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Lives in the balance: responsiveness of the corpus
luteum to uterine and embryonic signals

J. L. Pate

Ohio State University/OARDC, 1680 Madison Ave, Wooster, OH 44691, USA

This review focuses on factors that may affect the sensitivity of the corpus
luteum to uterine prostaglandin Ha (PGF20) and embryonic signals. The
heterogeneity of the types of cell that are present within the corpus Iuteum
results in complex interactions that ensure complete luteal regression in
response to PGF20. There is not likely to be a single factor that deter-
mines responsiveness. The sensitivity of the corpus luteum depends on
the proper balance of a variety of factors that are involved in mediating
the effects of PGF2a. This balance is achieved as the early corpus luteum
undergoes development, but may also be altered by embryonic factors to
rescue the corpus luteum during early pregnancy.

Introduction

Communication between the uterus and ovary is essential for normal cyclicity and the

maintenance of pregnancy in ruminants. Luteal lifespan is prolonged in hysterectomized

animals (Wiltbank and Casida, 1956) because of the lack of prostaglandin F20(PGF2„), and

ovarian steroids regulate the timing and concentrations of uterine PGF20 release. Exogenous

PGE2e, has been used for many years to regulate the oestrous cycles of ruminant species,

but the developing corpus luteum is refractory to the luteolytic actions of PGE20 (Louis

et al., 1973). Progesterone synthesis by the corpus luteum is essential for maintenance of

pregnancy, and the presence of a healthy embryo is required to rescue the corpus luteum

from regression. Clearly, the main role of embryonic interferon T (IFN-7) in maternal re-

cognition of pregnancy is to decrease the amount of PGE20 released by the uterus, thus

preventing luteal regression. However, alterations in luteal function during maternal recog-

nition of pregnancy also render the corpus luteum less sensitive to the luteolytic effects

of PGF2a.

The heterogeneous nature of the corpus luteum indicates that there is a complex interaction

of different types of cell and paracrine mediators that regulate the sensitivity of the corpus

luteum to extraovarian signals. There is increasing evidence that the non-steroidogenic cells

may affect the steroidogenic capacity of the corpus luteum and are directly involved in both

the formation and demise of the tissue. The rapid angiogenesis that occurs during luteiniz-

ation and the extensive vascularity within the mature corpus luteum has led a number of

investigators to consider the functional significance of capillary endothelial cells to steroid-

ogenesis. Growth factors, such as vascular endothelial growth factor (VEGF), are important
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in the development of the capillary network that will sustain the corpus luteum (Redmer

et al., 1996; Berisha et al., 2000) and proliferation of capillary pericytes may be a key factor

in achieving full luteal maturation (Redmer et al., 2001). The interactions of the various types

of cell and paracrine factors within the corpus luteum, with regard to how these may alter

the sensitivity of the corpus luteum to uterine factors, such as PGF2a or embryonic signals,
is the subject of this review. Owing to the limited length of the review and the symposium

for which it is prepared, the focus is on ruminants, and previous review articles are cited

wherever possible.

Local mediators of prostaglandin action in mature corpus luteum

Prostaglandin F2a acts on steroidogenic cells to bring about a rapid decrease in progesterone
production. Activation of the phospholipase C—protein kinase C pathway by PGF2, results
in an increase in intracellular calcium, a decrease in mRNAs for steroidogenic enzymes

and steroidogenic acute regulatory protein (StAR), and inhibition of cholesterol transport

through the mitochondria! membrane. The actions of PGF2, on steroidogenic cells to inhibit

progesterone production have been reviewed elsewhere (Pate and Townson, 1994; Niswender
et al., 2000).

The luteolytic effects of PG F2e, may also be advanced by the non-steroidogenic cells within

the corpus luteum. Prostaglandin F2, is a more effective inhibitor of progesterone synthesis
in the presence of endothelial cells (Girsh et al., 1995), indicating that endothelial cells

mediate the antisteroidogenic effects of PGF2a. Prostaglandin F2a causes a rapid increase in
endothelin 1 (ET-1) mRNA in the mature corpus luteum, and E1-1 acts on luteal cells to

decrease progesterone production in vitro and in vivo (Girsh et al., 1996; Miyamoto et al.,
1997; Ohtani et al., 1998; Hinckley and Milvae, 2001). The most convincing evidence that

ET-1 may serve as a mediator of PG F2, action in the corpus luteum was reported by Hinckley
and Milvae (2001) who demonstrated that administration of ET-1 to ewes in the presence

of a subluteolytic dose of PGF2, resulted in luteolysis, and inhibition of the ET-1 receptor,
ETA, prevented PGF2a-induced luteolysis. The morphology of endothelial cells changes in
response to PGF2a before any apparent change in steroidogenic cells (Sawyer et al., 1990),

and Gaytan et al., (2002) demonstrated that endothelial cells in the rat corpus luteum undergo
apoptosis followed by ischaemic necrosis of the luteal cells. Sufficient development of the

microvasculature with adequate numbers of endothelial cells may promote the sensitivity of
the corpus luteum to PGE2e,.

Immune cells are intricately involved in the progression of luteolysis once it has been

initiated by PGF2,„ and they may also contribute to both the continued decrease in pro-

gesterone production as well as the structural demise of the tissue (for reviews, see Pate
and Townson, 1994; Pate, 1995; Pate and Keyes, 2001). In cows, lymphocytes are present

in the fully functional corpus luteum and increase at the time of luteal regression (Lobel

and Levy, 1968; Penny et al., 1999; Townson et al., 2002). The increase in immune cells

appears to be due to migration of these cells into the tissue as well as proliferation, partic-
ularly of macrophages, within the tissue (Bauer et a/., 2001). The expression of monocyte

chemoattractant protein 1 (MCP-1) in the corpus luteum is likely to be responsible for the

recruitment of macrophages into the tissue (Bowen et al., 1996; Townson et al., 1996; Penny

et al., 1998). Cytokines, such as tumour necrosis factor CI (TNE-oc) and interferon 'y (IFN—y),
produced by immune cells within the corpus luteum may contribute to the inhibition of ster-

oidogenesis and cell death (Fairchild and Pate, 1991; Benyo and Pate, 1992; Petroff et al.,
2001).
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Acquisition of luteolytic capacity

The transition from a PGF2, non-responsive, or insensitive state, to a PGE2a-responsive state
has been termed the 'acquisition of luteolytic capacity' by Diaz et al. (2000). Initial sug-
gestions that the developing corpus luteum was insensitive to PGF2, because it lacked
PGE2c, receptors (FP) were found to be incorrect. Both Rao et al. (1979) and Wiltbank
et al. (1995) demonstrated that there are similar numbers and affinity of PGE2, receptors
in early, non-responsive corpora lutea as in mature corpora lutea of cattle. This finding is
unlike that in pigs, in which a significant increase in FP receptors occurs at about the time
that the corpus luteum becomes responsive to PGF2, (Gadsby et al., 1990). When non-
responsive (day 4) or responsive (day 11) bovine corpora lutea were treated with PGE2,
in vivo, the concentration of luteal ascorbate and mRNAs for 313-hydroxysteroid dehydro-
genase (313-HSD) and FP receptor were decreased, and insulin-like growth factor binding
protein 1 (IGH3P-1) was increased in both day 4 and day 11 corpora lutea, indicating that the
day 4 corpora lutea are not completely unresponsive to PGF2, actions (Tsai and Wiltbank,
1998; Sayre et al., 2000). However, day 11 corpora lutea responded to PGF2a with an in-
crease in steady state concentrations of mRNA for prostaglandin G/H synthase-2 (PGHS-2,
also known as cyclooxygenase 2), whereas a decrease in PGHS-2 was observed in day 4
corpora lutea (Tsai and Wiltbank, 1998). This finding led the authors to suggest that the
ability of the corpus luteum to establish a positive autocrine feedback loop of endogenous
prostaglandin synthesis is a key component for the acquisition of luteolytic capacity. This
suggestion supports the findings of Milvae (1986), in which it was proposed that stimula-
tion of luteal prostaglandin synthesis is a critical factor in luteal regression, and extends this
concept to help explain why the early (developing) corpus luteum is not induced to regress by
exogenous PGF2„. In fact, multiple PGE2, injections increase luteal PGHS-2 concentrations
and also induce luteolysis in the day 4 corpus luteum (Beal et al., 1980; Sayre et al., 2000).
The importance of luteal prostaglandins to PGF2a-induced luteolysis is further exemplified
by the finding that the activity of prostaglandin dehydrogenase (PGDH), which metabolizes
PGF2a to its inactive metabolite, PGFM, is greater in the early, non-responsive corpora lutea
than in the mid-cycle (fully functional), responsive corpora lutea (Silva et al., 2000).

If endothelial cells and ET- 1 secretion are mediators of PGE2a-induced luteolysis, then
it is reasonable to postulate that the underdeveloped microvasculature characteristic of the
early corpus luteum is inadequate to mediate the luteolytic signal. In fact, this hypothesis
was first proposed by Levy et al. (2000), who demonstrated that mRNAs for ET-1 and ETA
were increased by PCF2a in the mid-cycle corpus luteum, but remained unchanged in the
day 4 corpus luteum, despite other effects of PGF2, at that time. The difference in the ET-1
response to PGE2a in early and mid-cycle corpora lutea was further corroborated by Wright
et al. (2001). These investigators also measured endothelin converting enzyme 1 (ECE-1)
and found that it was decreased as a result of PGE2a in mid-cycle, but not in early, corpora
lutea. In addition to its antisteroidogenic effects, ET-1 is a potent vasoconstrictor. Although
vasoconstriction appears to occur after the decline in progesterone, this could be another
action of ET-1 to continue the progression of luteolysis (for a review, see Niswender et al.,
2000). Acosta etal. (2002) used pulsed Doppler ultrasonography to evaluate blood flow in day
4 and day 10 bovine corpora lutea. In the mid-cycle corpus luteum, PGF2, treatment caused
an acute increase followed by a gradual decrease in blood flow, whereas no change in blood
flow was associated with PGE2, treatment on day 4 of the oestrous cycle. These results lend
further support to the concept that endothelial cells and the luteal microvasculature are not
sufficiently developed in the early corpus luteum to allow for a complete luteolytic response
to PGF2c,.
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Fig. 1. Effects of prostaglandin F,„ (PGF20.) on early (non-responsive) and mid-cycle mature responsive)
corpora lutea (CL). Differences in prostaglandin G/H synthase 2 (PGHS-2) and the inabil ty to effect
changes in endothelial cells, extracellular matrix remodelling components and cytokines in the early
corpus luteum may prevent the luteolytic effects of PGF2,„ from being fully manifested. 38-hyclroxysteroid
dehydrogenase (38-HSD); insulin-like growth factor binding protein 1 (IGFBP-1); PGF20, receptor (FP);
endothelin-1 (ET-1); ET-1 receptor (ETA); endothelin converting enzyme 1 (ECE-1); tissue inhibitor of
metal loproteinase 1 (TIMP-1); monocyte chemoattractant factor 1 (MCP-1). 'Tsai and Wilthank (1998);
2 Sayre et al. (2000); 'Levy etal. (2000); 'Wright etal. (2001); 5Acosta etal. (2002); 6Ricke et al. (2002);
'Towle et al. (2002); and 'Tsai et al. (1997).

The ability of PGF2o, to promote reorganization of the extracellular matrix and tissue de-

gradation may also be a component of the acquisition of luteolytic capacity. When cows

or ewes are treated with PGF,,, during mid-cycle, there is a rapid and sustained deple-

tion of luteal tissue inhibitor of metalloproteinase 1 (TIMP-1) and an increase of luteal matrix

metalloproteinase 2 (MMP-2; Ricke et al., 2002; Towle et al., 2002). However, there is no

effect of PGF2o, on luteal concentrations of TIMP when administered on day 3 of the oestrous

cycle (Ricke et al., 2002). A summary of the responses to PGF2e, that occur in early and

mid-cycle corpora lutea is presented (Fig. 1).

Other types of cell in the corpus luteum that may influence luteolytic capacity are the

immune cells. There are fewer T lymphocytes, monocytes and macrophages in the corpus

luteum early in the oestrous cycle compared with later in the oestrous cycle, and the amount of

immunoreactive MCP-1 and MCP-1 mRNA in the bovine corpus luteum parallels the number

of immune cells present (Townson et al., 2002). Tsai et al. (1997) observed that MCP-1 mRNA

was increased by a luteolytic injection of PGF2e, in mid-cycle corpora lutea, but there was
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no MCP-1 response in early corpora lutea. Thus, the inability of the early corpus luteum to

respond to PGF2,, with an increase in MCP-1, and an insufficient number of immune cells

within the tissue may well be an important factor in the luteolytic effect of PGF20, not being

fully man ifested.

If immune cells are important for the acquisition of luteolytic capacity, it might be ex-

pected that cytokine concentrations would be low, or absent, in the early corpus luteum

but high in the mid-cycle corpus luteum. Very little has been done to evaluate cytokine

concentrations in early compared with mature corpora lutea in ruminants, and the res-

ults are not always consistent. This is due, in part, to the lack of reagents for analysis of

the bovine or ovine proteins. One of the most studied cytokines in the corpus luteum is

TNF-a. The mRNA for TNF-a is present throughout the lifespan of the bovine corpus

luteum (Petroff et al., 1999; Sakumoto et al., 2000); therefore, expression of this gene may

not be limiting in terms of luteolytic capacity. However, the TNF-a protein is not detected

until the corpus luteum is mature (Sakumoto et al., 2000) or until after luteal regression

has been initiated by PGF2„, (Ji et al., 1991; Shaw and Britt, 1995). The effect of PGF2c, on

TNF-a synthesis in early and mature corpora lutea has not yet been reported, and is the

subject of current investigation in our laboratory. There have been conflicting reports on the

presence of the type I TNF receptor (TNF-RI) in luteal tissue. Friedman et al. (2000) reported

no difference in the mRNA for TNF-RI in luteal tissue of various ages; Sakumoto et al. (2000)

found the mRNA content to be high early in the oestrous cycle, whereas M. G. Petroff and

J. L. Pate (unpublished) observed a lower content in day 5 compared with mid-cycle corpora

lutea. Clearly this issue is not resolved, and the relevance of the TNF—TNF-RI system to the

acquisition of luteolytic capacity will depend on knowledge of the proteins, not just of the

mRNAs. As the pro-inflammatory cytokines, such as TNF-a and IFN-y, are potent stimulators

of luteal prostaglandin synthesis (Fairchild and Pate, 1991; Benyo and Pate, 1992; Townson

and Pate, 1996), it is possible that lack of cytokine production in response to PGF2c, in the

early corpus luteum contributes to its inability to synthesize endogenous prostaglandins and

hence its lack of luteolytic capacity.

Another rather novel cytokine, macrophage migration inhibitory factor (MIF), was ex-

amined in bovine corpora lutea throughout the oestrous cycle. It was expected that MIF

would be absent during luteal development and increase at the time of luteolysis. Surpris-

ingly, the opposite was true. MIF mRNA was consistently high in day 5 corpora lutea, and

expression was lower in mid-cycle or day 18 corpora lutea. Immunohistochemistry revealed

that MIF was found in the steroidogenic cells, primarily the large luteal cells (Bove et al.,

2000). It was hypothesized that MIF is involved in differentiation events during luteinization,

and there is now a question as to whether higher concentrations of MIF render the corpus

luteum less sensitive to PGF2,.

Recent work in our laboratory has focused on the components of the intracellular peptide

processing system for presentation of peptides by major histocompatibility complex (MHC)

molecules, and the temporal expression of these molecules in the bovine corpus luteum.

Processing of peptides presented by MHC class I molecules takes place within the proteo-

some, and exposure to IFN-y induces replacement of constitutive proteosome subunits with

the IFN-y-inducible subunits, low molecular weight protein 2 (LMP-2), LMP7 and LMP10. No

significant differences were observed in steady state concentrations of LMP7 mRNA, but the

LMP10 mRNA content was lower in the day 5 corpora lutea in comparison with corpora lutea

at day 11 or day 18 of the oestrous cycle (Cannon and Pate, 2000a). MHC class II molecules

present peptides that are processed by the invariant chain and the DM protein. Although no

differences were noted in the steady state concentrations of the invariant chain in the bovine

corpus luteum throughout the oestrous cycle, both the DMa and DM13 subunits increased from
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Fig. 2. Components of early prostaglandin F2„ (PGF,,x) (non-responsive) and mid-cycle PGF2„ (respons-
ive) corpora lutea that may affect acquisition of luteolytic capacity. Bold letters indicate a relatively
higher concentration compared with those that are not depicted in bold letters. In addition to relative
changes in concentrations of the various components, the mid-cycle corpus luteum contains immune
cells, major histocompatibility complex (MHC) class ll molecules, and a more developed capillary net-
work. Prostaglandin dehydrogenase (PGDH), monocyte chemoattractant factor 1 (MCP-1), PG F2e,recep-
tor (FP), macrophage migration inhibitory factor (MIF), LMP10, DMa and DMB are antigen processing
proteins, and CD80 and CD86 are co-stimulatory molecules. 'Rao et al. (1979); 2Wiltbank et al. (1995);
3 Silva et al. (2000); 4Townson et al. (2002); 'Bove et al. (2000); and 6Cannon and Pate (2000a,b; 2001).

day 5 to day 10 of the oestrous cycle (Cannon and Pate, 2000b). These results are similar to the

pattern of MHC class II expression within the corpus luteum that was reported earlier (Benyo

et al., 1991), in that MHC class II molecules are absent in the early corpus luteum, but

are found in the mid-cycle corpus luteum. Furthermore, fewer of the co-stimulatory mo-

lecules that are necessary for MHC-mediated activation of T lymphocytes, CD80 and CD86,

were found in early corpora lutea than in mid-cycle corpora lutea (Cannon and Pate, 2001).

The addition of CD80 or CD86 antibodies to luteal cell—T cell co-cultures inhibited luteal

cell-induced T-cell proliferation, indicating that these costimulatory molecules are necessary

for activation of T cells within the corpus luteum (Cannon and Pate, 2001). Lower expres-

sion of peptide processing components and co-stimulatory molecules in the early corpus

luteum may mean that T-cell activation cannot occur at this stage, and may contribute to

the refractory nature of the early corpus luteum to PGF7a. In the mid-cycle corpus luteum,

which is fully responsive to PGF2,„ the components necessary for activation of the immune

response are in place. Experiments are currently underway to determine whether the in-

crease in expression of these components is correlated with the timing of acquisition of
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luteolytic capacity. Components that are differentially expressed in early and mid-cycle cor-
pora lutea that may be critical for the acquisition of luteolytic capacity are summarized
(Fig. 2).

Resistance of the corpus luteum to PGF2c,during maternal

recognition of pregnancy

There is little question that embryonic factors, particularly IFN-T, act on the endometrium to
alter PGF20, secretion during maternal recognition of pregnancy (for a review, see Thatcher, this
supplement). In addition to the changes that occur in the endometrial secretion of PGF2e, dur-
ing early pregnancy, it has been suggested that embryonic factors also decrease the sensitivity
of the corpus luteum to PGF2, (Pratt et al., 1977).

Silvia and Niswender (1984) demonstrated that the corpus luteum of pregnancy (in sheep)
is less sensitive to PGF2,„ than the corpus luteum of the ovarian cycle, and the number of
embryos may be inversely correlated with the sensitivity of the corpus luteum to PGF2,.
Furthermore, in vitro secretion of progesterone by luteal tissue was greater when corpora
lutea came from ewes with healthy embryos compared with ewes with abnormal embryos,
and both of these were greater than when the corpora lutea came from ewes with no embryos
(Abecia et al., 2001). In addition to increasing luteal progesterone production, treatment of
luteal cells with conceptus secretory proteins reversed the inhibitory effects of PGF2,„ on
progesterone production (Wiltbank et al., 1992). Therefore, the steroidogenic capacity of the
corpus luteum is enhanced, and its sensitivity to PGF2, is reduced, by factors produced by
healthy embryos. The ability of immune cells to promote luteolysis may also be impaired
during maternal recognition of pregnancy, because there are fewer immune cells and class ll
MHC molecules within the corpus luteum during early pregnancy than late in the oestrous
cycle (Lobel and Levy, 1968; Benyo et al., 1991). Furthermore, IFN-a, which has properties
very similar to IFN-T, protects luteal cells from the cytotoxic effects of TNF-a and IFN-y,
and decreases the ability of these cytokines to stimulate luteal prostaglandin production
(Petroff et al., 2001). This result raises the very intriguing question of what changes occur
within the corpus luteum to make it less responsive to PGF2,, and if these changes rely on
mechanisms similar to those found in the early corpus luteum that is not yet responsive to

PGF2u.
Recently, a new concept has emerged that the lack of sensitivity of the corpus luteum during

maternal recognition of pregnancy is due to the ability of the corpus luteum to convert PGF2,
to its inactive metabolite, PGFM (Silva et al., 2000). These workers clearly showed that day
13 corpora lutea from pregnant ewes had greater concentrations and activity of PGDH (the
enzyme that metabolizes PGF2n to PGFM) than day 13 corpora lutea from cyclic ewes. The
greater concentration of PGDH was similar to that at day 4, as mentioned above. Therefore,
the ability to metabolize PGF2o, may be a common element that renders the corpus luteum
less sensitive to the luteolytic effects of PGF20,.

What maintains the corpus luteum after IFN- r declines?

The resistance to PGF2o, that is manifested during maternal recognition of pregnancy is lost by
day 19 of pregnancy in sheep (Silvia and Niswender, 1986). Little is known about maintenance
of the corpus luteum after maternal recognition of pregnancy. When IFN-T decreases, are
there other factors produced by the embryo or placenta that maintain the corpus luteum?
Does failure of the embryo to produce adequate luteotrophic signals, or failure of the corpus
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luteum to respond to luteotrophins, contribute to late embryonic or fetal loss in ruminants?

Although some of these losses are not likely to be due to inadequate luteal function, there

is some evidence that late embryos or fetuses can be rescued by induction of a new corpus
luteum (for a review, see Inskeep, 2002), implying that some fetal losses are a result of luteal

insufficiency.

If the resistance to PGF2o, is lost shortly after the period of maternal recognition of preg-

nancy, additional mechanisms must account for continued luteal function. In ewes and cows,

the luteotrophin may shift from LH during the oestrous cycle to PGE2 during pregnancy

(Weems et al., 1998; Kim et al., 2001); thus, an inability to shift from LH to PGE2 sup-
port could result in fetal loss. In rats, placental factors may contribute to luteal maintenance

and stimulation of progesterone production by stimulating increases of Cu,Zn-superoxide

dismutase (SOD) and Mn-SOD within the corpus luteum (Takiguchi et al., 2000), thus confer-
ring resistance to reactive oxygen species that contribute to the luteolytic actions of PGF2,.

Additional information obtained from the rat model has been used to indicate that the sensit-

ivity of the corpus luteum to luteolytic agents is dependent on the degree of differentiation of

the luteal cells. The corpus luteum of pregnancy is less sensitive to the luteolytic ef-

fects of prolactin than the corpus luteum of the ovarian cycle (Gaytan et al., 2001).
These authors postulated that the responsiveness of the corpus luteum to the luteolytic effects

of prolactin is dependent on the degree of differentiation of the luteal cells, that is, the more
differentiated cells in pregnancy were less sensitive than the less differentiated cells during the

oestrous cycle. Perhaps having survived luteolysis during maternal recognition of pregnancy,

the corpus luteum further differentiates and is less sensitive to additional luteolytic signals.
This contention would not be supported by the finding that luteal insensitivity to PGF2e,

was lost by day 19 of pregnancy (Silvia and Niswender, 1986), unless the factor that causes

luteolysis after the period of maternal recognition of pregnancy is something other than
PGF2„ The question remains whether an additional uterine or embryonic signal is necessary

for maintenance of the corpus luteum after the period of maternal recognition of pregnancy, or
if the signal during maternal recognition of pregnancy promotes differentiative events within

the corpus luteum that, if complete, protect the corpus luteum from subsequent luteolytic
insults.

Conclusions

Much has been done to understand the mechanisms by which PGF2e, causes luteolysis in

ruminants. As this knowledge has unfolded, it has provided insight into the components

that affect the sensitivity of the corpus luteum to PGF2a. Recent studies have focused on the
acquisition of luteolytic capacity as the corpus luteum develops, and it is likely that a con-

tinuum of events occurs that culminates in responsiveness to the luteolytic effects of PGF2,.

These events include changes in expression of genes important for luteal prostaglandin syn-

thesis and metabolism, development of the luteal microvasculature and extracellular matrix,
and an influx of immune cells and cytokine expression within the tissue. The sensitivity of

the corpus luteum to PGF2o, is again reduced during maternal recognition of pregnancy. It

remains to be determined whether these mechanisms are similar to those that decrease re-

sponsiveness during luteal development, and whether they are sufficient to prevent the fetal
loss that is observed in ruminants. The ability of the corpus luteum to survive luteolytic insults

is likely to depend on the correct balance of a variety of factors and the cells that produce

them. Achieving this balance at the proper time may be the key to luteal survival or luteal
regression.
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