson et al. (2004) reported that prostasomes
adhered to human spermatozoa were major targets for ASAs and identified PIP (prolactin-induc-
ible protein) and clusterin as dominant antigens for sperm-agglutinating autoantibodies. The
usefulnessor otherwise of these correlations asa basisfor assessmentof individual males or of their
ejaculates, and their application in semen processing and preservation, is yet to be determined.

The possibility of fertility-associated proteins in seminal plasma and on the sperm surface
needs to be considered in the context of new research on the relationship between Major
Histocompatability Complex (MHC) haplotype and mating outcome. This work suggests a
connection between the MHC and both pre- and post-copulatory female choice of the sperma-
tozoon participating in fertilisation. This is based on the crucial importance of the MHC in
immune responses, resulting in an evolutionary female preference for mates that are MHC
heterozygous and unique (Ziegler et al. 2005). The proposed mechanism of action is through
chemoreceptors, which operate in mate choice, not only through nasal odorant receptors (Buck
& Axel 1991) but also through guidance cues for spermatozoa (Spehr et al. 2003; Robertson
2005). Osteopontin, for example, one of the fertility-associated proteins in bovine seminal
plasma (Killian eta/. 1993) is a ubiquitous cell adhesion component involved in cell migration,
chemotaxis and macrophage activation (Moura 2005). PSP-Iand PSP-II may not play a role in
capacitation or sperm-oocyte binding but rather display proinflammatory effects which modu-
late immune responses in the porcine uterus (Assreuy et al. 2002).

The hidden female effects that impact on the success of males in fertilizing ova have been
labelled 'cryptic female choice' (Eberhard 1996) and relate partly to sperm competition medi-
ated by mutual recognition of seminal plasma components (including soluble MHC antigens
and those sequestered on the sperm surface) by spermatozoa from different males and/or by the
female reproductive tract (Ziegler et al. 2005). Thus, in humans, the sharing of MHC alleles
between partners may influence the occurrence of certain forms of human sterility and recur-
rent spontaneous abortions (Beydoun & Saftlas 2005). There is also evidence for MHC compat-
ibility involvement in oocyte penetration and within the penetrated oocyte by influencing the
outcome of the second meiotic division (Wedekind et al. 1996). It is possible that some of the
fertility-associated proteins may either be the result of MHC expression or be masking Iigand-
receptor mechanisms that might normally block either sperm function or fertilisation.

Seminal plasma vesicles

It has been known for a long time that small vesicles are present in the seminal plasma of
several mammals. These are roughly spherical organelles containing dense particles that are
delimited by single, double or multiple membranes, and range in diameter from 21 to nearly
1000 nm (Table 2). The vesicles generally have been named after the accessory organ from
which they were thought to originate. The membranous vesicle fraction identified in human
seminal plasma, for example, was initially named pellet II (Ronquist et al. 1978a; 1978b) and
later "prostasomes" (Brody et al. 1983) or "epididymosomes" (Saez et al. 2003) because of its
prostatic or epididymal origin. Prostasomes in human seminal plasma, or prostasome-like mem-
brane vesicles in equine seminal plasma, are particles made up of lipid and protein. It has been
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hypothesized that these may assist the fertilizing potential of spermatozoa by adhering to and
fusing with them, decreasing the fluidity of the sperm membrane, thereby delaying the acrosome
reaction and improving the motility and viability of spermatozoa, especially as they enter the
female genital tract (Minelli et al. 1998; Minelli et al. 1999; Kravets et al. 2000).

Table 2. Size of vesicles identified and characterised in the seminal plasma of man and farm animals.

Species Vesicle diameter range (nm) References

Man 21-100 Ronquist et al. 1978a; 1978b

Ram 50-300 Breitbart and Rubinstein 1982
22-986 (mean 159.7+2.92) El-Hajj Ghaoui et al. 2004

Boar 18-577 (mean 130.9+3.22) El-Hajj Ghaoui el al. 2004

Stallion 75-175 nm Minelli et al. 1998
15-671 (mean 164.1+4.42) El-Hajj Ghaoui et al. 2004

The fusion between prostasomes and spermatozoa (Carlini et al. 1997) may stabilise the sperm
plasma membrane by enriching it with cholesterol, sphingomyelin, and saturated
glycerophospholipid (Arienti et al. 1997). This is postulated to prevent the occurrence of ca-
pacitation and the acrosome reaction by producing a transient increase of intracellular calcium
ion concentration (Palmerini et al. 1999). Others have suggested that human prostasomes may
improve the recovery of hyperactively motile spermatozoa and consequently increase the op-
portunities for fertilisation (Fabian i et al. 1994). Likewise, prostasome-like membrane vesicles
identified in the seminal plasma of the stallion and the occurrence of a fusion-like process
between these vesicles and the sperm cells suggests that they may play a physiological role in
the fertilizing capacity of equine spermatozoa (Arienti et al. 1998). These roles for membrane
vesicles in capacitation and/or fertilisation have yet to be supported by convincing experimen-
tal evidence.

Breitbart & Rubinstein (1982) first isolated vesicular membranes from ejaculated ram semi-
nal plasma and demonstrated the presence of divalent-cation-dependent ATP-ase associated
with them. Vesicles with a specific protein content, and in association with cellular protein
isoforms, have been identified also in the cauda epididymal secretions of the ram (Ecroyd et al.
2004). These were shown to form the majority of the vesicles retrieved in the seminal plasma
of the ram and were called epididymosomes (Gatti et al. 2005). By examining the seminal
plasma of vasectomized and entire rams, we demonstrated that the membrane vesicles in ram
seminal plasma do not originate from the accessory sex glands (EI-Hajj Ghaoui et al. 2006). A
comparison of the morphology of vesicles in the seminal plasma and the cytoplasmic droplets
by transmission electron microscopy led us to conclude that, at least in the ram, the vesicles
originate from a combination of the droplets and the epididymis (EI-Hajj Ghaoui eta/. 2006). It
should be noted, however, that the absence of vesicles from the seminal plasma of vasectomised
rams does not completely preclude their presence in the accessory sex glands. For example,
"secretomes" identified by immunostaining in the vesicular glands of rams as localized sites of
RSVP-14 production, may provide an apocrine mechanism for releasing the protein, whereupon
the vesicle carriers break down in the lumen of the gland (Fernandez-Juan et al. 2006).

The biological importance and the functions of membrane vesicles in ram seminal plasma
are still obscure. Based on the data from other mammalian species, these membrane vesicles
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may be involved in capacitation and have the potential to influence the fertility of spermato-
zoa. It may be possible to incorporate these vesicles with different seminal fluid extenders in
order to improve fertility after semen preservation and Al.

Addition of seminal plasma to spermatozoa

Reports are somewhat equivocal on the benefits or otherwise of seminal plasma in association
with spermatozoa of various species during artificial preservation. For example, early research-
ers on frozen storage of boar spermatozoa recommended that removal of the seminal plasma,
after initial holding in its presence, was beneficial to post-thaw sperm survival (Pursel & Johnson
1975). More recently, the addition of seminal plasma to boar spermatozoa was reported to be
detrimental to sperm survival during post-thaw incubation (Erickson et al. 2005) but 200/osemi-
nal plasma prevented or reversed capacitation-like changes of boar spermatozoa, as detected
by the chlortetracycline assay, resulting from incubation at 39°C or cooling to 5°C (Vadnais et
al. 2005). Removal of seminal plasma and resuspension with artificial media is also reported to
improve the survival and DNA integrity of stallion spermatozoa during chilled storage (Love et
al. 2005). Seminal plasma is generally removed from equine spermatozoa before cryopreservation
as it is deleterious to sperm survival if they are exposed to it for a prolonged period before
freezing (Moore et al. 2005).

Conversely, in ruminants, Ashworth et al. (1994) identified beneficial proteins 5-10kDa in
size that reduced the adverse effects of dilution on ram spermatozoa. Moreover, fertility of
frozen-thawed ram spermatozoa after cervical insemination was improved after addition of
seminal plasma (Maxwell et al. 1999) although it is not known whether the addition of seminal
plasma components is beneficial to fertility of frozen-thawed bull spermatozoa.

One explanation for these apparent contradictions is the relative ratio of capacitating and
decapacitating, or possibly beneficial and harmful, proteins in seminal plasma, and their variation
between species or even individuals and within individual males over time. It should be noted
that whole seminal plasma is a complex mixture of organic and inorganic components, aswell as
proteins with positive and negative effects. The concentrations of these proteins vary from male to
male and can appear and disappear depending on environmental factors such as season of collec-
tion, temperature, nutrition and stress(Perez-Peeta/. 2001b). Most research to date on the addition
of seminal plasma to spermatozoa has not controlled for this within male variation.

Moreover, the beneficial effects of seminal plasma are likely to be restricted to specific
proteins and these may be negated by harmful effects of other factors present in whole seminal
plasma. For example, Garcia-Lopez et al. (1996) demonstrated that protein-free ram seminal
plasma contains a low molecular weight factor that interferes with the viability-stimulating
effect of isolated plasma proteins, possibly by preventing their adsorption to the sperm surface.
The adsorption of beneficial proteins will also depend on the origin of the spermatozoa (eg
epididymal, ejaculated, oviductal) and whether they have been subjected to manipulations
such as dilution or cryopreservation. These treatments may act to strip proteins from spermato-
zoa, revealing Iigands and binding sites that render them more susceptible to interactions, such
as those associated with: capacitation and the (false) acrosome reaction; cell death; or more
readily able to interact with and penetrate oocytes.

The influence of seminal plasma may also depend on the other components of the medium
in which the spermatozoa are extended. In the presence of egg yolk, for example, Manjunath
et a/. (2002) claim that the 14, 15 and 16 kDa RSP proteins, suggested to be detrimental to
sperm survival, would be bound to and rendered inactive by the yolk low density lipoprotein
fraction allowing the beneficial or decapacitating protein(s) to bind to the sperm head.
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When a detailed understanding is gained of the roles of the main seminal plasma proteins in
the normal maturation, transport and preparation of spermatozoa for fertilisation after deposi-
tion in the female reproductive tract, it may be possible to utilise specific proteins to improve
or enhance the function of spermatozoa that have been compromised through processing and
storage for Al. For the present, there have been a number of studies on the addition of whole
seminal plasma, or crude fractions of it, to spermatozoa that have been through such processes.
The final section of this review outlines the known effects of frozen storage and sex-sorting by
flow cytometry on the function and capacitation status of ram spermatozoa. It also considers
current evidence for the benefit, or otherwise, of adding seminal plasma or its membrane
vesicles to frozen-thawed and sex-sorted spermatozoa of several different species.

The potential benefits of seminal plasma to the fertility and function of fro/en-thawed ram

spermatozoa

Seminal plasma alone is not sufficient to protect ram spermatozoa against cold shock. There-
fore, the extenders or diluents used for cryopreservation need to contain components that will
potentially decrease sperm cryoinjury (Salamon & Maxwell 1995a). The function of spermato-
zoa is sustained for many years by frozen storage (Gillan et al. 2004), but their fertilizing
ability, especially after cervical insemination, is much lower than for fresh diluted spermatozoa
(Gil Ian & Maxwell 1999). Although recent Scandinavian studies report 25 day non-return rates
above 70% after cervical insemination with frozen-thawed semen (Paulenz et al. 2005) the
standard pregnancy rates in Australia are closer to 20% (Maxwell & Hewitt 1986).

The development of intrauterine insemination by laparoscopy has largely overcome this
problem (Salamon & Maxwell 1995b) but there are ethical limitations to the continued use of
this invasive procedure and it may be necessary to revert to cervical insemination. For this
reason, there has been considerable interest in the effects of seminal plasma and its constitu-
ents on sperm quality after freeze-thawing. For example, when either whole ram seminal
plasma or its >10 kDa protein fraction were added to the diluent, acrosome and plasma mem-
brane integrity, motility, and sperm heterogeneity after thawing were significantly improved
(011ero et al. 1997). Furthermore, improved sperm motility, a reduction in the proportion of
capacitated and acrosome reacted cells, and increased ability to penetrate cervical mucus were
obtained after addition of seminal plasma to frozen-thawed ram semen (Maxwell et al. 1999).

Capacitation-like changes in frozen-thawed spermatozoa and their possible reversal by seminal

plasma

A limitation to extended viability of frozen-thawed spermatozoa in the female tract is the so-
called "pre-capacitated" state in which a high proportion of the cells emerge after freeze-
thawing (Cormier et al. 1997; Maxwell & Johnson 1997b; Gi IIan & Maxwell 1999; Cormier &
Bailey 2003) since their membranes become permeable to calcium ions, leading to the (false)
acrosome reaction and cell death. During "normal" sperm capacitation, the spermatozoon be-
comes highly polarized and its plasma membrane shows regional specialization with changed
characteristics and composition (Guraya 2000). The changes in sperm cells as a result of freez-
ing and thawing have been identified as "capacitation-like" (Watson 1995; Maxwell & Watson
1996) because they resemble the late steps in the signal transduction pathway that leads from
capacitation to the acrosome reaction, as identified by the fluorescent membrane probe chlo-
rtetracycline (Cormier et al. 1997; Gi Ilan & Maxwell 1999), and they render the sperm func-
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tionally capacitated in both their ability to fertilise oocytes in vitro (Maxwell & Watson 1996)
and interact with oviduct epithelial cells (Gi Ilan et al. 2000).

While these capacitation-like changes are clearly not true capacitation (Green & Watson
2001), recent work on sperm cryopreservation has focused on the role of seminal plasma in the
stabilisation of sperm membranes aswell asthe identification and separation of its decapacitation
factors (Guraya 2000). This is potentially important as, once the sperm membrane becomes
fully capacitated, the spermatozoa only have a limited Iifespan in which to find and fertilise the
ovum. It may be that all the surface changes which occur in spermatozoa during capacitation,
for example cholesterol efflux (Parks & Ehrenwald 1989; Cross 1998; 2003), alteration in the
protein composition of the surface (Myles et al. 1990), or changes in the distribution of in-
tramembranous particles (Yanagimachi 1988; Suzuki-Toyota et al. 2000), are influenced by
changes to the proteins initially contributed by the seminal plasma and bound to the spermato-
zoa. It is thought that these decapacitating factors in seminal plasma are removed or modified
during the transit of the spermatozoa through the female genital tract and, if added to frozen-
thawed spermatozoa, would extend their longevity by binding, or re-binding, to the plasma
membrane and inhibiting further structural and physiological changes (Fraser et al. 1990; Max-
well & Johnson 1999; Guraya 2000; Barrios et al. 2000; Wolfe et al. 2001; Barrios et al. 2005).

The recent published literature on spermatology poses several hypotheses on the nature of
decapacitation factors, their function and their presence on the spermatozoa themselves or in
their surroundings. A number of these have been tested, mainly in vitro, in non-ruminant
species but few have been applied experimentally to ruminant spermatozoa. However, there
is considerable evidence of a direct effect of whole seminal plasma and its fractions on the
function of frozen-thawed and processed ruminant spermatozoa.

Function of frozen-thawed spermatozoa after addition of seminal plasma fractions and membrane
vesicles

In studies on frozen-thawed ram spermatozoa, we found that sperm function and fertility were
improved by the post-thaw addition of whole seminal plasma (Maxwell et al. 1999). We
hypothesised that the beneficial components in seminal plasma would be in its vesicle-free
fraction and that this fraction would be active in both entire and vasectomised rams. In other
words, the beneficial components of seminal plasma were likely to be of post-epididymal
origin and probably proteins from the vesicular gland. Thermal denaturation of whole seminal
plasma removed its protective effect on frozen-thawed (CA McPhie, S Mortimer, WMC Max-
well & G Evans, unpublished observations) and cold-shocked ram spermatozoa (Garcia-LOpez
et al. 1996), confirming that the active constituent was proteinaceous. We further postulated
that the membrane vesicle fraction of seminal plasma either had no function, or had a role in
sperm maturation and membrane function confined to the epididymis, and would not influence
the function or fertilizing capacity of frozen-thawed spermatozoa.

We first isolated membrane vesicles from ram seminal plasma, purified them by size exclu-
sion chromatography and defined their structure (El-Hajj Ghaoui et al. 2004). Next, we demon-
strated that vasectomy eliminated the membrane vesicles from ram seminal plasma (EI-Hajj
Ghaoui et al. 2006), indicating that they were of testicular or epididymal origin. Whole seminal
plasma collected before and after vasectomy of four rams was separated by ultracentrifugation
into two fractions; supernatant and a pellet of vesicles. The protein profiles of these fractions,
characterised by SDS-PAGE, were in the same molecular weight ranges as those identified by
Bergeron et al. (2005) and Fernandez-Juan et al. (2006) for entire rams (Fig. 1).
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Fig. 2. The motility characteristics of frozen—thawed ram spermatozoa during 6 h incubation

at 37°C with (e) control buffer, (s) whole seminal plasma, (A) vesicles at their normal concen-

tration or *vesicles at 3X their concentration. Panel a: motility (%, determined subjectively),

panel b: progressive velocity (VSL, pm.sec-1, determined by CASA; HTM-IVOS; Ham ilton-

Thor ne, USA) and panel c: average path velocity (VAP,pm.sec-1, determined by CASA). Data

are presented as mean + s.e.m. (R El-Hajj Ghaoui, L Gillian, PC Thomson, G Evans and WMC

Maxwell, unpublished observations).

mammalian spermatozoa by flow cytometric sorting. Extensive dilution of semen and insemi-
nation with a low number of spermatozoa in cattle have been standard means of applying this
technology (Johnson 2000). The sperm sexing technique, based on the difference in DNA
between X- and Y-chromosome-bearing spermatozoa (Moruzzi 1979), requires an extensive
dilution of the spermatozoa before and after sorting but this dilution is detrimental to the
motility, membrane status and fertilizing capacity of the spermatozoa (Maxwell & Johnson
1997a). In order to minimize this dilution effect, sorted spermatozoa are collected into a tube
containing either an egg yolk extender (Johnson 2000) or seminal plasma may be included as a
portion of the staining extender and the collection medium (Maxwell et al. 1997; Maxwell &
Johnson 1999; Centurion eta/. 2003).

Catt et al. (1997) showed that 10% ram or boar seminal plasma in the diluent increased
motility and viability of ram or boar spermatozoa in semen that had been extended 400- or 20-
fold, respectively. While the viability of ram spermatozoa (percentage live as assessedby non-
penetration of nuclear membrane by propidium iodide) was improved by seminal plasma, this
was partly due to a decrease in the proportion of agglutinated cells. Interestingly, heterologous
seminal plasma is generally detrimental (boar with ram or ram with boar: Catt et al. 1997; CA
McPhie, S Mortimer, WMC Maxwell & G Evans, unpublished observations; bull with ram:
Garcia-Lopez et al. 1996), autologous plasma is usually beneficial (male with the same male)
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Fig. 1.SDS-PAGE pattern of whole seminal plasma and its fractions before (a) and after (b)
vasectomy from the same ram. Samples were standardized (20 pg protein in 12 pl)
denatured, reduced and separated on 15% polyacrylamide gel and stained with
Coomassie Blue R-250. Lane A: Protein marker (PageRuler Protein Ladder; Progen Indus-
tries Ltd., Darra, Qld, Australia); lanes B and E: whole seminal plasma; lanes C and F:
supernatant; lanes D and G: pellet of vesicles. Whole seminal plasma was obtained by
centrifugation and washing (twice: 2500xg, 4°C, 30 min) of 12 and 8 whole ejaculates,
collected before and after vasectomy, respectively, and pooled within ram. Supernatant
and pellet fractions were obtained by ultracentrifugation of whole seminal plasma
(100,000xg, 4°C, 80 min). 1 (RSP-22 kDA and RSP-24 kDa, or RSVP-20) and 2 (RSP-15
kDa, RSP-16 kDa and 15.5 kDA spermadhesin, or RSVP-14) indicate the approximate
positions of the major proteins in ram seminal plasma (Bergeron et al. 2005; or Fernandez-
Juan et al. 2006, respectively). (R El-Hajj Ghaoui, L Gillian, PC Thomson, G Evans and
WMC Maxwell, unpublished observations).

Regardless of vasectomy, whole seminal plasma and supernatant improved motility character-
istics of frozen-thawed ram spermatozoa (Fig. 2: R El-Hajj Ghaoui, L Gillian, PC Thomson, G
Evans and WMC Maxwell, unpublished observations) and improved the ability of spermato-
zoa to fertilise in vitro matured oocytes (Fig. 3: R El-Hajj Ghaoui, L Gi IIian, PC Thomson, G
Evans and WMC Maxwell, unpublished observations). The membrane vesicle fraction from
plasma collected before vasectomy had no effect on spermatozoa at its normal concentration
but marginally increased fertilizing capacity of frozen-thawed spermatozoa when included at
three times normal concentration in the incubation medium (Fig. 3). This may be due to
protein remnants still associated with the vesicle fraction, rather than the vesicles themselves.
Protein bands were identified by SDS-PAGE in the vesicle fraction of entire rams (Fig. 1a,
lanes D and G) although in low abundance, particularly the 20 kDa protein. In vasectomised
rams, however, only one faint protein band at 15 kDa was apparent in the vesicle fraction (Fig.
lb, lanes D and G).

These findings confirm our previous reports on the beneficial effects of whole seminal
plasma on the function and fertility of frozen-thawed ram spermatozoa (Maxwell et al. 1999),
and suggest that the beneficial components of the seminal plasma are largely contained in its
non-vesicle protein fraction.

Function of sex- sorted spermatozoa after addition of whole and artificial seminal plasma

While exposure of spermatozoa to additional seminal plasma after freezing and thawing can

improve their viability, the removal of seminal plasma during processing can also decrease the

viable life-span of spermatozoa. An example of this is the dilution associated with the sexing of
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Fig. 3. The probability of in vitro fertilisation after 2, 6 and 18 hr co-culture of in vitro
matured sheep oocytes with frozen-thawed ram spermatozoa, previously incubated (3 7°C,

3 hr) with (*) control buffer, (s) supernatant (2 0%, v/v in buffer) or (A) pellet of vesicles at 3x

normal concentration (2 0%, v/v in buffer). Whole seminal plasma was obtained by cen-

trifugation and washing (twice: 2 500xg, 4°C, 30 min) of whole ejaculates pooled within

ram. Supernatant and pellet fractions were obtained by ultracentrifugation of whole semi-

nal plasma (100,000xg, 4°C, 80 min). Oocytes (3 replicates of 315,  341 and 19 8) were

matured and in vitro fertilisation (1 x 106 motile spermatozoa per ml) occurred in IVF

complete medium (Cook IVF, Brisbane, Australia). After co-culture, oocytes were fixed and

stained with aceto-Orcein and examined (phase contrast, 6 00x magnification) for evi-

dence of fertilisation. The probability of fertilisation was determined from the binary data

(fertilised or unfertilised) by fitting a generalised linear mixed model (GLMM) using GenStat

8. (R El-Hajj Ghaoui, L Gillian, PC Thomson, G Evans and WMC Maxwell, unpublished

observations).

but the effects of homologous plasma vary with the donor male and can be negative (ram and
bull: CA McPhie, S Mortimer, WMC Maxwell & G Evans, unpublished observations; boar:
Caballero et al. 2004b). The beneficial components of boar seminal plasma, in the case of
highly diluted boar spermatozoa, have been isolated to the PSP-II subunit of the PSP-I/PSPII
spermadhesin (Garcia et al. 2006). In the case of ram seminal plasma the beneficial proteins
may be RSVP-14/20 (Barrios et al. 2005) or ram spermadhesin (Bergeron et al. 2005) but these
have been less clearly defined for ram and bull as the reported effects of seminal plasma on
highly diluted and sex-sorted spermatozoa are equivocal in these species (see below).

The viability and membrane integrity of spermatozoa was improved in vitro if seminal plasma
was included in the staining extenders for boar and ram spermatozoa or in the collection me-
dium for boar or bull spermatozoa (Maxwell et al. 1997). It was concluded that the beneficial
effects in the staining extender reflected a reduction of the 'dilution effect' and in sperm
agglutination, whereas seminal plasma in the collection medium stabilised sperm membranes
and prevented premature cell death independent of effects on sperm motility (Maxwell &
Johnson 1999). Proportions of boar spermatozoa with capacitation-like changes were lower
when seminal plasma was present in the collection medium only, than in the staining extender
or absent altogether, but the former treatment substantially reduced the proportions of polysper-
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mic, penetrated and cleaved oocytes, and the proportion of blastocysts. These findings sug-
gested that capacitation-like changes in boar spermatozoa associated with flow-cytometric sort-
ing could be reduced by the inclusion of seminal plasma in the collection medium but this
treatment reduced the ability of spermatozoa to fertilise oocytes in vitro under these conditions
(Maxwell et al. 1998). Whether similar effects would result from seminal plasma in the staining
and collection media used for ram and bull spermatozoa were not determined (Maxwell &
Johnson 1999).

The results of Maxwell et al. (1997) and Catt et al. (1997) were obtained using a modified
Coulter Epics V flow cytometer with a 7-W argon laser (170 mW; ultra-violet) and operating at
a sheath pressure of 20 psi. In the case of ram semen, the spermatozoa were diluted before
sorting at 500-1000 fold (around ten times that required for boar spermatozoa) in preparation for
staining with the DNA-permeant Hoechst 33342 fluorochrome that distinguishes X- from Y-
bearing cells. This was followed by a second dilution by sheath fluid (phosphate-buffered saline
supplemented with bovine serum albumin) and collection medium resulting in a final dilution
of up to 30,000-fold. Compared with low-speed sorting with the Coulter machine, our current
studies utilize a high-speed flow cytometer (SX MoFlo®) operating at a sheath pressure of 40
psi with a TRIS-based sheath fluid. The diode-pumped solid state pulse laser, operating at 125
mW, results in less exposure of individual spermatozoa to ultra-violet light than the argon
laser. The spermatozoa undergo less dilution before and after sorting, because of the increased
speed of sorting (5-10,000 compared with 1400 spermatozoa sec-1), resulting in a final dilution
rate of about 5000-fold, and the spermatozoa are exposed to the sheath and collection medium
for a shorter period of time (15-30 min) compared to low speed sorting (60 min).

Under these high speed sorting conditions, whole seminal plasma does not provide the same
benefits to sorted ram spermatozoa that have been subsequently frozen and thawed, compared
to non-sorted frozen-thawed spermatozoa (Maxwell et al. 2004). Sex-sorting of ram spermato-
zoa using MoFlo technology improved motility (64.7+4.8 vs. 43.1+4.0%, P < 0.05), viabil-
ity (53.4+4.0 vs. 36.5+3.4%, P < 0.05) and mitochondrial activity (63.1+4.7 vs. 41.3 +3.9%
respiring, P < 0.05) of spermatozoa compared with a non-sorted population but reduced the
forward progressing velocity of sex-sorted cells (measured by CASA; VAP: 83.0+3.8 vs. 97.1+ 6.9
pm.sec-1, P < 0.05) and their ability to penetrate cervical mucus (22.0+ 3.5 vs. 43.3 + 3.8
spermatozoa penetrated 1 cm, P < 0.05; for sorted vs. control spermatozoa, respectively) (Sde
Graaf, WMC Maxwell & G Evans, unpublished observations). These differences were retained
when the sorted or non-sorted spermatozoa were incubated for 6 hours (Fig. 4: S de Graaf,
WMC Maxwell & G Evans, unpublished observations).

The improvement in sperm motility and viability in the flow-sorted population is not surpris-
ing, as the cells are stained before sorting with a dye (originally propidium iodide but now a
non-toxic food dye) that penetrates the nuclear membrane of non-viable cells, staining the
nucleus red, and allowing these cells to be gated out to waste during flow sorting. The reduc-
tion in kinematics and sperm transport may explain the lower fertility obtained after Al of ewes
with low (2-4 million) compared with high (20 million) doses of sex-sorted, frozen-thawed
spermatozoa (Maxwell et al. 2004). Nevertheless, we have recently obtained indistinguishable
fertility when sufficient numbers (15 million motile) of control or sex-sorted ram spermatozoa
- or even frozen-thawed, sex-sorted, re-frozen and re-thawed spermatozoa - are deposited in
the uterus of synchronised ewes by laparoscopic insemination (SP de Graaf, G Evans, WMC
Maxwell, DG Cran & JK O'Brien, unpublished observation). The latter results demonstrate that
the highly-selected population of spermatozoa resulting from sex-sorting by flow cytometry,
interjacent with two rounds of freezing and thawing, are capable of normal fertility when
placed in reasonable proximity to the site of fertilisation close to the time of ovulation.
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Fig. 4. The motility characteristics, viability and mitochondrial activity of [s] unsorted or [A]

sex-sorted frozen-thawed ram spermatozoa during 6 h incubation at 37°C. Panel a: motil-

ity (%, determined by CASA; HTM-IVOS; Hamilton-Thorne, USA), panel b: viability (% live

spermatozoa assessed by exclusion of ethidium homodimer-1), panel c: mitochondrial

activity (0/0respir ing spermatozoa, assessed by accumulation of R123 in the m id piece) and

panel d: average path velocity (VAP, pm.sect, determined by CASA). Data are means +

s.e.m. (S de Graaf, WMC Maxwell & G Evans, unpublished observations).

The addition of whole seminal plasma, or an artificial seminal plasma (ASP) based on its inor-
ganic composition and unlikely to influence sperm membrane status (O'Donnell 1969), to
frozen-thawed ram spermatozoa improves its motility and movement characteristics assessed
by CASA (Mortimer & Maxwell 2004). However, if the spermatozoa have been sex-sorted
before freezing, both whole seminal plasma and ASP are detrimental to sperm motility and
velocity (Fig. 5: S de Graaf, WMC Maxwell & G Evans, unpublished observations). With
increasing proportions of whole seminal plasma in the post-thaw medium, the motility, viabil-
ity, velocity and mitochondrial activity of sex-sorted, frozen-thawed spermatozoa decline, com-
pared with non-sorted, frozen-thawed spermatozoa (Fig. 6: S de Graaf, WMC Maxwell & G
Evans, unpublished observations). Moreover, the use of ASP as sheath fluid does not attenuate
the effects of flow cytometric sorting. While initially improving post-sort kinematics, ASP
markedly decreases post-thaw motility and longevity compared with a TRIS-based sheath fluid
(de Graaf et al. 2004).

While these results at first seem contradictory, evidence is now emerging that the effects of
seminal plasma are not simply confined to decapacitation (after addition) and capacitation (after
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Fig. 5. The motility characteristics of [o] unsorted or [N] sex-sorted and frozen-thawed ram

spermatozoa without (-SP) or with (+SP) whole or artificial seminal plasma (+ASP) in the

post-thaw medium. Panel a: motility (0/0, determined by CASA; HTM-IVOS; Hamilton-

Thorne, USA) and panel b: average path velocity (VAP,pms-1, determined by CASA). The

post-thaw medium comprised Androhep® (Minitube Australia, Smythes Creek, Australia)

containing 0 (-SP) or 20 0/0 (v/v) whole seminal plasma (+SP) pooled from 6 rams or

artificial seminal plasma (+ASP) as described by Mortimer and Maxwell (2000). Data are

means + s.e.m. pooled for 0, 3 and 6 hr post-thaw incubation at 37°C. (S de Graaf, WMC

Maxwell & G Evans, unpublished observations).

removal of seminal plasma) but rather consecutive actions of positive and negative regulatory
factors. These factors modulate the capacitation status of spermatozoa in a manner that varies
with species, males within species, ejaculates within males, stage of sperm maturity and previ-
ous sperm treatment (Ashworth et al. 1994; Centurion et al. 2003; Bergeron et al. 2005). The
addition of whole seminal plasma to spermatozoa may initially have simple influences associ-
ated with its ionic component, as suggested by the effects of ASP (Mortimer & Maxwell 2004;
and Fig. 5) but its subsequent action may be more complex. In the case of sex-sorted sperma-
tozoa, the action of seminal plasma may depend on the proteins that remain on the sperm
surface, after the dilution and mechanical agitation associated with the flow cytometric process,
and their interaction with the particular factors present in the seminal plasma, or its fractions,
added to them.
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Fig. 6. The motility characteristics and mitochondrial activity of [N] unsorted or [A] sex-

sorted and frozen-thawed ram spermatozoa without (0%) or with (5, 10 or 20°/o) seminal

plasma in the post-thaw medium. Panel a: motility (0/0,determined by CASA; HTM-IVOS;

Hamilton-Thorne, USA), panel b: viability (0/0 live spermatozoa assessed by exclusion of

eth id ium homodimer-1), panel c: average path velocity (VAP, pms-1, determined by CASA)

and panel d: mitochondrial activity (% respiring spermatozoa, assessed by accumulation

of R123 in the m id piece). The post-thaw medium comprised Androhep® (Min itube Austra-

lia, Smythes Creek, Australia) containing 0, 5, 10 or 20 % (v/v) whole seminal plasma

pooled from 6 rams. Data are means + s.e.m. pooled for 0, 3 and 6 hr post-thaw incuba-

tion at 37°C. (S de Graaf, WMC Maxwell & G Evans, unpublished observations).

Conclusions

Our studies have demonstrated both positive and negative effects of supplementary seminal
plasma on the kinematics, membrane status and fertility of ram spermatozoa that have been
subjected to preservation and/or flow cytometric sex sorting. The active components of seminal
plasma responsible for these changes in sperm function are proteinaceous, of post-epididymal
origin (most likely from the vesicular glands) and not associated with the membrane vesicle
organelles in ram seminal plasma.

The major proteins that have been isolated and characterised in ram seminal plasma origi-
nate from the vesicular gland and comprise a 15.5 kDa spermadhesin, together with four RSP
proteins (15, 16, 22 and 24 kDa) with Fn-2 domains (Bergeron et al. 2005) or RSVP-14 (homolo-
gous with RSP 15) and RSVP-20 (Fernandez-Juan et al. 2006). The specific functions of these
proteins are yet to be determined but the spermadhesin may have a role in stabilising sperm
membranes (decapacitation) at ejaculation while the 15 (or RSVP-14) and 16 kDa RSPproteins
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are more likely to be associated with binding and release to oviduct cells, capacitation and
oocyte binding.

It is tempting to conclude that the active component of ram seminal plasma which provides
protection to ram spermatozoa after freeze-thawing is the 15.5 kDa spermadhesin which has been
identified by Manjunath et al. (2002) ascomprising the majority of ram seminal plasma protein, or
RSVP-14 and RSVP-20 identified as more than half the ram seminal plasma protein by Muino-
Blanco, Cebrian-Perez and co-workers (personal communication). However, there have been no
investigations to date that provide conclusive evidence on the effects of individual seminal plasma
proteins in any ruminant species, or even seminal plasma protein fractions, on the fertility of
spermatozoa, whether fresh or preserved. It remains to be seenwhether particular proteins, present
in the seminal plasma of ruminants, could be characterised, synthesized and utilized as additives
to sperm preservation media to improve fertility of females after Al.
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