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Inhibin, activin and follistatin are protein hormones with diverse physiological
roles. The involvement of inhibin in the regulation of pituitary FSH production and
secretion in adult males and non-pregnant females is well established. However, it
is unlikely that inhibin plays a similar role in pregnancy in ruminants. Inhibin and
activin molecules show a high degree of structural similarity to potent growth and
differentiation factors of the transforming growth factor 13(TGF-f3) superfamily of
peptides and their localization in a range of embryonic and fetal tissues indicates
that they may thus play a role in development. Furthermore, the demonstration
that follistatin is also present in a number of embryonic and fetal tissues and fluids
has further implications for the actions of activin to which it binds. The role of
inhibin, activin and follistatin in early development has yet to be established since
gene knockout experiments have so far proved inconclusive. During mid- and late
gestation, high concentrations of inhibin are found in the testes and plasma of male
fetuses of sheep and cattle. Inhibin may play a role in regulating pituitary FSH
release in late pregnancy, but the very high concentrations of this hormone in ovine
fetal testes and in male fetal plasma compared with that observed in the fetal ovary
and female fetal plasma has yet to be explained. The recent observation of high
concentrations of inhibin, activin and follistatin in amniotic fluid surrounding the
fetus is intriguing. Excretion via urine or lung liquid is partly responsible for the
presence of these proteins in amniotic fluid. The fetal membranes and the placenta
are also possible sources. It remains to be established whether these proteins
constitute an inactive pool of secreted hormone or whether they have other actions
in this fetal compartment.

Introduction

Inhibin was first isolated from bovine and porcine follicular fluid by Ling et al. (1985) and Robertson
et al. (1985). Two isoforms of inhibin have been identified, inhibin A and inhibin B. These glycoproteins
can suppress FSH production and secretion from rat anterior pituitary cells in culture. They are formed
by dimerization of a common a subunit, derived from a pro a-c precursor molecule, and distinct 13
subunits termed 13, (inhibin A) and 13, (inhibin B). Both 13, and 13„subunits, as well as the a subunit, have
been identified in most species studied, but it appears that only the a and OA subunits are significantly
expressed in adult ruminants since neither the 13, subunit sequence nor the cDNA clone has been
identified in sheep or cattle (see Tilbrook et al., 1992). The 13subunits of inhibin also form disulfide linked
dimers. These proteins, which have the capacity to stimulate FSH production and decrease inhibin

biopotency (Robertson et al., 1988), have been designated activin A (PAPA), activin B (13,13,)and activin
AB (PAY.
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Fig. 1. Schematic representation of the interaction between activin (ACT) and follistatin (FS3). ACT

can bind circulating FS3 in a 1:2 ratio. The major circulating forms of follistatin are FS303 and

FS315. Activin also binds to cell surface receptors (RACT) either directly or via association with

follistatin 288 (FS2) which is bound to cell surface heparan sulfate proteoglycans.

A protein, initially co-purified from follicular fluid but structurally distinct from the inhibins and
activins, was subsequently identified as follicle stimulating hormone-suppressing protein (FSP) or
follistatin by Robertson et al. (1987) and Ueno et al. (1987). This protein can suppress FSH production by
rat anterior pituitary cells in culture with a potency of 10-30% that of the inhibins (Robertson et al., 1990;

De Paolo et al., 1991). Although coded by a single gene, follistatin is now known to exist as several
different isoforms arising from two precursor molecules generated by alternative splicing, together with
different degrees of glycosylation (Michel et al., 1993). At least three major isoforms of follistatin are

thought to exist, all of which have been demonstrated by Nakamura et al. (1990) to bind activin with a

Kd value of approximately 1 nmol It has subsequently been revealed that activin has two binding
sites for follistatin but that inhibin has only one binding site for follistatin. Since follistatin has only one
binding site for activin and inhibin, it is likely that follistatin binds to these two proteins via their p
subunits (Shimonaka et al., 1991). The binding of activin to follistatin provides a potential role for this
protein in neutralizing the bioactivity of circulating activin, as the Kd value for the binding of activin to
its own receptor is reported to be approximately 0.1 nmol 1 I (Matthews and Vale, 1991; Attisano et al.,
1992). Furthermore, the presence of different isoforms of follistatin, all with the potential to bind activin,
may be important in regulating the many actions of activin. Two full length core proteins, FS315 and
FS303, containing 315 and 303 amino acids, respectively, constitute the circulating forms of follistatin,
while a further carboxy-terminal truncated form containing 288 amino acids (FS 288) is not secreted but
remains within the cell bound to cell surface heparan sulfate proteoglycans. Nakamura et al. (1991)

proposed that, although circulating follistatin may neutralize the activity of activin, cell-bound follistatin
could capture activin in the heparan sulfate proteoglycan matrix thus creating a reservoir of activin which
potentially has the ability to control activin availability to its receptor (Fig. 1).

Initial studies on the role of inhibin, activin and follistatin have focused on their potential feedback
regulatory role on the pituitary secretion of FSH in adults (de Kretser and Robertson, 1989). Subsequent

studies have demonstrated that they possess diverse paracrine and autocrine biological roles and often
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act as mutual antagonists. Thus, it has become recognized that these proteins have potent local
regulatory functions in adult gonads (see Findlay, 1993) and possibly within the pituitary itself
(Bilezikjian et al., 1993). The identification of these proteins in embryonic and fetal tissues and their
potential roles in the fetus is the subject of this review.

Feedback Role of Inhibin in Pregnant Ewes

The classical feedback role of inhibin and steroids on pituitary production and secretion in adults is
discussed in detail elsewhere (A. J. Tilbrook and I. J. Clarke) in this supplement. Although steroids act
at the hypothalamus and the pituitary to inhibit GnRH and gonadotrophin synthesis and secretion
respectively, inhibin, produced by granulosa cells in the female or Sertoli cells in the male, is thought to
act solely at the anterior pituitary to inhibit FSH production and secretion preferentially (Tilbrook et al.,
1993) thus leading to an inverse relationship between FSH and inhibin.

During pregnancy in ewes, the relationship between FSH and inhibin is altered. Plasma gonado-
trophin concentrations (LH and FSH) decrease to a nadir in late gestation (Chamley et al., 1974a; Jenkin
et al., 1977). Furthermore, the release of LH and FSH in response to the administration of gonadotrophin
releasing hormone (GnRH) is suppressed to minimal values in late gestation (Chamley et al., 1974a,b;
Jenkin and Heap, 1974; Jenkin et al., 1977), while the release of prolactin in response to thyrotrophin
releasing hormone is increased (Wright et al., 1981). In contrast to the cycle, this suppression of
gonadotrophin release is not associated with high plasma concentrations of inhibin, as Findlay et al. (1991)
demonstrated that immunoreactive inhibin concentrations decline from values equivalent to those
observed during the cycle from day 40 of gestation to barely detectable concentrations by late gestation.
It would appear that the combined chronic negative feedback effect of oestradiol and progesterone, and
not inhibin, is responsible for the redirection of the synthetic and secretory function of the anterior
pituitary away from gonadotrophins in favour of prolactin (Jenkin 1975; Chamley et al., 1976; Jenkin ei al.,
1977; Wright et al., 1978; see Fig. 2). A consequence of this redirection is that the surge of secretion of
oestradiol associated with parturition (Challis, 1971) does not elicit the release of pituitary LH at this time.

Embryonic Growth and Development

Despite the low concentrations of circulating inhibin in maternal plasma during gestation in sheep and
rats (Taya et al., 1989; Findlay et al., 1991; Yohkaichiya ef al., 1991), there is increasing interest in the
possible roles of these proteins in embryonic and fetal growth and development. The cloning of inhibin
and activin in the late 1980s (Mason et al., 1985; Forage ei al., 1986) led to the observation that their
subunits, particularly the 13 subunits, have a high degree of similarity to a range of growth and
differentiation factors grouped together as the transforming growth factor (TGF) superfamily (Massague,
1990). This similarity is particularly apparent in the carboxy-terminal amino acid sequence of the
precursor polypepetide, as noted by the conservation and position of the cysteine residues. Members of
the TGF-0 superfamily include four structurally related subfamilies which all exert growth and
differentiation regulatory activity: the TGF-I3 family, the inhibin family, the decapentaplegic gene
complex/VGI family and the Mullerian inhibiting substance family.

One of the first demonstrations that indicated that inhibin and activin may be regulators of early
embryonic development was the observation that activin A is a potent dorsal mesoderm inducing factor
in animal cap explants from Xenopus and that activin has been isolated from Xenopus cells. Mesoderm
induction is thought to be an initial step in early embryonic development. The early induction of
mesodermal muscle cell types by activin, as well as notochord and neuro-ectodermal cells such as
neuronal cells and melanocytes, provides strong evidence for a role of this protein in early embryonic
development (for review see Huylebroeck et al., 1993). A similar role for activin has been reported in
chicken embryos where it can induce formation of axial structures (Mitrani et al., 1990).

Subsequent studies in rats have demonstrated that inhibin, activin and follistatin, as well as the
activin-IIB receptor, are expressed in a range of embryonic and fetal tissues and localization is
consistent with growth effects during embryogenesis. The a subunit of inhibin has been identified in
somites as early as day 10-12 of pregnancy, while the 13subunit is present in heart primordium,
decidua capsularis and uterine blood vessel endothelium. The activin-IIB receptor is widely distributed
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Fig. 2. Negative feedback mechanisms controlling maternal pituitary gonado

trophin and prolactin secretion in late pregnancy in ewes. It is proposed that

progesterone and oestrogen, secreted primarily from the placenta of pregnant

ewes, are responsible for inhibition of pituitary LH and FSH release and

stimulation of prolactin release. In contrast to the oestrous cycle, relatively

little inhibin is released from the ovary during pregnancy. Inhibin and activin

produced by the placenta and fetus during pregnancy are not released into the

maternal compartment but may have local effects on the fetus.

in the embryo and syncytiotrophoblast of the placenta at this time, whereas follistatin is localized in

the embryonic neuronal system and the uterine myometrium (Roberts et ca., 1991; Roberts, 1993).


Such localization provides indirect evidence for the involvement of these peptides in embryonic
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growth and differentiation, although similar studies have not yet been undertaken in ruminants.
Furthermore, the results of homologous recombination studies in mouse embryonic stem cells to
create mouse strains carrying mutations in the genes encoding activin, inhibin and follistatin have
been only partly successful in demonstrating their potential actions in embryos (Matzuk et al., 1992,

1994; Vassalli et al., 1994).

Fetal Development

In a series of studies on the ontogeny of inhibin, activin and follistatin in ovine and bovine fetal tissues
and fluids, we have demonstrated that both immunoactive and bioactive inhibin is present in the fetal
testes throughout gestation with concentrations increasing to a maximum at approximately 130 days of
gestation in sheep and between 210 days and term in cows (Torney et al., 1990, 1992; Wongprasartsuk
ef aL, 1994). The increased concentrations of immunoactive versus bioactive inhibin concentrations
observed in these tissues indicates that a subunit products of inhibin, which are immunoactive but do not
suppress FSH production in the bioassay (Torney et al., 1992), predominate in the fetal testes of these
species. An alternative explanation is that follistatin, concentrations of which reach a maximum in the
ovine testes at between day 75 and day 95 of gestation (Wongprasartsuk et al., 1994), but which is
present in testicular extracts at all stages of gestation, may inhibit biological but not immunological
activity. Both bovine and ovine fetal ovaries also contain significant concentrations of inhibin during
gestation but concentrations of immunoactive inhibin are lower than those observed in the testes at all
stages of gestation studied.

The physiological significance of high concentrations of inhibin in the fetal gonads is not clear at
present. In sheep, the pattern of inhibin concentrations in fetal testes is inversely proportional to that of
testosterone (M. Goodman, D. M. de Kretser, J. McFarlane and G. Jenkin, unpublished). Whether this is
a direct effect of inhibin within the testes, or whether a change in FSH-induced testosterone production
is involved is not clear. The ovine fetal testes will certainly produce inhibin in response to FSH which, in
turn, inhibits testosterone synthesis (Albers et al., 1989a). Furthermore, inhibin-rich pig follicular fluid can
suppress FSH secretion by the pituitary in late gestation (Albers et al., 1989b). We demonstrated that
inhibin concentrations are high in fetal plasma in late gestation, and that concentrations in the plasma of
male fetuses are significantly higher than those in female fetuses (Wongprasartsuk et al., 1991). The
pattern of inhibin secretion into the circulation bears an inverse relationship to circulating FSH, in which
concentrations in female fetuses are significantly higher than those observed in male fetuses in
mid-gestation, with concentrations decreasing in both sexes before term (Sklar et al., 1981). The inverse
relationship between circulating inhibin and FSH concentrations has been re-examined by Phillips et al.
(1992), who demonstrated differences in bioactive versus immunoactive FSH. Although female fetuses
have significantly higher concentrations of both bioactive and immunoactive FSH than do male fetuses in
the circulation in late gestation, in contrast to immunoactive FSH, bioactive FSH does not decline
towards term in either of the sexes. Phillips et al. (1992) also demonstrated that the plasma concentrations
of inhibin were negatively correlated with those of immunoactive, but not bioactive, FSH in female fetal
plasma but were not correlated with either form of FSH in male fetal plasma. This data, taken together
with our observations of gonadal and circulating inhibin concentrations in the fetus, indicate feedback
mechanisms between the gonads and the pituitary or hypothalamus may be active in the fetus in late
gestation in a similar way to that in adults with high concentrations of inhibin in late gestation opposing
FSH release by the pituitary. However, the role of inhibin versus that of circulating steroid concentrations
may be different because in adults FSH secretion in female fetuses is relatively unopposed despite high
concentrations of circulating steroid hormones (Nathanielsz et al., 1982), whereas in male fetuses, unlike
in adults, the major negative feedback effect is likely to be due to inhibin and not testosterone, since testis
and circulating concentrations of testosterone in the late gestation male fetus are low (Yu et al., 1983) and
do not significantly decrease on castration, whereas FSH concentrations are high after castration in male
but not in female fetuses (Mesiano et al., 1991, and see Fig. 3).

Although we have demonstrated that inhibin is present in fetal tissues other than the gonads, such
as the adrenals and placenta (Wongprasartsuk et al., 1994), the major source of circulating inhibin in male
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Fig. 3. Negative feedback mechanisms controlling fetal pituitary gonadotrophin

secretion during late pregnancy in sheep. Secretion of pituitary gonadotrophins in

the female fetus is relatively unopposed in late gestation, while secretion of gon-

adotrophins in the male fetus may be under the influence of inhibin produced by

the fetal testes. Testosterone does not appear to play a major role in the control of

hypothalamic or pituitary gonadotrophin secretion in the late gestation male fetus.

fetuses was demonstrated to be the gonads. Castration of male fetuses in late gestation leads to a
precipitous decrease in circulating inhibin with concentrations reaching basal values within 12 h after
castration. Analysis of decay curves of inhibin concentrations after castration indicates that inhibin has
a half-life of approximately 3.5 h in fetal plasma (Jenkin et al., 1993). As determination of arterio—venous
differences across the placenta indicates that inhibin is not secreted into the maternal plasma, it is not
known whether inhibin is metabolized within the fetus or is secreted either via the placenta or the fluids
surrounding the fetus (allantoic and amniotic). A study of the concentrations of immunoactive inhibin in
ovine amniotic fluid throughout gestation shows a similar pattern to that observed in the fetal gonads,
with concentrations in amniotic fluid from male fetuses greatly exceeding those from female fetuses in
late gestation and with maximum concentrations being observed at approximately 120 days of gestation
(Fig. 4, Wongprasartsuk et al., 1994). Concentrations of inhibin in amniotic fluid decreased only slightly
after castration of male fetuses and remained high throughout the remainder of gestation. Subsequent
experiments indicate that either a source other than the fetal gonads is partly responsible for the high
concentrations of inhibin, and/or that inhibin is not rapidly metabolized in late gestation in this
compartment. The high concentrations of follistatin, which have the potential to bind inhibin, observed
in amniotic fluid of both male and female fetuses in late gestation (Wongprasartsuk et al., 1994) may
account for this potential lack of metabolism.

When amniotic fluid samples from either male or female fetuses were subjected to bioassay, FSH
concentrations in the rat pituitary cell bioassay were significantly stimulated at all gestational ages
studied. It was subsequently demonstrated that this stimulation of FSH was due to the presence of high
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Endocrinology Ltd.

concentrations of bioactive activin in the amniotic fluid samples (de Kretser et al., 1994) which far

exceeded those of follistatin during most of gestation. Activin from sheep amniotic fluid has
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subsequently been isolated and purified and the amino-terminal amino acid sequence shown to be
identical to the known sequence of sheep activin A (de Kretser et al., 1994).

Although the major source of inhibin, activin and follistatin is likely to be the fetus, the fetal
membranes and placenta cannot be excluded as a potential source of these proteins in amniotic fluid. It
is important that further studies on the source of, and possible role of, these multipotent proteins in the
fetus and fetal fluid compartment surrounding the fetus are undertaken.

Conclusions

Initial studies on the role of inhibin and activin in adult ruminants have focused on their feed-
back regulatory function in nonpregnant animals, as a regulator of follicular recruitment and in the
control of ovulation rate. Follistatin has been promoted as a factor responsible for neutralizing activin in
the circulation and the ability of specific molecular forms of follistatin to bind to heparan sulfate
proteoglycans on the cell surface has led to the suggestion that it may present activin to its cell surface
receptor.

The maternal plasma of ruminants contains basal concentrations of inhibin throughout gestation.
Furthermore, unlike during the oestrous cycle, circulating inhibin concentrations in maternal plasma are
not inversely related to circulating gonadotrophin concentrations, or to pituitary responsiveness to
GnRH, which are all minimal in late gestation. It is unlikely, therefore, that inhibin has a negative
feedback role on gonadotrophins in the mother during gestation.

The cloning of inhibin and activin has led to the observation that the 13subunit exhibits a high
degree of similarity with a number of potent growth promoting and differentiation factors. Studies in
rats have demonstrated that inhibin, activin and follistatin are expressed in embryonic and fetal tissues,
as well as in the placenta, and that activin affects the growth and differentiation of a number of cell types
in a variety of species, including mesoderm induction, regulation of anterior—posterior polarity and
induction of the body axis. Follistatin antagonizes many of these biological actions. In ruminants,
immunoactive and bioactive inhibin and follistatin are present in the fetal testes, ovaries, adrenals
and placenta throughout gestation. Fetal testicular inhibin concentrations increase markedly from
mid-gestation, resulting in high concentrations of circulating inhibin in male fetal plasma in late gestation
which rapidly decrease to basal values after castration. Although the stimulus for these high
concentrations of inhibin in the male fetus is not known, they are associated with a decrease in testicular
testosterone and a decrease in circulating FSH concentrations suggesting that, as in adults, inhibin may
be directly or indirectly involved in the regulation of testicular androgen and pituitary FSH secretion
during late gestation.

Inhibin concentrations in ovine amniotic fluid, in fetuses of both sexes, increase during gestation,
and concentrations in male fetuses are greater than those in female fetuses. The fetal gonads account
for most of the inhibin observed in amniotic fluid and it is secreted into this compartment from both
urine and tracheal fluid. However, an extra-gonadal source, probably the fetal membranes, also
contributes to inhibin concentrations in amniotic fluid in late gestation. Follistatin is detectable in
amniotic fluid but its concentration does not appear to alter during gestation, nor is there a significant
difference between the sexes. Recent studies have demonstrated that concentrations of activin are
much greater than those of follistatin in amniotic fluid for most of gestation. Activin has been
purified from amniotic fluid and sequenced and shown to be identical to the known sequence of
ovine activin A.

The role of these potent ally potent regulatory proteins in this fetal fluid compartment is not known.
However, it is possible that they constitute an inactive reservoir of hormone secreted from the fetus or
that they are partly produced and secreted from the fetal tissues surrounding the amniotic fluid. The
regulatory role, if any, of these potentially potent growth and differentiation factors in the fetus and
amniotic fluid has yet to be established.

Research described in this review was undertaken under the auspices of NH and MRC funding to the
authors.
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