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Overview

One of the most fundamental axioms of mammalian reproduction is that 
pregnancy requires the support of progesterone without which it cannot 
be established or maintained. Though this basic physiological tenet was 
accepted long ago, major gaps in our understanding of the physiology of 
both pregnancy and parturition remain which hamper our ability to solve 
clinically and agriculturally significant problems such as low fertility, fetal 
growth restriction, preterm birth and poor neonatal outcomes. The historical 
reliance of our understanding of both pregnancy and parturition on this single 
hormone, and how it has been measured in the vast majority of studies, may 
represent a tangible weakness and impediment to progress. Other weaknesses 
include a desire to fit all species into a unified paradigm, and a reluctance 
to accept that physiological processes regulated by progesterone or other 
progestins in different tissues might vary in reliance on classic (nuclear 
receptor) versus other, non-classical mechanisms of action. The relative 
importance of these distinct response pathways in certain cells or tissues also 
may differ across species, as does so much of basic reproductive physiology. 
It is well known that certain species are reliant on luteal function throughout 
gestation, whereas the placenta subsumes endocrine support in others (Geisert 
& Conley 1998), yet progesterone alone is still believed to be the single 
common element. As radical as it might seem, however, progesterone may 
not be the single common hormone of pregnancy in mammals. 

Combine these caveats with the fact that only a relatively small number of the 
5,500 or so species of mammals have been evaluated throughout pregnancy, 
and it seems clear that our understanding of the role of steroids in pregnancy 
and parturition is poor at best. In this review we will address steroidogenesis 
and the events that bring about parturition, but will do so in an attempt to 
highlight potential weaknesses in the commonly held assumptions that have 
become the basis for designing and interpreting studies on the maintenance 
of pregnancy and the initiation of parturition in domestic species. We would 
like to think that the pioneers of steroid biology would welcome such a 
discussion, and might even wonder with all the studies conducted, and/
or modern methodologies applied, why we have made so little progress 
in addressing this fundamental question.
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Brief historical perspective

A discussion of the endocrine control of pregnancy and parturition seems incomplete without 
reflecting on the history of how progesterone was identified and its role defined, because 
much of our current understanding is founded on assumptions derived from those foundational 
discoveries. If it was Berthold and Brown-Sequard that gave life to the notion of internal 
secretions, it was the work of many others that began to clarify the complexity of the sex steroid 
hormones and their actions. As Marshall put it in 1922, almost a century ago, “We are thus 
forced to conclude that the phenomena of pregnancy and parturition are brought about by 
chemical stimuli acting through the blood-stream (Marshall 1922).” This basic understanding 
of pregnancy and parturition were crucial in establishing the existence of the progestogenic 
class of steroid hormones, specifically as it relates to the endocrine function of corpora lutea 
and the placenta. The effects of progestins on the endometrium led ultimately to the chemical 
identification of progesterone itself. Specifically, isolation of bioactive extracts from corpora 
lutea, was followed by the purification, crystallization and eventually the determination of 
the formula of progesterone, all of which was accomplished through the combined efforts of 
several groups between 1929-1934 using in vivo bioassays evaluating endometrial responses 
(Corner 1946). 

In fact, several bioassays were developed and used during that period. Most, like the Corner-
Allen assay which used adult female rabbits (Corner & Allen 1929), or the Clauberg-McPhail assay 
in immature, estrogen-primed rabbit does (McPhail 1934), assessed the degree of endometrial 
proliferation or decidual cell response (Astwood 1939) induced by compounds administered 
by injection (Glasser 1975). Studies on the relative potencies of endogenous pregnanes were 
few. Instead, the search for synthetic, orally active progestins refocused investigators toward 
developing therapeutic compounds. However, as some have pointed out, the most reliable 
and relevant bioassay is the maintenance of pregnancy, and many of the synthetic progestins 
that stimulate endometrial development may not be capable of doing so (Glasser 1975). More 
importantly, few endogenously synthesized pregnanes (putative progestins) have been tested 
for their ability to sustain pregnancy. Studies such as these are particularly difficult to conduct 
in large animal species not only because of the doses required but also because of the relatively 
long gestation length. Therefore, in contrast to the multiple steroids populating the estrogen, 
androgen and corticoid classes, after eight decades the progestin class still contains only a 
single, physiological steroid, progesterone, whose bioactivity had been definitively established.

The focus on progesterone as the sole physiological progestin, and the  
potential existence of other bioactive progestins

How plausible is it that progesterone is the only physiological progestin in mammals? As early 
as 1959, Short commented that circulating progesterone concentrations in pregnant mares 
were surprisingly low, <4 ng/ml (Short 1959). This landmark observation was confirmed and 
extended decades later by Holtan et al. (Holtan et al. 1975; Holtan et al. 1991) and others 
(Ousey et al. 2005), who showed, ultimately using gas chromatography mass spectrometry, 
that progesterone concentrations in mid to late equine gestation were <0.5ng/ml, including 
in the circulation of the fetal foal (Ousey et al. 2003). Conversely, circulating concentrations 
of 5α-reduced metabolites like 5α-dihydroprogesterone (DHP) were very high (Hamon et 
al. 1991; Holtan et al. 1991; Ousey et al. 2003). Moreover, horses are not unique in this 
regard – very low to undetectable plasma concentrations of progesterone are found in zebras 
(Klima et al. 1999), elephants (Hodges et al. 1997) and the rock hyrax (Kirkman et al. 2001). 
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Importantly, DHP has also been shown to compete equally with progesterone for binding 
using equine endometrial (Jewgenow & Meyer 1998) and mammary (Chavatte-Palmer et al. 
2000) extracts, endometrial extracts of the elephant (Meyer et al. 1997; Jewgenow & Meyer 
1998; Greyling et al. 1997) and rock hyrax (Kirkman et al. 2001), and to lesser, more variable 
degrees in other species (Jewgenow & Meyer 1998). Unfortunately, attempts to demonstrate 
bioactivity of DHP on equine myometrial contractility were unsuccessful, but progesterone 
was no more active in those assays (Ousey et al. 2000). Thus, for some time alternative or 
additional endogenous pregnanes with progestational activity have been postulated to exist 
but never confirmed. Consequently, studies on pregnancy and parturition have remained 
focused on measuring progesterone, most without some form of chromatography and using 
immunoassays with primary antisera that necessarily cross-react (Behrman 1988) with multiple 
pregnanes of unknown bioactivity and therefore unknown significance.

Recent efforts in one of our laboratories have attempted to build on the pioneering studies in 
equine pregnancy cited above (Short 1959; Holtan et al. 1975; Holtan et al. 1991; Jewgenow 
& Meyer 1998; Meyer et al. 1997), by re-examining the bioactivity of DHP in vivo and in vitro 
(Scholtz et al. 2014). We first demonstrated that DHP can induce equine endometrial growth and 
profoundly stimulate endometrial expression of the progesterone-responsive genes uterocalin 
(Crossett et al. 1996; Crossett et al. 1998) and uteroglobin (Muller-Schottle et al. 2002; Beier-
Hellwig et al. 1995) in ovariectomized mares (Scholtz et al. 2014). Interestingly, Kontula et 
al. also reported in rabbits that DHP was highly uterotropic if administered locally into the 
uterus (Kontula et al. 1975), but not if administered by injection (Rahman et al. 1975). Second, 
we showed that DHP (but not vehicle) could maintain equine pregnancies with normal fetal 
development to day 27 after progesterone was withdrawn by inducing luteal regression on day 
14 (Scholtz et al. 2014). Third, we demonstrated using a reporter assay in vitro [MMTV-luciferase 
in HepG2 cells, co-transfected with expression constructs encoding either equine or human 
progesterone receptor (PR)] that DHP activates the equine PR with equal potency and efficacy 
to progesterone itself and does so at concentrations seen during the luteal phase and second 
half of equine gestation (Scholtz et al. 2014). Although exhibiting one-fifth the biopotency of 
progesterone in terms of activating the human PR in our studies (Scholtz et al. 2014), DHP 
exhibits high affinity binding to human myometrial extracts (Kontula et al. 1975), and was 
equally efficacious in our in vitro bioassay at concentrations found circulating systemically in 
women in their third trimester (Milewich et al. 1975; Hill et al. 2007). The binding of DHP 
to the ligand-binding domain differs among the PR of various species, with binding of DHP 
to endometrial cytosolic extracts from elephants and horses equal to or greater than that for 
progesterone (Wierer et al. 2012), consistent with our in vitro bioactivity data (Scholtz et al. 
2014). This is an important, if simple, concept. Steroids do not themselves evolve, and as 
conserved as their actions may be across species, the steroid receptors do and have evolved 
to respond to different endogenous agonists (Baker 2001; Baker 1997; Baker & Uh 2012). 
Thus, we have answered our question whether progesterone is the only potent, physiological 
agonist in the progestin class, and indeed it is not. It seems to us equally likely that DHP is 
not the only endogenous progestin in mammals, even in species like the horse where DHP 
exhibits bioactivity comparable to progesterone (Scholtz et al. 2014). The challenge then is 
to define relative biopotencies of DHP and various other potential progestins across species 
using species-specific bioassays and measuring endogenous concentrations by appropriately 
specific methods.

Refocusing attention on DHP as a bioactive progestin of physiological significance, in some 
species at least, immediately implicates the 5α-reductase enzyme system as important in the 
physiology of pregnancy and perhaps even the initiation of parturition. Evidence suggests that 
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of the two major isoforms, the 5α-reductase type 1 isozyme is likely to play the more important 
role in conversion of progesterone to DHP than is the type 2 isozyme, and our studies in horses 
support this. There was a clear predominance of type 1 over type 2 expression in equine 
endometrium and chorio-allantois from late pregnancy based on quantitative transcript analysis 
(Scholtz et al. 2014). Expression of the type 1 isozyme predominates in human (Milewich et al. 
1979) and mouse placenta (Mahendroo et al. 1996) also, and in human corpora lutea as well 
(Haning, Jr. et al. 1996). Moreover, since women with 5α-reductase type 2 deficiency have 
normal concentrations of DHP (Milewich et al. 1995), 5α-reductase type 1 isozyme alone is 
adequate and likely responsible for the synthesis of DHP. In contrast, sheep placentas at term 
appear to exhibit higher levels of expression of the 5α-reductase type 2 than type 1 based on 
transcript analysis. Still, there is much greater expression of 5α-reductase in caruncles (maternal) 
than in cotyledons (fetal placental; Fig. 1). 

Fig. 1. Expression (qPCR) of mRNA for 5α-reductase isozymes 1 and 2 in sheep placenta at 
term (149.6 ± 0.5 days). CAR = caruncle = maternal placenta; COT = cotyledon = fetal 
placenta. Two of the ewes had twin lambs; the remainder had singletons. LP Reynolds, AJ 
Conley, CO Lemley, KA Vonnahme, & JS Caton (unpublished observations).

No known cases of 5α-reductase type 1 deficiency have yet been found in nature (Griffin et 
al. 2001), even though there are many reported deficiencies of the type 2 isozyme in humans 
(Imperato-McGinley & Zhu 2002; Wilson 2001; Wilson et al. 1993) and some likely in horses 
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(Knobbe et al. 2011). However, the role of 5α-reductase type 1 in pregnancy is suggested by 
the results of gene knockouts in mice which induces fetal death (Mahendroo et al. 1997) and 
impairs cervical ripening thereby preventing normal delivery (Mahendroo et al. 1999). In 
addition, in all species studied and reported to date, both isozymes metabolize progesterone 
more efficiently than testosterone (Wilson 1975; Russell & Wilson 1994; Levy et al. 1995), 
suggesting that the 5α-reductase type 1 and 2 isozymes are more adapted for progesterone 
metabolism than for testosterone. These observations are consistent with the notion that the 
physiological support of pregnancy, and perhaps even parturition, are in part influenced by 
the expression of 5α-reductase type 1, and the products of its enzymatic activity. For any 
particular species, the significance of 5α-reductase in terms of a role in supporting pregnancy 
would depend crucially on the bioactivity of DHP at the PR. The existence of isoforms of the 
nuclear PR (Wei et al. 1988) is an equally important issue for consideration. Specifically, the 
results of human and rodent studies suggest that withdrawal might be associated with changes 
in the predominance of active and antagonistic PR isoforms, PR-A and PR-B (the “isoform 
switch hypothesis”; ISH), in addition to changes in cytokine and/or co-activator expression in 
myometrium and cervix (Mendelson 2009; Wagner et al. 2012; Fang et al. 2002; Merlino et 
al. 2007). Evidence for the existence of these PR isoforms has been obtained in cattle in early 
pregnancy (Slonina et al. 2012) , but their possible involvement in functional progesterone 
withdrawal and the parturition cascade in ruminants or other domestic species remains unclear.

In addition to changes in PR isoforms, there are potentially other physiological effects of DHP 
or progesterone mediated through alternative transduction pathways. These ‘other pathways’ 
are often invoked to explain the rapid, non-genomic or non-translational effects of steroids, and 
indeed both classical and non-classical membrane-bound steroid receptors have been identified 
(Bernauer et al. 2001; Losel et al. 2003; Zhu et al. 2003; Karteris et al. 2006; Guerriero 2009). 
For example, membrane-coupled receptors responsive to progesterone (PGRMC1) have been 
found in myometrium of humans (Karteris et al. 2006) and other species (Slonina et al. 2012), 
and we have recently found expression of membrane estrogen and progesterone receptors in 
sheep endometrium and chorion during early pregnancy (days 14 through 30;(Reynolds et al. 
2012a; Reynolds et al. 2012b)). How physiologically important these and other non-traditional 
pathways of progestin action may be is unknown. Attempts to demonstrate direct bioactivity of 
DHP on both human and equine myometrial contractility in vitro (Lofgren & Backstrom 1994; 
Lofgren et al. 1992; Perusquia & Jasso-Kamel 2001; Ousey et al. 2000; Mesiano 2004) have 
been equivocal. Progesterone itself was unable to influence equine myometrial contractility in 
vitro (Ousey et al. 2000), though it has been shown to be inhibitory in similar studies with rabbit 
(CSAPO 1956; CSAPO & TAKEDA 1965) and human myometrium (Ruddock et al. 2008). The 
inhibition of human myometrial contractility by progesterone took hours to develop, and could 
not be blocked with a PR antagonist (Ruddock et al. 2008). Thus the effects of progesterone 
itself on myometrial contractility are neither immediate, as membrane receptor activation 
might be expected to be, nor are they likely mediated by classic nuclear PR and subsequent 
gene activation. 

Even if DHP lacks direct effects on myometrial contractility, it may be a substrate for 
conversion to other bioactive pregnanes, which could occur in specific tissues and explain 
bioactivity in vivo that is not PR-mediated. Specifically, the 3α-reduced metabolite of DHP, 
allopregnanolone, is a potent gamma-aminobutyric acid (GABA) type A receptor agonist and 
“neurosteroid” that potentiates GABA itself when present at even low concentrations (Reddy 
2003). Allopregnanolone has been shown to reduce human myometrial contractility within 
minutes of addition to muscle strips in vitro (Perusquia & Jasso-Kamel 2001). Similar relaxant 
effects have been reported for rabbit (Majewska & Vaupel 1991) and rat (Putnam et al. 1991) 
myometrium. Moreover, the circulating concentrations of allopregnanolone, and several 
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related pregnanolone isomers that increase during pregnancy (Parizek et al. 2005), decrease 
around the time of birth in women (Hill et al. 2001). Some of the effects of these neurosteroids 
may be central, mediated in part through oxytocin release (Leng & Russell 1999; Brussaard 
et al. 2000); less is known concerning tissue concentrations derived by local synthesis from 
DHP. Thus, whether or not DHP is a physiologically significant agonist of the PR in species 
other than horses, metabolism of DHP to allopregnanolone may mediate a physiological role 
in pregnancy and parturition. In this regard, we recently have shown that mRNA expression 
of one of the enzymes able to convert DHP to allopregnanolone, AKR1C3, can be regulated 
sheep fetal hypothalamus during late pregnancy (day 130, approximately 0.9 of gestation) by 
maternal nutrient intake (elevated in restricted- vs. control-intake ewes) as well as maternal 
treatment with melatonin (decreased in melatonin-treated vs. control ewes; LP Reynolds, AJ 
Conley, JS Caton, KA Vonnahme, & CO Lemley, unpublished observations). Levels of AKR1C3 
mRNA also were present in sheep maternal (caruncular) and fetal (cotyledonary) placental 
tissues at parturition, but were 15-fold greater in maternal vs. fetal placenta (LP Reynolds et 
al., unpublished observations).

However it is that parturition is initiated, it must be timed so that the development of the 
fetus and its physiological preparation for birth is adequate to ensure the greatest likelihood of 
extra-uterine survival of the neonate. This requires dialogue between fetus and dam which, in 
the absence of neural connections, is necessarily hormonal in nature. The fetus either signals 
readiness for birth to the uterus, or the placenta signals impending delivery to the fetus. If 
successful, that dialogue culminates in maturation of the fetal adrenal cortex and the secretion 
of cortisol which is not only an element of the parturition process that is shared across all 
species studied, but is a prerequisite for neonatal survival. How fetal adrenal maturation and 
cortisol secretion is regulated remains one of the great mysteries of the physiology of birth 
(Liggins & Thorburn 1994). 

Even though the gland is capable of responding to ACTH stimulation, fetal adrenal cortex 
is poorly organized and functionally quiescent for most of pregnancy (Conley & Assis Neto 
2008). As term approaches however, the hypothalamic-pituitary-adrenal axis (HPAA) becomes 
activated (Wintour et al. 1975; Glickman & Challis 1980), though this is less dramatic in pigs 
(Silver & Fowden 1989; Conley et al. 1994) and difficult to demonstrate in the fetal foal (Silver & 
Fowden 1994). In addition, although fetal adrenal activation is required for fetal maturation and 
neonatal survival, it is not an initiator of the parturition cascade in all species. Pituitary aplasia 
prolongs pregnancy and prevents timely parturition in cattle (Stormont et al. 1956; Kendrick et 
al. 1957) and ewes (Liggins & Kennedy 1968; Liggins et al. 1967; Liggins & Thorburn 1994), 
but not reliably in primates (Liggins & Thorburn 1994; Novy et al. 1977; Mueller-Heubach 
et al. 1972). Therefore, there is clearly a spectrum across mammalian species with respect to 
the degree to which the fetal HPAA serves as the trigger for initiating birth even though fetal 
adrenal cortisol secretion is important for neonatal survival in all species known.

Little is understood about how activation of the fetal adrenal axis is regulated, but estrogens, 
prostaglandins and even neurosteroids have been implicated in providing both positive and 
negative stimuli (Conley & Assis Neto 2008). As noted above, the fetal adrenal is capable of 
responding to ACTH throughout gestation, and cortisol secretion by the fetal adrenal provides 
feedback on the hypothalamus in human (Goto et al. 2006) and ovine (Unno et al. 1998a) 
pregnancy. The sustained increase in fetal ACTH and cortisol that occurs over the last week or 
two of gestation in sheep (Brooks et al. 1989) and cattle (Comline et al. 1974) suggests a change 
in sensitivity to feedback. Results of studies in pigs indicate that placental tissue, if left in situ 
and still viable after fetal demise, can prevent a single remaining, viable fetus from initiating 
its own birth (Stryker & Dziuk 1975). Thorburn et al. postulated that the placenta somehow 
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influences the sensitivity of the fetal hypothalamus to negative feedback as fetal cortisol increases 
at term (Thorburn et al. 1991), and hormonal signals from the placenta have also been shown 
to activate the fetal HPAA. Specifically, estradiol (Wood 2005) and prostaglandin E2 (Challis et 
al. 1976; Fowden et al. 1987) secretion has been shown to increase in the ovine fetus in late 
gestation, both stimulate ACTH release (Young et al. 1996a; Young et al. 1996b) and cortisol 
secretion (Louis et al. 1976) and can induce parturition (Young et al. 1996a; Wood 1999; 
Wood & Saoud 1997) in this species. Conversely, inhibition of prostaglandin synthesis delays 
activation of the fetal HPAA (Unno et al. 1998b; McKeown et al. 2000; Gersting et al. 2008). 
The effect is likely above the level of the pituitary because hypothalamic disconnection severely 
mutes the response (Young et al. 1996b). If estradiol and/or prostaglandin E2 are key elements 
acting in the hypothalamus to activate the HPAA, as the results of some studies suggest, the 
cellular targets and mechanisms have yet to be identified.

The involvement of neurosteroids in modulating the physical activity of the ovine fetus in 
utero has been convincingly demonstrated (Nicol et al. 2001) and the potential for regulating 
the HPAA has been suggested (Conley & Assis Neto 2008; Brunton et al. 2014). Some of the 
most compelling data are those of Yawno et al. (Yawno et al. 2009), who showed that inhibition 
of 5α-reductase activity by carotid infusion of the enzyme inhibitor finasteride induced an 
immediate increase in fetal cortisol concentration. Finasteride has been shown to decrease 
neurosteroid concentrations in the brain of rats (Mukai et al. 2008), and GABAA receptor 
agonists have been shown to modulate their HPAA (Mikkelsen et al. 2008). Additionally, the 
increase in fetal cortisol induced by finasteride in the fetal lambs was almost completely blocked 
by simultaneous infusion of alfaxalone, which is an 11keto-derivative of the neurosteroid 
allopregnanolone (Yawno et al. 2009). Allopregnanolone is among the most potent of the GABAA 
receptor modulators (Belelli & Lambert 2005). It is present in the fetal brain and suppresses fetal 
arousal (Crossley et al. 1997). Stress increases allopregnanolone concentrations in fetal brain, 
and concentrations fall at birth (Hirst et al. 2006), suggesting that placental pregnanes may well 
provide a source of substrate for synthesis locally in the fetal brain. Although concentrations 
of allopregnanolone are not dependent on the fetal adrenal (Nguyen et al. 2004), it is unclear 
whether or not fetal adrenal activation or neonatal survival are influenced by circulating or local 
CNS levels of allopregnanolone. The extent to which placental pregnane synthesis contributes 
to circulating neurosteroid concentrations or feeds local synthesis in the fetal hypothalamus 
is unknown. The state of adrenal activation in mice deficient in 5α-reductase has not been 
reported (Mahendroo & Russell 1999), but allopregnanolone has been shown to suppress the 
adrenal axis in late pregnant rats (Brunton & Russell 2011). A mechanistic convergence between 
or among estradiol, prostaglandin E2 and neurosteroid synthesis in the fetal hypothalamus has 
not been reported but all are likely modulators of adrenal activation in the fetus.

The involvement of 5α-reductase in the parturition cascade may extend beyond the fetal 
HPAA and have relevance purely in the context of progesterone metabolism and physiological 
withdrawal. Whether or not fetal adrenal activation is required to initiate birth, and clearly 
in some species it is not (Novy et al. 1977), maternal progesterone (or progestin) withdrawal 
is likely a universal requirement across mammals. 5α-reduction of progesterone to inactive 
metabolites (unable to bind or activate PR of that species) may be critically important in some 
species. Evidence reviewed previously argues that increased steroidogenic enzyme expression 
and placental estrogen synthesis induced by cortisol cannot impact placental progesterone 
production significantly because of the large difference in total circulating mass of progestins 
compared with estrogens (Conley & Assis Neto 2008). If progesterone withdrawal does not 
involve decreased synthesis, it must involve increased metabolism to inactive products or 
changes in receptor or effector pathways (Merlino et al. 2007; Karteris et al. 2006; Mendelson 
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& Condon 2005) instead. The effectiveness of PR receptor antagonists in disrupting pregnancy is 
variable dependent on stage of pregnancy and species, but can either induce abortion or facilitate 
the abortifacient effects of prostaglandins in domestic animals (Hoffmann & Schuler 2000; Shenavai 
et al. 2012), primates (Baird 1993; Spitz et al. 1996) and rodents (Elger et al. 2000). This argues 
for a primary role for PR activation in pregnancy. As indicated above, the PR has evolved (Baker & 
Uh 2012) to exhibit differential binding and perhaps activation by various pregnanes (Jewgenow 
& Meyer 1998; Kontula et al. 1975). Immuno-assays cannot distinguish the various pregnanes, 
even if their bioactivity was defined in a particular species. In other words, even if measurable, 
the physiological significance of changes in pregnane concentrations relies on characterization 
of the bioactivities of these metabolites, and differences in biopotencies among species are to 
be expected. Progesterone withdrawal, even at a systemic level, cannot be evaluated until these 
steroids can be measured and their bioactivities are known. If 5α-reduction of progesterone 
generates inactive metabolites, the induction of this enzyme in uterine or placental tissues could 
well initiate progesterone, or progestin, withdrawal.

The significance of progestin withdrawal may extend beyond species in which placental 
progesterone secretion is sufficient to maintain pregnancy even to those that are luteal-dependent. 
Systemic progesterone concentrations decrease dramatically after day 28 of pregnancy in pigs 
(Robertson & King 1974), due in part to uterine uptake and presumably metabolism (Magness 
et al. 1986). This decline continues throughout gestation, and fetal adrenal activation occurs 
in late gestation (Randall & Tsang 1986) before there is any evidence of luteolysis. Uterine 
prostaglandin release is not evident until the day of farrowing (Silver et al. 1979). The increase 
in prostaglandins, which induces luteolysis, is preceded by a decline in progesterone associated 
with increasing fetal cortisol and an increase in maternal estrogens (Ford et al. 1998). In goats, 
the array of progesterone metabolites is large and increases as gestation proceeds (Linzell & Heap 
1968; Sheldrick et al. 1981). Even if prostaglandin release completes luteolysis in pre-partum does, 
it is preceded by a significant decline in progesterone, consistent with the onset of parturition 
(Ford et al. 1999; Ford et al. 1998; Ford et al. 1995). Thus, increased pregnane metabolism may 
provoke progestin withdrawal in goats. 

Pregnane metabolism also has been investigated in sheep. Anderson et al (Anderson et al. 
1975) demonstrated increased placental 17α,20α-dihydroxypregn-4-ene-3-one in late gestation, 
which increased in maternal plasma after dexamethasone administration (Flint et al. 1975). 
Related 3α,20α- and 17α,20α-dihydroxylated metabolites have been identified in late gestation 
bovine fetuses (Janowski 1994). In contrast, others have reported that 5α-reduction was the major 
route of progesterone metabolism during pregnancy in ewes (Tsang & Hackett 1979). The major 
phenotype of mice lacking 5α-reductase type 1 is a defect in parturition (Mahendroo et al. 1996). 
If species differ in the source of progesterone or other progestins that maintains pregnancy, the 
array of metabolites is likely to be broad. However, if 5α-reduction of progesterone in the fetal 
hypothalamus suppresses fetal adrenal activation, but promotes progestin withdrawal in the 
placenta, the effects of its inhibition or ablation will differ depending on its relative importance in 
certain species. Inhibition of 5α-reductase would promote premature parturition if the fetal HPAA, 
freed of suppression by neurosteroids, activates and can initiate birth, consistent with Yawno et al 
(Yawno et al. 2009). Conversely, 5α-reductase inhibition would delay parturition if 5α-reduction 
of progesterone is an important route of progestin withdrawal in the placenta and uterus (Fig. 2). 
Finasteride, a potent 5α-reductase inhibitor, induced parturition in mares even though systemic 
DHP concentrations were not decreased and progesterone was increased by treatment (Ousey 
et al. 2001). Conversely, we reported that finasteride treatment prolonged gestation in spotted 
hyenas (Conley & Assis Neto 2008), but no effect was seen on gestation length in rats (Mann 2006). 
However, we have shown recently that fetal hypothalamic 5α-reductase type 1 mRNA can be 
up-regulated by maternal melatonin treatment (Reynolds et al. 2013) and that both 5α-reductase 
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type 1 and 2 are expressed at 3- to 4-fold greater levels in term placenta of sheep (LP Reynolds, 
AJ Conley, PP Borowicz & JS Caton, unpublished observations). The induction of 5α-reductase 
type 1 expression in sheep placenta by melatonin is particularly intriguing, because it suggests 
that the gene can be regulated, and in women and non-human primates (Jolly 1972) as well as 
in mares (Rossdale & Short 1967), labor most often occurs at night. Even though this is not the 
case in sheep (Lindahl 1964), there is still a nocturnal increase in melatonin in pregnant ewes 
and their fetuses (Yellon & Longo 1987).

Summary and conclusions

As a final note, neurosteroid synthesis is dependent on the continued metabolism of DHP 
to metabolites by 3α-reduction, whereas oxidative metabolism of progesterone or DHP via 
20α- or 20β-hydroxylation is presumed to generate inactive metabolites. All of these reactions 
can be catalyzed by aldo-keto reductases (particularly those of the 1C family), which can also 
catalyze the synthesis of prostaglandins (Penning 1999). The aldo-keto reductases represent a 
large family of isozymes (Hyndman et al. 2003; Penning et al. 1997), and although they may 
be identified presumptively (and annotated) by transcript sequence, their activities are unlikely 

Fig. 2. Diagrammatic representation of the hypothesized involvement of 5α-reductase enzyme activity 
in the physiology of parturition. Prepartum, 5α-reductase activity is high in the fetal hypothalamus 
(paraventricular nucleus, PVN) resulting in production of inhibitory neurosteroids such as allopregnanolone 
that suppress the HPA axis; at the same time 5α-reductase activity is low in the placenta. At parturition, 
PGE2 from the placenta suppresses 5α-reductase activity in fetal hypothalamus, resulting in low levels of 
inhibitory neurosteroids and activation of the fetal HPA axis; simultaneously, 5α-reductase activity in the 
placenta increases, resulting in metabolism of progesterone to 5α-pregnanes and effective progesterone 
withdrawal (in sheep, for example, DHP binds the progesterone receptor low affinity (Jewgenow & Meyer 
1998). Top, fetal hypothalamus and pituitary; middle, fetal adrenal; bottom, placentome.
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to be totally conserved across species. Nevertheless, they have been implicated in the timing of 
parturition (Byrns 2011). More importantly perhaps, they also represent a potential metabolic 
cross-road of steroid and prostanoid conversion (Fig. 3), and may play an especially pivotal 
role therefore in both progesterone withdrawal and prostanoid-stimulated uterine contractility. 
An increase in AKR1C expression might accelerate the metabolism of progesterone and the 
synthesis of prostaglandin, for instance. Alternatively, if substrate availability of one pathway 
were to increase markedly, the increased competition for available enzyme might decrease 
metabolism through the other pathway. The possible involvement of AKR1C isozymes in both 
prostanoid and pregnane metabolism is of both great interest and potential significance. In 
addition, as noted, we have detected substantial levels of AKR1C3 mRNA during late pregnancy 
in sheep fetal hypothalamic and placental tissues that can be regulated (Reynolds et al. 2013). 
What role (s) these play in fetal preparation for birth and initiation of parturition, however, 
remains to be defined.

Fig. 3. Diagrammatic representation of prostanoid (modified in part from Dozier et al. 2008) and 
progesterone pathways of metabolism, potentially linked by aldo-ketoreductase 1C (AKR1C1/2/3) isozymes 
shown, together with cyclo-oxygenase (COX) and 5α-reductase (SRD5A1/2) isozymes and prostaglandin 
dehydrogenase (PGDH), shown in blue. The AKR1C3 isozyme potentially acts as a central regulator of 
myometrial contractility and fetal HPAA activity via its ability to convert DHP to its 3α-reduced metabolite, 
allopregnanolone, which is a potent gamma-aminobutyric acid (GABA) type A receptor agonist and 
thus hyperpolarizes excitable tissues and neurons. AKR1C3 also is able to convert PGH2 directly to 
PGF2α, and thus one alternative name for the enzyme is PGF synthase. See text for further explanation. 
Abbreviations: AKR = aldo-ketoreductase; COX = cyclo-oxygenase; DHP = dihydroprogesterone; GABA 
– gamma-aminobutyric acid; HPAA = hypothalamic-pituitary-adrenal axis; PG = prostaglandin; PGDH 
= prostaglandin dehydrogenase; PGFM = PGF metabolite; PGRMC = progesterone receptor membrane 
component; PR = progesterone receptor; SRD5A = steroid 5α-reductase.
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